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In this paper we prove that it is possible to use techniques specific to electromagnetic 
field synthesis in the study of some electrical circuits. The definition of a circulant 
network will be presented. The system matrix of such a network is a circular matrix, 
which allows an analytical evaluation of all the eigenvalues and all the singular values. 
Resonance frequencies can then be calculated exactly as will be demonstrated on 
passive and active circulant networks. 

1. INTRODUCTION 

The condition number is an essential tool in the field synthesis problem [1]. 
Using conditioning also in the study of electrical circuits [2] could prove 
beneficial. A condition number close to unity guarantees the system matrix is well 
conditioned. High values of condition number indicates ill conditioning which can 
be either due to numerical problems but also due to the fact the electric network is 
not stable. 

Examples for this are the circulant networks. A circulant network is defined 
as a series connection of identical basic cells connected in a closed loop. It is 
known [3] that a closed loop can give rise to resonance or instability especially if 
active elements are involved.  

As it will be shown further, the system matrix of such networks turns out to 
be a circular matrix [4], the reason the name circulant networks has been chosen. 
The major property is that all the eigenvalues of a circular matrix can be calculated 
analytically. This offers the unique possibility to evaluate condition numbers of the 
system matrix exactly, so that eventual ill conditioning or resonances can be 
evaluated exactly. 

The importance of circulant networks derives from the fact that if in a chain 
of identical quadrupoles the matrix of the fundamental parameters at the n-th power 
is the identity matrix then a chain of n such quadrupoles can be studied as a 
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circulant network. The applications can be extended to the study of filters or 
transmition lines. 

2. BASIC THEORY 

Let us consider the circulant network shown in Fig. 1. The unit cell is 
composed of an impedance Z and an admittance Y. The current sources Ii can be 
diferent. A circulant network implies that the chain of Fig. 1 must form a closed 
loop or the node n + 1 = node 1. 

The electromagnetic field quasi-stationary equations lead to the following 
equation: 
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for i = 1, 2, ... n. If i = 1 then Vi-1 has to be replaced by Vn and if i = n then Vi+1 has 
to be replaced by V1 in (1). 
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Fig. 1 – The unit cell of circulant network. 

(1) can be rewritten as: 
                  (2+Z Y)Vi –Vi-1 –Vi+1 = ZIi. (2) 

Or in matrix form [5, 6]:   
                [A][V] = [Z][I]. (3) 

The system matrix [A] is then: 
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[A] is obviously a circular n x n matrix, the eigenvalues of which can be calculated 
analytically. 

3. EIGENVALUES ANALYSIS 

The eigenvalues of a circular matrix [A] can be evaluated as follows: 
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If Z Y is real and positive and n even the maximum eigenvalue occurs for 
m = n/2 or λn/2 = Z Y + 4. 

The condition number is then (for circular matrix): 

                       κ = |λn/2|/|λ0| = |Z Y+4|/|Z Y|, (7) 

or the largest eigenvalue (in absolute value) divided by the smallest one. 
Generally the condition number is defined with the so-called singular values σi. 

These are defined by [2]: 
                  ,ii µ=σ  (8) 

where µi are the eigenvalues of the matrix [A]H[A], [A]H being the Hermitean (the 
transpose conjugate) [4] of the system matrix [A]. 

If  1210 ... −σ≤≤σ≤σ≤σ n  the condition number κ is then defined by: 
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High values of κ indicates ill conditioning which can be either due to 
numerical problems but also due to the fact the electric network is not stable 
(oscillator e.g.).  

An important difference between eigenvalues and singular values is that the 
latter ones are always real and positive numbers. 

[A]H[A] is a circular matrix too and all the elements are real numbers. The 
eigenvalues µi of [A]H[A] are found similarly by using (5) or (6): 
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It can be easily verified that 
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We note Z = r+jx, Y = g+jy so: 

           Z Y = rg–xy+j (ry+gx) = a+j b. (13) 

Let p and q corresponding to:  

2
2

2
max sin4 b

n
p

ap +






 π
+=µ=µ ; 

2
2

2
min sin4 b

n
q

aq +






 π
+=µ=µ . 

