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Abstract. Fine-scale rainfall observations for modelling ex-

ercises are often not available, but rather coarser data de-

rived from a variety of sources are used. Effectively using

these data sources in models often requires the probability

distribution of the data at the applicable scale. Although nu-

merous models for scaling distributions exist, these are often

based on theoretical developments, rather than on data. In

this study, we develop a model based on the α-stable distri-

bution of rainfall fields, and tested on 5 min radar data from

a Belgian weather radar. We use these data to estimate func-

tions that describe parameters of the distribution over various

scales. Moreover, we study how the mean of the distribution

and the intermittency change with scale, and validate and de-

sign functions to describe the shape parameter of the distribu-

tion. This information was combined into an effective model

of the distribution.

1 Introduction

Rainfall is one of the most important drivers of hydrological

processes and is an important data source for hydrological

modelling. These models typically operate on a spatial scale

of less than 100 km (Ferraris et al., 2003), and a temporal

scale of about an hour, requiring data at a similar spatio-

temporal scale. The availability of suitable data, especially

for prediction, is often not guaranteed as the output of cir-

culation models and weather prediction models are typically

of a much coarser resolution. Furthermore, the variability be-

neath the scale of simulation has been found to be important

in hydrological modelling (Harris and Foufoula-Georgiou,

2001; Gires et al., 2012a).

Whenever suitable data are not available, the scaling be-

haviour in rainfall can be exploited to yield a statistical esti-

mate of the rainfall at a finer scale. At a very basic level, this

behaviour leads to a cascade of scales,

εn = ε0

n∏
j=1

µεj , (1)

where ε0 is a coarse-scale field or the field average, and

µε are multiplicative increments drawn from some distribu-

tion. To increase the number of pixels, each pixel at scale

n is split into several pixels at scale n+ 1, as illustrated

in Fig. 1. A variety of such cascades have been proposed,

starting from Kolmogorov (1941), who described homoge-

nous turbulence based on the Navier–Stokes equation, of-

ten referred to as simple scaling. These scaling laws have

been modified in a variety of ways, leading to more com-

plex scaling fields such as isotropic multifractal cascades

(Parisi and Frisch, 1985) and their anisotropic counterpart,

generalized-scale invariance (Lovejoy and Schertzer, 2013).

Furthermore, the parametrization of these models has been

eased by innovations such as the universal multifractal model

(cascade) (Schertzer and Lovejoy, 1987) and the fraction-

ally integrated flux (Schertzer and Lovejoy, 1987, 1997).

Various other models and methods exist, based on different

generators (roughly the increments µε), such as log-Poisson

generators (Deidda, 2000), log-β generators (Menabde and

Sivapalan, 2000) and a other simulation methods including

wavelets (Venugopal et al., 2006). More of these models

can be found in Gupta and Waymire (1993), Menabde et al.

(1997) and Koutsoyiannis et al. (2010), and a good general

introduction to these methods can be found in Schertzer et al.

(2002) and Tchiguirinskaia et al. (2000).

The above multifractal models can be employed to sim-

ulate (non-zero) rainfall according to a few parameters (i.e.

they are universal; see Sect. 2). Generally, these models as-

sume that µε is identically and independently distributed
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Fig. 1. A basic rainfall model, graphically illustrated. The left hand side of the image is the dressing
procedure, whereas the right hand side is the generation.
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Figure 1. A basic rainfall model, graphically illustrated. The left-hand side of the image is the dressing procedure, whereas the right-hand

side is the generation.

(i.i.d.). That is, the distribution of µε is the same at every

scale, and the draws are independent of other variables within

the large-scale cascade. However, in recent years some criti-

cism on these models has arisen, stating that real rainfall does

not “perfectly” scale, but violates the underlying assumption

of the i.i.d. µε. Empirical investigation of the scaling be-

haviour does indeed show that not all rainfall fields obey the

basic assumption that the increments of ε between scales are

i.i.d. Divergences from this behaviour were described by var-

ious authors who observed that the increments were depen-

dent on factors such as large-scale rainfall intensity (Deidda,

2000; Over and Gupta, 1994) and pixel size (Menabde et al.,

1997; Over and Gupta, 1994; Paulson and Baxter, 2007). Ad-

ditionally, scaling behaviour was found to differ with the in-

tensity of storms (Venugopal et al., 2006) and thus the non-

raining intervals do not scale (Olsson, 1998). These devia-

tions from perfect scaling are further examined in Veneziano

et al. (2006), Serinaldi (2010), and Rupp et al. (2009), who

showed that it is possible to model these imperfections in

scaling through empirical functions of the parameters of var-

ious downscaling models.

In previous investigations, imperfect scaling has been

studied by fitting and refitting various cascade models and

studying the dependence of the parameters on coarse-scale

intensity and other variables (e.g. Serinaldi, 2010; Rupp

et al., 2009; Veneziano et al., 2006). Some other studies have

investigated the dependence of breakdown coefficients, i.e.

under the assumption that µε ∈ [0,1], splitting the mass at

the coarse scale at each scale step (see e.g. Rupp et al., 2009).

In this study we directly investigate the dependence of the

empirically observed distributions of the increments on scale

and coarse-scale intensity. To do this, we investigate the em-

pirically found distributions of logµε and logε for variations

between scales. Furthermore, we investigate how between

scale correlations and scale variance behave, for a variety of

storms, by characterizing them with a suitable set of equa-

tions.

We start by explaining the simulation of rainfall (Sect. 2),

followed by a description of the data and some investigation

into its basic scaling behaviour (Sect. 3). Then, the α-stable

distribution is described in some detail in Sect. 4. This is fol-

lowed by the methodology in Sect. 5 and the result (Sect. 6).

