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Abstract

A methodology is presented to predict the cycles to crack initiation in a notched fibre metal laminate subjected to cyclic
loading. The methodology contains four steps. First, the far-field metal layer stress cycle is obtained using classical
laminate theory. Second, the peak stress cycle is estimated from a combination of a handbook solution for the stress
concentration factor in a finite isotropic plate, and analytical solutions for the stress concentration for equal situations
in infinitely large plates. The third step is to adapt the amplitude of the peak stress cycle to the characteristics of S-N
data for monolithic material from the literature to allow for the cycles to initiation to be read from the S-N curve for
each metal layer.

In contrast to what can be found hitherto in the literature about predicting the cycles to fatigue crack initiation in
fibre metal laminates, the authors of this paper leave no obscurities but rather attempt to bring understanding of the
complete path from situation to prediction.

Test results from the literature for Glare 4B-3/2-0.3 have been replicated using the aforementioned methodology. It
is shown that it can accurately predict the number of cycles to crack initiation, although the S-N data that is used for
the predictions dictates the obtained accuracy. The closer the stress cycle value of the S-N data is to the value of the
case analysed, the higher the accuracy obtained. Such a trend was not observed for the stress concentration factor of
the S-N curves used, although a choice for S-N data with a different stress concentration factor can cause a significant
change in precision. The method is also shown to work for several other fibre metal laminates.
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1. Introduction

Fibre metal laminates (FMLs) owe their popularity
mainly to their better specific fatigue resistance in com-
parison to their monolithic aluminium counterparts [1].
Fatigue can be split in two phases. First, the fatigue crack
initiation (FCI) phase occurs, which is dominated by ma-
terial surface conditions owing to the small dimensions of
the damage. In the second phase, the damage grows to a
larger size and fatigue resistance depends on bulk mate-
rial parameters rather than the surface [2]. The improved
fatigue resistance of FMLs is attributed to its fibre layers
which bridge fatigue cracks that appear in the metal lay-
ers due to repetitive loading [3]. This work focuses on the
crack initiation phase.

If full use is to be made from the fatigue resisting capa-
bility of FMLs, it is of vital importance that the amount of
load cycles the material is able to survive can be accurately
predicted. Although many different methods already exist

∗Corresponding author. Tel.: +31 (0)15 278 9749;
E-mail address: i.sen@tudelft.nl

to describe the fatigue crack growth behaviour of FMLs
[4, 5], the literature about models that predict FCI in
FMLs is rather limited. Currently, a complete description
of a method that can predict this number of cycles with a
sufficient precision is still lacking. Homan takes the first
step towards a prediction model with his proposition to
compare the number of cycles to crack initiation for Glare
to that for monolithic aluminium by looking at the stress
levels in the metal layers rather than the net section stress
of the FML [6]. The subsequent use of this stress to get to
a prediction of cycles to crack initiation, however, is left
untreated. Homan and Schra mention that the presence
of residual stress in notched FMLs makes the stress con-
centration factor (SCF) depend on applied load [7], but no
information is given on which SCF should be used to char-
acterise the peak stress cycle in comparison to S-N data.
No details are given, moreover, about the selection of one
of the many stress ratios that can be computed for an
FML, for similar purpose. Chang et al. connect Homan’s
reasoning to two different models to create an S-N curve
for a notched monolithic specimen to allow for a prediction
of cycles to crack initiation of FMLs [8, 9]. Their explana-
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tions, however, do not go further than a rough description
of the method by Homan and the connected model, again
leaving many implementation details to the reader.

Apart from the incomplete descriptions, the validity of
parts of the theories given is questionable as well. Homan
sums up layer compliance as if it were stiffness to get to
a laminate compliance matrix, does not rotate thermal
expansion coefficients using the off-axis matrix, and the
given equation for stress concentration along the edge of a
circular cut-out does not agree with what is given in the
original source. Chang et al. build on Homan’s method
and provide no alterations.