 

 

The condition number is: 
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If a > 0 the condition number indicates a well conditioned system matrix. In this 

case 
2
np =  and q = 0 (the (7) formula is found once again for even n and b = 0. 

The ill-conditioned system is obtained only [7] for b = 0 and a ∈ [– 4, 0] so  

Z  =  jωL and Y  = jωC, p = 0 and 0sin4 2 =
π

+
n
qa  so the resonance condition is: 
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For example if n = 3 the condition is: 

               ω2 LC = 3 . (16) 

After the triangle-star transformation in the circulant network of Fig. 1, the 

circuit is presented in Fig. 2, where ii I
C

E
ω
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With (16) we have serie resonance in Fig. 2 and if the sources are different 
the network is in great difficulty. 
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Fig. 2 – Resonance in circulant network with 3 cells. 

For q = 0 one gets then a resonance at "DC" which means physically that all 
the capacitors in the lumped LC are being charged to the same constant but 
arbitrary voltage. The singular values are now: 

                LCo
2ω=σ , 
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4. APPLICATION TO AN ACTIVE NETWORK 

 Let us consider now the circulant network shown in Fig. 3. Each cell consist 
of an operational amplifier [3] and two impedances Z1 and Z2. The operational 
amplifier is considerer as an ideal one: infinite gain, infinite input resistance and zero 
output resistance. 
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Fig. 3 – The unit cell of active network. 

As can be found in several textbooks one has: 
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or  
          α Vi +Vi+1 = 0. (19) 

The system matrix [A] is now: 
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(20) 

Obviously, (20) is a circular matrix, the eigenvalues [4] of which are easily 
found be using (5) and (6): 
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Example 1. As a first practical example we consider a circulant network 
composed of inverters Z1 = Z2 = R or α = 1. We have then: 
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λm  can be zero for n even and m = n/2. The network has then an infinite number of 
solutions: 

              Vi  = V0  (i even) and Vi = –V0  (i odd), (26) 
where V0 can be any value. 

If n is odd, the only possible solution for the network is Vi  = 0 for all values 
of i. For n odd the smallest eigenvalue is evaluated as: 
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The condition number [2] is then: 
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which can be quite hight for large values of the number of cells n. 
Example 2. A second example involves an RC network with Z1 = R and  

Z2 = 1/jωC. This gives rise to α = 1/jωRC. The eigenvalue are then: 

           
2220

11
j

11
CRRC ω

+=
ω

+=λ , (30) 

           
n
m

RCCRm
π

ω
−

ω
+=λ

2sin211 222 .  

λm can be zero if ωRC = 1 and sin(2πm/n) = 1 which is only possible if n is a 
multiple of 4. The circuit is then oscillating [3] at an angular frequency 1/RC. 

Example 3. As a third example we consider a parallel connection of a resistor 
R and a capacitor C for Z2 and a single resistor for Z1: 
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We have now: 
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The eigenvalues are then found to be: 
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One can easily verify that for ωRC = 1 the eigenvalue λm = 0 on condition 
2πm/n = 2π 3/8 or: 
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. (36) 



122 Dan Micu, Gilbert De Mey 8 
 

 

If the circulant network contains 8 cells, the eigenvalue, 03 =λ  and the 
network will be oscillating at a frequency ω = 1/RC. The physical explanation is 
quite obvious. If ωRC = 1 each cell has a gain equal to unity and a phase shift of 
exactly  2π/8. Hence the 8 cell will provide a total phase shift 2π so that oscillation 
can start. The same phenomenon will occur if n is any multiple of 8. 

5. CONCLUSIONS 

It has been proved in this paper that the system matrix of a so called circulant 
network turns out to be a circular matrix. These matrices have the major advantage 
that all the eigenvalues can be calculated analytically. It becomes then possible to 
analyse phenomena like resonance exactly, without any disturbance due to ill 
conditioned matrices. It was also observed that the results obtained from the 
eigenvalues or from the singular values are all in perfect agreement. This is a 
consequence of the fact that the singular values are equal to the absolute values of 
the eigenvalues for the circular matrix. The results and methods used can be 
applied in the study of quadrupoles, filters and transmition lines. 
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