Finally, we conclude with some discussion and conclusions.

2 Simulating and investigating multifractals

Scale-invariant processes and their generation are perhaps

easiest understood in the context of discrete-in-scale (dis-

crete) cascades (Parisi and Frisch, 1985; Schertzer and Love-

joy, 1987). In the discrete cascade, a multifractal process is

constructed at n discrete scales by perturbing a coarse-scale

field ε0 with i.i.d. multiplicative increments µεj ; see Eq. (1).

The incrementsµε “inject” energy into the “flux” causing the

field to become more volatile at finer scales. Due to its mul-

tiplicative nature, this field is highly singular, having many

small values and only a few (very) large values. The moments

of the cascade behave as (Schertzer and Lovejoy, 1987)

〈ε
q
λ〉 = λ

K(q) , (2)

where K(q) is a moment scaling function and λ= Leff/l

with l = 2n. Here, Leff is an outer scale at which the mo-

ments converge. Furthermore, 〈·〉 denotes a field or ensemble

average.

The field described above is multifractal and no longer

has a single fractal dimension, but rather an infinity of frac-

tal dimensions, each associated with a specific singularity.

Evidently, this is problematic, requiring and infinity of pa-

rameters to describe the behaviour. In practice, these cas-

cades converge to a universal multifractal if the increments

µε are from a log-stable distribution (Veneziano and Fur-

colo, 1999; Schertzer and Lovejoy, 1987), i.e. logµε ∼ Sα(·)

where Sα(·) is the (Levy) α-stable distribution (see Sect. 4).

Hydrol. Earth Syst. Sci., 18, 5331–5344, 2014 www.hydrol-earth-syst-sci.net/18/5331/2014/
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If this is the case, K(q) has the form

K(q)=
C1

α− 1
(qα − q) , (3)

where there are only two parameters, the co-dimension of the

mean C1 and a parameter α which controls the tail of the α-

stable distribution, where α = 2 leads to a normal distribution

for logµε and decreasing values for α lead to increasingly

heavy tails.

Fields simulated with the above method are “conserva-

tive”: they are the direct outcome of multiplicative cascades

and the realizations themselves are scale invariant. However,

for most observed rainfall fields only the fluctuations of the

field scale, i.e. |ε(x)− ε(x+1x)| (in one dimension) scale

rather than the direct realizations ε themselves. Such fields

are termed non-conservative and have an additional scaling

component. This additional component can be modelled as

ϕλ =D
−H ελ ; (4)

i.e. the field is fractionally integrated to an order of H , the

non-conservation parameter. The fluctuations of this field

scale with (Davis et al., 1994)

〈|1ϕλ(1x)|
q
〉 =1xζ(q) , (5)

where the structure function ζ(q) has a direct relation to

K(q):

ζ(q)= qH −K(q) , (6)

if the field is isotropic. SinceK(1)= 0, the non-conservation

can easily be estimated from the first-order structure func-

tion.

A further convenient way to diagnose whether measured

fields are non-conservative is the relation to the slope of

the Fourier power spectrum. The power spectrum of scaling

fields behaves as

E(k)= |k|−β , (7)

where k is the wave number, and the exponent β relates to

K(q) and H as

β = 1+ 2H −K(2) . (8)

Since K(2)≥ 0, conservative fields will always have β ≤ 1,

and non-conservative fields generally have 1≤ β ≤ 3 since

H is generally between 0 and 1 for rainfall fields (Lovejoy

and Schertzer, 2013; Davis et al., 1994).

Multifractal fields generated with the above model pro-

duce non-zero values everywhere, and thus they are only ap-

propriate to simulate regions where it is raining everywhere.

To overcome this, rainfall is often assumed to be the result of

two separate processes, one to determine where it is raining,

the support of the rainfall field, and another to determine the

observed rain rates. Several different methods of introducing

zero values have been proposed in literature, generally there

are those which simulate a separate (mono-)fractal rainfall

support (e.g. Rebora et al., 2006) and those that set values

below a certain threshold to zero (e.g. Ferraris et al., 2002).

Both methods have their merit, however, practical analysis

has proven difficult and it remains unclear whether the meth-

ods are correct or which is best. In this paper, we assume that

the support of the rainfall is a monofractal field and analyse

it as such.

Evidently, the above fields are simulated only to a finite

scale. In contrast, if the observed fields were simulated ac-

cording to such a model, they would be developed to an in-

finite scale and then integrated back up by the radar. This

distinction is referred to as a dressed cascade, i.e. it has been

developed to an infinite scale and then integrated back up.

Fields simulated only to a finite scale, without integration,

are referred to as bare cascades with fields in between be-

ing partially dressed. This difference is shown in Fig. 1. Al-

though important for a variety of statistical measures, it is

impossible to remove these effects (and thus get a direct

view of the bare process) and we are left with having to esti-

mate the bare process from the dressed cascade. Lovejoy and

Schertzer (2013) showed that, for a variety of approaches,

this is indeed valid.

3 Data

The data for this study were acquired by a C-band weather

radar near Wideumont, Belgium, operated by the Belgian

Royal Meteorological Institute (RMI). This installation cov-

ers a circular area with a radius of 240 km, producing a mul-

tilevel scan every 5 min. The region covered includes coastal

landscapes to the west, and a low mountain range, the Ar-

dennes, to the east with land cover mostly composed of

forests, urban development and agriculture. The entire re-

gion has a temperate climate and receives about 800 mm of

rain annually, almost uniformly distributed throughout the

year (De Jongh et al., 2006) and a mean monthly tempera-

ture which varies between 18 ◦C in June and 3 ◦C in January.