The current research focuses on creating understanding
of the complete methodology to predict the cycles to crack
initiation in a notched FML. The methodology implies us-
ing Homan’s method to find the stress amplitudes in the
metal layers at the point of interest, and subsequently
comparing these amplitudes to S-N data for monolithic
aluminium from the literature to get to a prediction of the
cycles to crack initiation. In contrast to the works about
this topic mentioned above, this paper contains a thor-
ough, directly implementable description of how to predict
the number of cycles until a 1 [mm] crack has emerged in
FMLs from the layer material properties, dimensions, and
loading. Homan’s method is, moreover, not bluntly copied
from the description provided in [6], but adapted to remove
the aforementioned inaccuracies. The body of this work
is divided in two parts. First, the method is explained,
and second, results of test series are replicated to conclude
about its accuracy.

2. Method

The suggested methodology to predict FCI in FMLs
works in three steps, each of which are explained in this
section. First, the far-field metal layer stress is calculated
from the applied load using classical laminate theory. Sec-
ond, the peak stress cycle is estimated, by multiplying a
handbook solution for the stress concentration factor in a
finite isotropic plate, with the ratio of the analytical solu-
tion for the stress concentration for the same case in an
infinitely large FML to that in an infinite isotropic plate.
Finally, the amplitude of the peak stress cycle is adapted
to the characteristics of S-N data for monolithic material
from the literature using a correction for both the stress
cycle and the SCF, after which the number of cycles to
initiation is read from the S-N curve.

2.1. Step 1: calculate the far-field metal layer stress

Classical laminate theory (CLT) is a method to calcu-
late the stresses in each individual layer of a flat, layered
material. Many different publications exist that describe
the CLT, an example is [10]. New insights caused the au-
thors of this work to make some alterations to the theory
as presented in [6], all of which are explained in this sec-
tion.

Instead of the rule of mixtures that is frequently ap-
plied to determine the laminate stiffness from layer prop-
erties [6, 8], the authors use the ABD-matrix definitions,
which allow for a more straightforward inclusion of layers
with several orientations into the calculation.

Following Tsai and Hahn [10], the compliance matrix is
computed from the inverse of the laminate stiffness matrix
rather than adding layer compliance matrices.

The thermal expansion of each layer, moreover, is ro-
tated using the strain rotation matrix, leading to:

α =

α1 cos2 (θ) + α2 sin2 (θ)
α1 sin2 (θ) + α2 cos2 (θ)
(α1 − α2) cos (θ) sin (θ)

 (1)

rather than the equation mentioned in [6]. Fictitious ther-
mal line loads and moments N th and M th are computed
from these thermal strains in the same way for regular
strains, see [10]. The total midplane strain ε◦tot and cur-
vature κtot can then be calculated using:{

ε◦tot

κtot

}
=

[
a b
b d

]{
N +N th

M +M th

}
(2)

The stress occurring in a layer of the FML as a result of
the combination of applied load and thermal expansion
can then be calculated in laminate coordinates using:

σ = Q (ε◦tot + zκtot −α∆T ) (3)

where Q is the stiffness matrix of the layer in laminate co-
ordinates, z the distance to the laminate midplane and ∆T
the difference with the temperature at which the laminate
is free of thermal stress (i.e. the consolidation tempera-
ture). Setting the applied line loads and moments to zero
in the equations above results in the thermal stresses in
the layers.

The mechanical stress is defined as the stress that would
exist in the absence of any thermal effects, and can be
calculated by setting the fictitious thermal line loads and
moments to zero.

2.2. Step 2: finding the stress cycle at the notch

The second step of the FCI prediction methodology is
to determine the peak stress cycle in the case analysed,
using a stress concentration factor (SCF). No equations
are readily available for an SCF in a notched anisotropic
plate of finite width. It is assumed all material behaves
perfectly elastic. Homan [6] stipulates that the ratio of
stress concentration in an infinitely wide FML to that of
an infinite isotropic plate is equal or at least close to that
same ratio for plates of finite width, or:

Kt,FML

Kt, iso
=
Kt,FML,∞

Kt, iso,∞
(4)

where the subscripts iso and∞ stand for isotropic material
and infinite width and Kt stands for the SCF, which is
defined as the ratio of peak stress to nominal stress: Kt =
σpeak