The actual 5 min radar images are taken from large events

during 2009, with 9 winter storms and 17 summer storms.

These images were extracted from a 6-month time series dur-

ing which larger storm episodes were selected to ensure suf-

ficient data. These images correspond to the basic 5 min in-

terval images; however, to reduce the data load, we opted

to use only the first image of each hour. The images used

were not aggregated in order to retain the basic spatial scaling

behaviour as well as to avoid ripple effects (Delobbe et al.,

2006) and possible temporal scaling.

The raw radar data are produced by a 5-elevation scan

performed every 5 min. Measurements are collected up to

240 km with a resolution of 250 m in range and 1◦ in azimuth.

A time-domain Doppler filtering is applied for ground clut-

ter removal. An additional treatment, based on a static clut-

www.hydrol-earth-syst-sci.net/18/5331/2014/ Hydrol. Earth Syst. Sci., 18, 5331–5344, 2014
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Fig. 2. A log-transformed rainfall field, together with the radius of reliable observations (circles) at 60
km and 180 km.
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Figure 2. A log-transformed rainfall field, together with the radius of reliable observations (circles) at 60 and 180 km.

ter map, is applied to eliminate residual permanent ground

clutter (e.g. buildings). The radar data are then stored as dig-

ital numbers representing the reflectivity values ranging from

−31.5 to 95.5 dB in steps of 0.5 dB. A two-dimensional radar

product is then extracted from the three-dimensional polar

data on a Cartesian grid with a resolution of 0.6 km× 0.6 km

(Goudenhoofdt and Delobbe, 2009). Reflectivity values are

then converted into precipitation rates using the Marhsall–

Palmer relation

ϕobs =
b

√
100.1·ZdB

a
, (9)

where ZdB is the reflectivity in decibels and a and b are di-

mensionless parameters, respectively equal to 200 and 0.6.

As with all weather radars, not all measurements are suit-

able for quantitative analysis. Firstly, the radar cannot accu-

rately measure rain rates below ∼ 0.1 mm h−1, dependent on

distance from the radar. Moreover, the measurements within

60 km of the radar were found to be strongly corrupted with

speckle as well as those further than 180 km from the radar.

Because of this, the rain rates below 0.1 mm h−1 were set to

zero, and values closer than 60 km or further than 180 km

were discarded. An example of a rainfall field together with

the radii between which points were kept is shown in Fig. 2.

3.1 Power density spectrum and multiaffine analysis

We analysed the rainfall fields both individually and for each

of the storms (by averaging the power spectra of each image

in the storm), prior to any changes made to the image, i.e. the

raw fields ϕobs. The spectra of all storms are shown in Fig. 3,

together with a straight line fitted to the linear portion of the

power spectrum. In each of these storms, linear behaviour is

easily visible, with a break at about 15 km for summer storms

and no clear observed scaling break for winter storms. This

difference in the range over which the image scales is easily

explained by the generally smaller scale of convective sum-

mer storms, in contrast to the large-scale stratiform systems

typical of winter precipitation.

Furthermore, the summer storms tend to have a β in ex-

cess of 3, suggesting that the non-conservation coefficient H

is larger than 1 (see Eq. 8). Although not often observed, this

is possible in the sense that a fractional integration is not re-

stricted to H ≤ 1. However, the observed images contain a

lot of noise, and generally only relatively few images were

available in these series, suggesting that these results may be

spurious.

Hydrol. Earth Syst. Sci., 18, 5331–5344, 2014 www.hydrol-earth-syst-sci.net/18/5331/2014/
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Fig. 3. The power spectra of all rainstorms, up to a range of 180 km from the radar, for images which
have more than 10% active pixels and storms with at least 10 valid images. The storm spectra are found
by averaging together the spectra of each of the images. The number at the end of each line is the slope
β, whereas the number at the beginnging is an ID number for each of the storms. Summer storms show
a higher slope β, and a short range of scaling than do winter storms. This is possibly explained by the
generally smaller scale of convective summer precipitation. The short scaling break at the smallest scales
is likely a result of non-raining areas.
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Figure 3. The power spectra of all rainstorms, up to a range of 180 km from the radar, for images which have more than 10 % active pixels

and storms with at least 10 valid images. The storm spectra are found by averaging together the spectra of each of the images. The number

at the end of each line is the slope β, whereas the number at the beginning is an ID number for each of the storms. Summer storms show a

higher slope β, and a short range of scaling than do winter storms. This is possibly explained by the generally smaller scale of convective

summer precipitation. The short scaling break at the smallest scales is likely a result of non-raining areas.
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Figure 4. A boxplot of the non-conservation parameter H for all

images. The overall parameter for each storm is marked as a black

square. Summer storms show a higher non-conservation parame-

ter than winter storms, suggesting a smoother behaviour within the

storm (as structure functions are computed only over raining areas).

To find corroboration for the slopes with β ≥ 3, the first-

order structure functions were computed. The slope of these

functions, up to a break, is equal to the non-conservation co-

efficient H . These slopes are shown in Fig. 4, for each storm

as a whole and for all images individually. Note that even

though the summer storms do have a higher H , they do not

exceed one. This lends credence to the notion that the overly

large β are due to speckle and other problems, and not due to

characteristics of the rainfall.

3.2 Singular moment analysis

The moment scaling functions of the rainfall images and

storms ϕ were analysed to determine the parameter α. The

co-dimension of the mean C1 is dependent on the outer scale

Leff. However, the truncation of the field due to the lower de-

tection limit introduces a spurious outer scale (Lovejoy and

Schertzer, 2013), and thus C1 cannot be determined accu-

rately. As it holds no importance for the remainder of the

paper, it was not generally determined.

Instead of the regular double trace moment, the fields were

analysed using the weighted multifractal analysis (WMA)

(see Gires et al., 2012b; Verrier et al., 2011). This is the

usual double trace moment analysis, with the following dif-

ferences:

– The averages taken in upscaling are only over raining

pixels.

www.hydrol-earth-syst-sci.net/18/5331/2014/ Hydrol. Earth Syst. Sci., 18, 5331–5344, 2014
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Figure 5. The empirical moments Mq as a function of scale for

storm 1 in its entirety. The moments show good scaling character-

istics as evidenced by the good fit of the linear function for each of

the moments q.

– Each pixel has a weight associated with the fraction of

rainy pixels within the disjoint boxes at the finest-scale

level.

This analysis is similar to the scaling described by Eq. (13),

but over disjoint boxes rather than a moving average. This re-

sults in an overweighting of the pixels with more rainy values

providing more accurate values for α and C1.

The results of this analysis are shown in Fig. 5 for the en-

tire first storm. First, the resulting moments have been taking

over a range over scales with η = 1 to determine the scal-

ing of the moments. It is easily observed that most of these

moments do indeed show a straight line for a large portion

of their entire scaling range. The fit to the empirical moment

scaling function K(q) is shown in Fig. 6. The moment scal-

ing function appears to be well captured by the theoretical

form of Eq. (3), suggesting that the field is indeed multifrac-

tal. The α parameters for all storms (not shown) are all close

to 2. Hence, it appears that the cascade is log-normal and

multifractal in nature for all storms.

4 α-stable distributions

As mentioned in the introduction and Sect. 2, the logarithm

of the rainfall fields ελ and their increments µελ are assumed

to be distributed according to the α-stable distribution. The

α-stable family of distributions allows for a large variety

in behaviour, including right- and left-skewed behaviour, as

well as symmetric behaviour. Furthermore, the distribution

allows either a heavy tail or a light, vanishing, tail on either

side, or on both sides, of the mode. Due to this highly flex-

ible behaviour, it includes several well-known distributions
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Figure 6. The empirical function K(q), together with the fitted

function using the WMA method. The empirical function crosses

zero for K(0) because of the use of the WMA method. Above

q ∼ 1.5 the fit starts to diverge from the empirical function, suggest-

ing that above q = 1.5 the scaling breaks and the empirical K(q)

takes on a linear character.
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Fig. 7. The difference between the parameter γ as fitted, and as predicted with correlations versus the tail
parameter α. The few very large values are due to the largest scales, but generally the approximations
appears to behave without bias or response to deviations from normal when α� 2.
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Figure 7. The difference between the parameter γ as fitted, and as

predicted with correlations versus the tail parameter α. The few very

large values are due to the largest scales, but generally the approx-

imations appears to behave without bias or response to deviations

from normal when α� 2.

such as the normal distribution and the Cauchy distribution.

The α-stable distribution does not have a closed form, but

rather expresses its density as an integral of the characteris-

tic (moment-generating) function over all moments ranging

from −∞ to +∞. This would result in an indefinite integral

that only has a closed form in a few special cases. Hence,
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Figure 8. The empirical means of the increments, averaged over

all images, and its fit. The error bars denote the 25th and 75th per-

centiles. There does appear to be some steady behaviour, but it ap-

pears highly complex, with relatively small values suggesting that

the mean might be sufficient to model its behaviour.
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Figure 9. The empirically fitted γ of the increments, averaged over

all images, and its fit. The error bars denote the 25th and 75th per-

centiles. The behaviour of the function is linear in the middle of the

scaling range, but breaks above log2l ≈ 6 or 30 km, and for the first

scale, which is roughly in agreement with the scaling range found

in the power spectrum.

an approximation is required. Although different approxima-

tions exist, they are all roughly equivalent and here we used

that of Nolan (1997), as implemented in the R package sta-

bledist (Wuertz et al., 2012).
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Figure 10. The empirical ρ of the increments, averaged over all im-

ages, and its fit.The error bars denote the 25th and 75th percentiles.

Almost the exact same pattern is observed as for γ .
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Figure 11. The difference between the probability of dry pixels as

predicted, and as observed.

There are a number of different parametrizations available

for the α-stable distribution, all suitable for different pur-

poses; we opted for the S1 parametrization of Nolan (2012).

In this parametrization, α determines the heaviness of the

tail, a parameter β (note that this is not the same β as in

Eq. 8) determines the skewness, and two parameters γ and δ

determine shape and location. If two distributions X and Y

have the same α and both have β =−1, their sum is also an

α-stable distribution, Z, with shape and location parameters

γ αZ = γ αX + γ
α
Y , (10)

δZ = δX + δY . (11)
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Figure 12. The weighted histograms of rainfall field increments at

a range of scales. The lines are the fitted distributions without any

preset parameters.

When α = 2, the α-stable distribution becomes the nor-

mal distribution. As a result, the effect of the parameter β

diminishes as α→ 2 and has no effect when α = 2 as the

normal distribution is necessarily symmetric. Additionally,

when α = 2, the shift parameter δ is equal to the mean, and

the shape parameter relates to the variance as σ 2
= 2γ 2. Ad-

ditionally, the distribution only has moments that are smaller

than α, hence, if α ≥ 1 the shift parameter is equal to the

mean. Moreover, when β =−1, the distribution is entirely

skewed to the left, meaning that it only has a “fat” tail to-

wards the left (negative numbers). Consequentially, the pos-

itive moments converge, whereas the negative moments do

not. Fortunately, as we generally only deal with positive mo-

ments in rainfall analysis, this property allows for an easy

analysis.