Snom
.
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Notation

Symbols Subscripts

a Inverse in-plane laminate stiffness coefficient [mm/N] 1 The quantity is in the local 1-direction
b Inverse bending-stretching coupling coefficient [1/N] 2 The quantity is in the local 2-direction
b Inverse bending-stretching coupling coefficient [1/N] ∞ The quantity belongs to an infinitely wide plate
d Inverse bending stiffness coefficient [1/(N·mm)] a Amplitude
D Hole diameter [mm] ff Far-field or applied value
f SCF correction factor, see equation (22) [-] FML The quantity belongs to a fibre metal laminate
E Young’s modulus [MPa] i The quantity describes cycles to crack initiation
G Shear modulus [MPa] iso The quantity belongs to isotropic material
Kt Stress concentration factor [-] k The quantity belongs to layer k
M Line moment on the laminate edge [N] m Mean value
N Line load on the laminate edge [N/mm] net Net section value, i.e. average over the cross-section
N Number of cycles [cycles] nom Nominal value, i.e. not accounting for local effects
Q Plane stress stiffness matrix [MPa] peak Peak or concentrated value
R Stress ratio [-] S-N The quantity belongs to S-N data
S Global direct stress [MPa] tot Total value, i.e. mechanical plus thermal
SN Fatigue strength at fatigue life N [MPa] u Ultimate value
W Plate width [mm] x The quantity is in the global x-direction
z z-coordinate, starting from the midplane [mm] y The quantity is in the global y-direction
α Coefficient of thermal expansion [1/�] θ The quantity is in circumferential direction
∆T Temperature difference between curing and testing [�]
ε Direct strain [-] Superscripts
θ Angle between layer 1-axis and laminate x-axis [deg]
κ Curvature [1/mm] ′ The quantity is in the load axis system
ν Poisson’s ratio [-] ◦ The quantity is the laminate midplane value
σ Local direct stress [MPa] max The value at maximum applied load
ϕ Off-axis loading angle [deg] mech The quantity results from the applied load only
ψ Cylindrical coordinate along cut-out perimeter [deg] min The value at minimum applied load

th The quantity results from thermal effects

S

σ

nom

Figure 1. Definition of nominal stress, Snom, and local stress, σ, in a
tensionally loaded notched layered part in plane stress. Snom is the
average value of the σ distribution on that z-coordinate.

2.2.1. Nominal stress and local stress

Two different types of direct stress are used in this
paper: a nominal stress Snom and a local stress σ. The
differences in the definitions of these two types of stresses
can be seen in figure 1. The nominal stress includes the
effects of an increase due to a reduction in cross-section,
the linear variation due to an applied moment, and the
layer-by-layer variation due to differing stiffness values for
different layers. The local stress includes the concentrating
effect of a cut-out on top of the aforementioned effects.

It is worth mentioning that test data is usually de-
scribed as a function of net section stress Snet. This is

the average stress over all layers of the complete lami-
nate cross-section perpendicular to the loading at the peak
stress point.

2.2.2. Stress concentration in a unidirectional stress field

The tangential stress around the perimeter of a circular
cut-out in an infinitely large orthotropic plate due to a
unidirectional stress field has been solved by Lekhnitskii
[11]. His solution depends on the engineering constants of
the laminate, on the off-axis angle and on the cylindrical
coordinate along the perimeter of the cut-out. The angular
variables are defined here as ϕ and ψ, respectively, see also
figure 2.

With all the material and situational data entered in
Lehknitskii’s equation, the result still depends on the cylin-
drical coordinate ψ. This report focuses on predicting the
moment of fatigue crack initiation and thus the highest
circumferential stress is of significance.

When a stress field is aligned with the laminate x-axis
and the laminate consists only of layers with a 0◦ or 90◦

orientation, the peak stress occurs at the intersections of
circular cut-out with the y-axis, or ψ = ±90◦. In that
case, Lehknitskii’s equation can be simplified to:

σθ
S

∣∣∣
ϕ=0◦,ψ=90◦

= 1 +

√√√√2

(√
Ex
Ey
− νxy

)
+

Ex
Gxy

(5)

The tangential stress at the perimeter of a circular hole
in an infinitely large isotropic plate can also be calculated
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Figure 2. Angle definitions for loading by an off-axis stress field S,
x and y are the longitudinal and lateral coordinates of the panel, x′

and y′ of the stress system

using equation (5), in which case:

σθ, iso
S

∣∣∣
ϕ=0◦,ψ=90◦

= 3 (6)

so the SCF for an isotropic plate Kt, iso,∞ = 3.
An example of a formula for the maximum SCF for

a circular hole in a finite isotropic plate under tension is
given by Peterson [12], which also occurs at ψ = 90◦:

Kt, iso = 2 + 0.284

(
1− D

W

)
− 0.600

(
1− D

W

)2

+ 1.32

(
1− D

W

)3
(7)

where D is the hole diameter and W the plate width.
Inserting equation (5), equation (7), and Kt, iso,∞ = 3

into equation (4) results in an expression for the stress
concentration in an FML with balanced and symmetric
layup of finite width, which is loaded in the direction of
the laminate x-axis and only contains layers in 0◦ or 90◦

direction.
There are many different equations available for a va-

riety of stress concentrating effects. Even though equation
(7) is used here, it does not mean that the reasoning is lim-
ited to this specific case. Different equations for the SCF
of a circular cut-out in an isotropic plate of finite width
can be used instead of equation (7), e.g. from the ESDU
data sheets [13] or Heywood [14]. Alternatively, a com-
pletely different set of equations can be used to calculate
stress concentrations in cases where the notch has a shape
that is different from circular.

2.2.3. Peak stress not at ψ = ±90◦

For laminates with layer orientation angles other than
θ = 0◦ or 90◦, or laminates under off-axis loading, the peak

1 2

Figure 3. Net section options in case the maximum SCF occurs at
ψ 6= 90◦, e.g. at the location indicated

stress due to a load in the x-direction can occur at a value
of ψ other than 90◦. This can be determined using the full
solution of stress around a circular cut-out by Lekhnitskii
[11]. In this case, two difficulties arise, as detailed below.

First, the net section that is part of the definition of
nominal stress becomes difficult to define. Two clear op-
tions exist for the choice of the net section in case ψ 6= 90◦,
see also figure 3:

1. the area through the peak stress point and perpen-
dicular to the applied load, or

2. the area perpendicular to the cut-out edge at the
peak stress point.

The peak stress acts in circumferential direction at the
cut-out edge. Option 2 would thus be correct close to the
peak stress point, because the net section is supposed to
be perpendicular to the direction of stress. Further away
from the hole, however, the direction of stress will be as is
applied, and option 1 would thus be more appropriate in
this location. The correct net section lies in between the
two options, but is hard, if not impossible, to determine.
The portion of stress in the plate that flows in a direction
other than applied is expected to be relatively small. The
net section, moreover, is expected to be smaller than the
section without any cut-out. These two arguments lead to
the choice of option 1 for the net section.

The second difficulty which arises when the peak stress
point lies at a location other than ψ = 90◦ is that hand-
book solutions for stress concentrations in monolithic plates
of finite width only specify the maximum SCF rather than
the distribution around the cut-out. The SCF in a mono-
lithic plate is thus not known at the peak stress point of its
anisotropic equivalent. Two solutions can be applied. The
first option is to still use the monolithic SCFs at ψ = 90◦

from a handbook for equation (4), and thus assuming that
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the ratio of SCFs between an infinite and finite monolithic
plate at ψ = 90◦ equals that of the anisotropic material
at the peak stress point. Another option is to determine
the concentration in the finite width monolithic material
at the location necessary using a finite-element analysis,
and using again Lekhnitskii for the infinite case.

The method of finding Kt,FML can thus still be applied
when the peak stress occurs at ψ 6= 90◦, although its ac-
curacy might be lower compared to the case with the peak
stress point at ψ = 90◦.

2.2.4. Stress concentration in a biaxial stress field

When biaxial loads are synchronously applied on a lam-
inate, their influence on the tangential stress around the
circular cut-out can be summed up, provided the material
response remains linear-elastic. When the loads are also
applied in the direction of both global laminate axes, the
tangential stress at ψ = 0◦ or 180◦ on the edge of the
cut-out in an infinitely large plate becomes:

σθ =Sx

1 +

√√√√2

(√
Ex
Ey
− νxy

)
+

Ex
Gxy


+ Sy

(
−

√
Ex
Ey

) (8)

and the tangential stress at ψ = 90◦ or 270◦:

σθ =Sy

1 +

√√√√2

(√
Ey
Ex
− νyx

)
+

Ey
Gxy


+ Sx

(
−
√
Ey
Ex

) (9)

Care should be taken that when loads Sx and Sy approach
each other in magnitude, the severest stress does not nec-
essarily occur at ψ = 0◦ or 90◦, but could be somewhere
in between. In this case the considerations described in
section 2.2.3 apply.