The α-stable distribution can be fitted in a variety of ways,

including the well-known maximum likelihood method.

Nevertheless, fitting α-stable distributions is still a difficult

exercise, partly due to the lack of a closed form. Despite

these difficulties, numerous different approaches are avail-

able and a summary of these approaches can be found in

Nolan (2001). For this study, the method of McCulloch

(1986) is used together with general maximum likelihood

fitting. Although faster methods do exist (e.g. Koutrouvelis,

1980), maximum likelihood fitting affords more flexibility

such as taking into account the truncation in the rainfall

fields. The method of McCulloch (1986) was used to gen-

erate an initial starting point for a boxed Broyden–Fletcher–

Goldfarb–Shanno (BFGS) algorithm used in the optimiza-

tion. Although an in depth explanation is not within the scope
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Figure 13. The weighted histograms of a rainfall field at a range

of scales. The lines are the fitted distributions without any preset

parameters. Note that the observed tail is a result of the local nor-

malization, not a natural feature of the rainfall field.

of this paper, the method of McCulloch (1986) relies on a

lookup table of quantiles and associated parameter values,

which are interpolated to obtain a crude first-guess estimate

of the parameters for the maximum likelihood fitting. For

more details on the maximum Likelihood fitting of the α-

stable distribution, please refer to Nolan (2001).

5 Methodology

The starting point for any analysis is the rainfall intensity

field ϕobs. Prior to scaling the field, any local trends were

first removed by normalizing the field over disjoint boxes

ϕnorm
obs (B100)=

ϕobs(B100)

〈ϕobs(B100)〉
, (12)

where B100 is used to denote the disjoint box of 100 by 100

pixels, or 60 by 60 km. This approach to scaling is similar

to that used in detrended fluctuation analysis (Kantelhardt

et al., 2002). The size of the boxes was chosen such that the

distributions scaled properly without bimodality, but that the

size of the boxes was as large as possible to avoid effects on

the scaling behaviour.

Subsequently, the data were coarse-grained for analysis.

This scaling was done using a moving average (low-pass) fil-

ter using a box with sides of length l rather than the disjoint

boxes common to multifractal analysis to allow for more

points at higher scales and avoid spurious correlations due

to a lack of points. This scaling is performed as

ϕl(i,j)=
1

#Rain(i,j)

i+l/2∑
x=i−l/2

j+l/2∑
y=j−l/2

ϕobs(x,y) , (13)

where #Rain denotes the number of active pixels in ϕobs

within the region over which the sum is performed. Each

Hydrol. Earth Syst. Sci., 18, 5331–5344, 2014 www.hydrol-earth-syst-sci.net/18/5331/2014/
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correlations, and that almost all of them are positive.
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Figure 14. The correlations of all scales for each of the storms. Note

that almost all rainfall fields exhibit correlations, and that almost all

of them are positive.

point has a weight associated with it, equal to the fraction

of rainy pixels within the area of averaging, i.e.

ωl(i,j)=
l2

#Rain(i,j)
. (14)

To determine the distributions and correlation, only points

with more than 90 % rainy pixels were selected for the anal-

ysis to further reduce the effects of non-rainy areas on the

analysis.

The resulting set of rainfall images ϕl with l ∈ 2(0..K) with

increasing (coarsening) scale were then used to extract the

increments. The log-increments µϕ are extracted as

log(µϕl)= log(ϕl+1)− log(ϕl), (15)

where l+1 is used to indicate the coarser scale. The resulting

cascades can then be analysed by fitting an α-stable distribu-

tion to each of the fields, log(µϕl) and log(ϕl), for each scale

using the fitting method described in Sect. 4.

Moreover, as mentioned earlier, the parameter α should be

the same for all these distributions. Therefore, the fit is done

in two steps, first a preliminary step where all distributions

are fitted separately resulting in a set αl=20..K , which contains

all α values for both the increments and the fields. Then, the

distributions are fitted a second time, forcing α = 〈αl=20..K 〉.

Although no formal relationship exists between distributions

with different α, it was found that the mean of a set was

in good agreement with optimized values of α. Hence, this

analysis results in a set of parameters (αµϕl ,−1,γµϕl ,δµϕl )

for each scale level l, where it should be noted that δµϕl is

forced to be equal to 〈log(µϕl)〉. A similar set is found for

each rainfall field log(ϕl), denoted by subscript ϕl .

Besides the basic parameters of the distribution, we are

also interested in establishing whether or not the fields and

their increments are actually i.i.d.. A simple test would be

to use the correlation to assess whether or not these distri-

butions are uncorrelated. However, the α-stable distribution

with stability parameter α does not admit moments q > α;

hence, if α < 2 the (Pearson) correlation does not exist. As
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correlation propagated from the largest scale. The inclusion of correlations leads to small, but consistent,
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by the functions, evidenced by the large relative error.
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Figure 15. The difference between the relative error of the distribu-

tion without correlation and that with correlation propagated from

the largest scale. The inclusion of correlations leads to small, but

consistent, improvements (i.e. negative values). It is immediately

clear that the coarsest scale is not well captured by the functions,

evidenced by the large relative error.

a result, using raw correlations is not feasible, and a diffi-

cult problem in α-stable analysis arises. Many different mea-

sures have been suggested, but to the authors’ knowledge all

of these pertain to symmetric distributions, i.e. those with

β = 0. Nonetheless, we adopt the correlation value of Garel

and Kodia (2009) as it offers important benefits and presents

a conceptually simple framework.

The basis of the correlation value of Garel and Kodia

(2009) relies on the notion that, for properly scaled vari-

ables with finite second-order moments, the slope of the re-

gression E[ϕ|µϕ] = E[µϕ|ϕ] (note that the logarithm and

the scale indicators have been dropped for notational conve-

nience) is equal to the Pearson correlation ρ. However, the

regression line and its slope always exist, in contrast to the

Pearson correlation coefficient, even though we cannot gen-

erally say that it is finite or exchangeable (i.e. it could be

that E[ϕ|µϕ] 6= E[µϕ|ϕ]). Hence, an appealing correlation

measure is

ρ(ϕ,µϕ)= sign(θϕ|µϕ)
√
θϕ|µϕθµϕ|ϕ , (16)

where θϕ|µϕ is the slope of the regression line E[ϕ|µϕ], and

similarly for θµϕ|ϕ . Use of the square root is to ensure that

if the second-order moment exists, the metric coincides with

the Pearson correlation. Finally, the sign function is used to

ensure that negative and positive correlations are differenti-

ated. A proof for this metric is beyond scope of the paper,

rather, we will investigate its practical skill. Furthermore,

www.hydrol-earth-syst-sci.net/18/5331/2014/ Hydrol. Earth Syst. Sci., 18, 5331–5344, 2014
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Fig. 16. The relative errors of the mean, shape and correlation functions. All functions appear to behave
relatively stable troughout winter and summer, with the exception of γ where the summer storms have a
smaller error, but more outliers.
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Fig. 16. The relative errors of the mean, shape and correlation functions. All functions appear to behave
relatively stable troughout winter and summer, with the exception of γ where the summer storms have a
smaller error, but more outliers.

38

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526
Storm

ρ f
it

−
ρ e

m
p

ρ e
m

p

Season

Summer

Winter

●●

●

●
●

●
●●
●

●

●●●
●
●
●
●
●
●
●

●

●

●●

●

●●
●●●●
●●

●

●●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●
●●
●
●
●
●

●

●
●

●
●

●

●●
●●

●●

●

●●
●

●

●

●●

●

●
●
●
●

●

●

●

●

●●●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●●

●

●●●
●
●

●●

●●
●

●●

●

●

●

●
●
●

●●

●
●●●●●

●
●
●
●
●
●

●

●

●

●

●●
●
●●●●●

●

●

●

●

●●

●
●
●
●

●●●
●
●
●●

●
●

●●

●

●

●

●

●

●●
●

●

●●

●●

●

●

●

●
●

●

●

●

●
●

●●●●

●

●●

●

●●
●
●
●

●

●

●
●
●●●
●
●●
●●●●
●●

●

●

●
●

●

●

●
●

●

●●
●
●●

●
●

●

●
●

●

●

●

●

●

●●
●●●
●●●
●

●

●

●

●●

●●

●

●
●
●●

●
●
●●
●

●
●
●
●

●●

●

●
●

●

●

●●
●

●

●●
●●

●

●●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●
●

●
●●
●

●●
●
●

●

●

●

●
●
●

●●

●
●

●●

●

●
●

●

●
●
●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

●

●●

●
●

●

●

●

●●

●

●

●
●●

●

●
●

●

●

●●

●

●

●
●

●

●
●

●●
●

●

●●
●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●
●●●
●●
●
●

●

●
●

●●

●
●●

●

●

●
●

●
●

●

●

●

●
●

●

●●
●

●

●
●

●

●●●●●

●
●
●
●
●

●●

●
●●
●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●
●
●
●

●

●
●
●

●

●
●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●●●

●
●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●
●●

●

●
●
●

●

●

●

●
●

●
●●

●

●
●●

●

●

●

●
●
●

●●

●

●

●

●●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●●
●

●
●
●
●
●

●●●●
●

●●
●

●●

●

●

●
●

●●●

●

●

●

●

●

●

●●

●

●

●
●
●
●

●
●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●
●
●
●

●●
●●

●

●
●
●
●

●

●

●

●●

●

●●

●

●
●
●

●

●

●

●

●

●●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●●●●●
●●

●

●
●

●
●

●

●

●

●
●●●

●●

●●

●

●

●
●

●

●

●●●
●●
●

●●●
●●
●●

●
●
●

●

●

−1.0

−0.5

0.0

0.5

1.0

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526
Storm

γ fi
t−

γ e
m

p

γ e
m

p

Season

Summer

Winter

●

●●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●
●

●

●
●

●●
●●

●

●

●●

●

●
●

●●

●

●
●
●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●
●
●

●

●

−1.0

−0.5

0.0

0.5

1.0

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526
Storm

δ f
it

−
δ e

m
p

δ e
m

p

Season

Summer

Winter

Fig. 16. The relative errors of the mean, shape and correlation functions. All functions appear to behave
relatively stable troughout winter and summer, with the exception of γ where the summer storms have a
smaller error, but more outliers.

38

Figure 16. The relative errors of the mean, shape and correlation

functions. All functions appear to behave relatively stable through-

out winter and summer, with the exception of γ where the summer

storms have a smaller error, but more outliers.

weighted and partial correlations are easily implemented by

using either weighted regression, or by determining the cor-

relation on residuals.

The relationship between the shape parameters of the rain-

fall field and its increments, γµϕ and γϕ , with ρ(ϕ,µϕ) 6=

0 is dependent on the entire bivariate distribution (Nolan,

2012). However, modelling such a distribution is highly cum-

bersome and not at all evident as multivariate stable distribu-

tions are an area of ongoing research; therefore, a simplifi-

cation is needed. We observe that if α = 2 the relationship

between γµϕ and γϕ is

γ αϕ+µϕ = γ
α
ϕ + γ

α
µϕ + ρ(2σ

α
ϕ )
(1/α)(2σαµϕ)

(1/α) , (17)

where ρ denotes the Pearson correlation coefficient. The

above is dependent on the notion that if α = 2, the α-stable

distribution becomes a normal distribution, with variance

2γ α . Therefore, to simulate the effects of the summation of
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Fig. 17. The parameter for the mean of the increment, shown as boxplots for each storm. Summer storms
clearly have lower increments.
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Figure 17. The parameter for the mean of the increment, shown as

boxplots for each storm. Summer storms clearly have lower incre-

ments. D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

●

●

●
●

●

●●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

−0.04

0.00

0.04

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Storm

a γ

Season

Summer

Winter

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Storm

b γ

Season

Summer

Winter

Fig. 18. The parameters for the γ of the increment, shown as boxplots for each storm. The intercepts are
higher for summer storms, suggesting more energy in the flux, but with smaller slopes, i.e. the scales are
more similar. Winter storms show the exact opposite behavior.
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Figure 18. The parameters for the γ of the increment, shown as

boxplots for each storm. The intercepts are higher for summer

storms, suggesting more energy in the flux, but with smaller slopes;

i.e. the scales are more similar. Winter storms show the exact oppo-

site behaviour.

a correlated distribution, we use Eq. (17) where we substi-

tute the Pearson correlation coefficients with the measure in

Eq. (16). The effects of using this equation are investigated

in Fig. 7 by comparing shape parameters fitted to the empir-

ical distribution with shape parameters computed according

to Eq. (17) over a single scale. Note that, in general, the er-

rors appear to be mild, however, at lower values of α, several

large errors can be observed. Fortunately, few rainfall images

Hydrol. Earth Syst. Sci., 18, 5331–5344, 2014 www.hydrol-earth-syst-sci.net/18/5331/2014/
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Fig. 19. The parameters for the correlation of the increment, shown as boxplots for each storm. The
functions for the correlation appear stable throughout winter and summer, and have a high intercept, but
a low slope suggesting that the correlation are somewhat the same for all scales.

41

Figure 19. The parameters for the correlation of the increment,

shown as boxplots for each storm. The functions for the correlation

appear stable throughout winter and summer and have a high inter-

cept, but a low slope suggesting that the correlation is somewhat the

same for all scales.

have distributions with low α, making this a tenable approx-

imation.

To investigate the behaviour of the scaling of the α-stable

parameters through time, we first need to characterize this

behaviour for each of the images. This is done by fitting a set

of scale-dependent functions to the α-stable parameters for

each image and its increments. The mean behaviour of the

α-stable parameters for all images was used as a guideline

for the function forms, shown in Figs. 8–10. These empirical

functions all admit linear or stable behaviour, and thus we

fitted

δk = aδ + bδ · ln(λ) , (18)

γk = e
aγ+bγ ·ln(λ) , (19)

%k = a% + b% ·
1

λ
. (20)

Note that the subscripts identifying that these parameters

apply to log(µϕl) have been dropped for notational conve-

nience. The fit of the above functions is examined in Figs. 8–

10, for each of the parameters respectively. First, the mean

of the increments shows relatively erratic behaviour close

to zero and was thus modelled as the mean over each of

the scales. Secondly, γ showed a split behaviour where at

smaller scales linear behaviour is observed, which flattens
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improvements (i.e. negative values). It is immediately clear that the coarsest scale is not well captured
by the functions, evidenced by the large relative error.

42

Figure 20. The difference between the relative error of the distribu-

tion without correlation, and that with correlation propagated from

the largest scale. The inclusion of correlations leads to small, but

consistent, improvements (i.e. negative values). It is immediately

clear that the coarsest scale is not well captured by the functions,

evidenced by the large relative error.

out at the larger scales and starts to behave somewhat errati-

cally. Similar behaviour is observed in the correlations where

the extreme scales are different in nature to the intermediate

scales. It is more than likely that this is related to the scal-

ing breaks observed in Sect. 3, nonetheless, we fit a linear

function to both for the middle of their range.

Finally, the number of dry pixels are modelled based on the

fractal box-counting dimension (Rupp et al., 2009). As the

box-counting dimension is directly based on the number of

dry pixels at each scale, it suffices to invert this relationship

yielding

P(Y > 0)l = (
1

lk
)Df ·P(Y > 0)lk=kmax , (21)

where Df is the fractal dimension and lk is the side length

of the pixel at scale k expressed in elementary pixels. This

relationship functions nearly perfectly (Fig. 11). Note that

this equation does not function on a pixel-by-pixel basis, but

rather attempts the total fraction of zeros in the field.

6 Results

The assumption that the both the distribution of ε and µε

(i.e. the conservative cascade) are of a log-stable family

is common, as it is vital to the universal behaviour. How-

ever, empirical investigation of these fields is difficult, as

removal of the effects of H can result in spurious scaling

(Veneziano and Furcolo, 1999) and hence we operate on

the non-conservative fields requiring some investigation as

to whether this assumption is tenable.

www.hydrol-earth-syst-sci.net/18/5331/2014/ Hydrol. Earth Syst. Sci., 18, 5331–5344, 2014
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After appropriate normalization, the distribution of the in-

crements µϕ is well approximated by an α-stable distribu-

tion as shown in Fig. 12. The distribution of ϕ itself is some-

what more difficult to approximate due to the truncation of

the lower tail at 0.1 mm h−1. Despite this, a truncated distri-

bution shows an excellent fit in Fig. 13, over all scales. The

parameters found after free-fitting (i.e. without any preset pa-

rameters) shows that the α changes somewhat throughout the

scaling range and between µϕ and ϕ, evidently, the α and β

parameters fitted for the truncated distribution ϕ are unreli-

able, as both are strongly determined by the missing tail. It

is likely that the changes in α are due to noise, and in part

due to the truncation of the lower tail, causing both β and α

to rise (i.e. the distribution to become more symmetric and

normal). Moreover, the mean of the field is reasonably stable

around zero, as would be expected of a normalized field.

In Fig. 14 all the correlations for each of the scales are

shown, summarized as a boxplot. From this plot, it is evi-

dent that almost all storms exhibit a positive correlation be-

tween the increments and the rainfall field. This pattern is

also seen in rank correlation measures (not shown), further

corroborating that there is indeed a correlation. Taking this

correlation into account according to Eq. (17) indeed results

in a decrease in error, as is evidenced by the lower relative

difference for the correlated than for the uncorrelated error

(Fig. 15). The effects of this correction are evidently less at

the higher scales, possibly due to the more erratic behaviour.

Moreover, the significant changes in the shape parameter, γ

further suggest that the i.i.d. assumption is, for these storms,

incorrect.

The functions 18–20 are used to characterize the scal-

ing behaviour. These functions exhibit a reasonably good

fit for all storms, as determined through the relative error

(Fig. 16). The resulting parameters are shown for each storm

in Figs. 17–19. The mean of the increments is evidently be-

low zero for the summer storm whereas it is generally pos-

itive for winter storms. The parameters for γ show a higher

intercept for summer storms, but a lower slope. Moreover,

some of these slopes are negative for the summer storms and

their spread is higher. This behaviour is reversed for ρ, with

lower intercepts for summer storms and higher slopes.

The analyses confirm the common finding that summer

storms tend to be more energetic with higher variances and

higher mean rainfall. Moreover, summer storms appear to ex-

hibit a smaller decrease in correlations, resulting in a stronger

correlation at the lower-scale levels.

Figure 20 shows the relative difference between the γ of

the modelled distributions and the direct fitted distributions,

propagated over the four scale levels. It can be seen that the

model error increases as the number of scale levels increases

over which we propagate the scaling. Nonetheless, the error

remains relatively low, showing that the model captures the

scaling behaviour quite well. The fractal model for the dry

pixels works very well, as should be expected due to the di-

rect relation with the actual number of dry pixels.

7 Conclusions

In this paper, we investigated the scaling behaviour of the

distributions of rainfall. To this end, a novel scaling model

was introduced that only relies on the basic assumptions re-

garding the cascade structure responsible for the fractal na-

ture of rainfall. Furthermore, this framework is based on di-

rect empirical comparison with the observed distributions. In

contrast, most previous work relied on theoretical considera-

tions and indirect use of the scaling distributions. Therefore,

this framework allows for a more direct and empirical inves-

tigation into the scaling behaviour of rainfall, and provides a

more adaptable framework to be used for practical purposes.

Rainfall was found not to be the result of an i.i.d. cascade,

but rather of a cascade where the distribution changed and the

increments are dependent on their coarse-scale parents. The

changes in distribution, as described by the shape parame-

ter of the α-stable distribution, were observed to change up

to a scale of about 32 km. After this, the behaviour became

erratic, possibly due to the large scale relative to the size of

the images. Nonetheless, this lack of scaling at large scales

has also been observed in similar studies on rainfall time se-

ries (Olsson, 1995). Furthermore, as the scales grow larger,

the inclusion of non-rainy areas becomes unavoidable and

more than likely affect the scaling behaviour (Olsson, 1998).

Furthermore, the summer storms were observed to have in-

crements with a higher variance, suggesting they are more

energetic. This is in line with expectations, as well as the

findings of other authors, e.g. (Venugopal et al., 2006) who

suggested that the scaling behaviour is different dependent

on the intensity of the storm.

The correlations found in the cascade were positive for al-

most all storms, and were shown to depend only on the large-

scale values and not on the season. However, these correla-

tions were clearly dependent on the scale of averaging, where

larger scales resulted in larger correlations, up to the point

were scaling became erratic. These dependencies have also

been observed by other authors in time series (Rupp et al.,

2009).

The inclusion of correlations into the distributional model

showed only moderate improvements, in part due to the small

magnitude of the scale parameters where the correlations

were found. Nonetheless, the deviation from identical dis-

tributions, as evidenced through the change in γ , should be

incorporated and give strong improvements.

In future research, the full dependence structure will need

to be evaluated to allow for a more accurate representation

of the dependence between scale levels and their increments.

This will allow for a deeper investigation into this aspect of

imperfect scaling and possibly a better way of representing

the scaling behaviour. Moreover, it was observed that local

trends were present in all rainfall images, not only in the

mean of the field, but also in the correlations, this will need

to be investigated further. Finally, the difference with respect

to the scaling behaviour, between convective and stratiform
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storms, will need further investigation, using a classification

algorithm such as the Steiner algorithm (Steiner et al., 1995).

A careful analysis of the behaviour of such algorithms will

be required before using them to investigate the difference in

scaling behaviour between stratiform and convective precip-

itation.
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