2.2.5. Other cases

Many other cases exist than those covered by the sec-
tions above.

When the loads in a multi-axial load system are not
synchronised, a solution for the stress cycle at each point
around the notch becomes necessary. This can be obtained
algebraically or numerically using the full solution of stress
around a circular notch, multiplied with the applied stress
as amplitude of a harmonic load, and summing up the ef-
fects of each load around the cut-out while making sure
the cylindrical coordinate is adapted for each load accord-
ing the off-axis angle, see also figure 2. Next, of all the
load cycles occurring on the cut-out edge, the most severe
can be taken to assess the fatigue performance.

If the frequencies of the loads in a multi-axial load sys-
tem are unequal, the stresses around the notch cease to

be of constant amplitude. For fatigue life assessments as
a result of variable-amplitude stress cycles, either a equiv-
alent constant amplitude load can be determined that has
the same expected damage growth as one repeating set
of variable-amplitude cycles, or the sum can be taken of
the damage increase for each occurring stress amplitude
[2, 15]. It should be noted that in the latter case, large
errors might be produced due to the fact that the damage
growth belonging to a stress cycle can be highly dependent
on the preceding cycles [2].

If the laminate is unbalanced and/or asymmetric and
thus not orthotropic, Lekhnitskii’s solution is no longer
valid, and a new solution is needed for the SCF in an
infinite plate due to uni-axial loading. The circumfer-
ential stress around a hole could be found by applying
a detailed finite-element analysis of the anisotropic plate
of finite width, thereby finding directly the required peak
stress and avoiding the need for equation (4) to estimate
its value.

2.2.6. The occurring stress cycle at the notch

The existence of a thermal stress field in the laminate
makes the calculation of the peak stress and stress ra-
tio less straightforward as when only mechanical loads are
taken into consideration.

When a notch is made in a flat planar part that is
stacked in z-direction, the thermal stress field that might
be present does not change in the rest of the part if the
shape of the notch does not vary in z-direction. This ef-
fect is illustrated in figure 4. All the parts in the figure are
considered to be at room temperature and interlaminar
shear stress is neglected, because it is assumed not to play
a significant role in FCI. A thermal stress field exists in the
cured condition, see figure 4.b, when the individual layers
have different CTEs and thus would strain differently if
they were not included in a laminate, see figure 4.a. When
a vertical cut is made to remove a part of the cured ma-
terial, see figure 4.c, the thermal stress field that exists
in the removed part remains within this piece. There is
no in-plane interaction of the thermal stress field with the
surrounding material for a part stacked in z-direction, be-
cause, even though the resulting stress is purely in-plane,
the thermal load transfer in this case is only in the stacking
direction. A stress concentration effect thus only occurs in
the stress field which results from applied load, see figure
4.d, because this stress has to ‘flow’ around the notch.

The peak stress σk, peak in each layer k is calculated
by multiplying only the nominal mechanical stress Smech

k, nom

occurring in the layer by the SCF and then adding the
residual thermal stress Sth

k :

σk, peak = Kt,FML · Smech
k, nom + Sth

k (10)

where the nominal mechanical stress is calculated by only
elevating the far-field mechanical stress as a result of the
reduced cross-section:

Smech
k, nom =

(
Sk,ff − Sth

k

)( W

W −D

)
(11)
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d. Mechanical stress flows around the notch and the SCF appliesc. Removed material takes its residual stress field with it

b. Residual stress is present in the cured condition

tensile r
esidual st

ress

compressi
ve re

sidual st
ress

tensile r
esidual st

ress

a. The layers have unequal sizes if they are unrestricted

Figure 4. A laminate in different conditions

where Sk,ff is the far-field stress in layer k calculated using
CLT.

The stress concentrating effect in each layer is no longer
independent of the applied load due to the presence of
residual stress, and the SCF thus ceases to be a purely
geometrical factor. Its value needs to be calculated using
the occurring peak and nominal stress values in each layer:

Kt, k =
σk, peak

Sk, nom
(12)

where the total nominal stress in a layer is the sum of the
nominal mechanical stress and the residual thermal stress:

Sk, nom = Smech
k, nom + Sth

k (13)

and σk, peak is calculated using equation (10).
The value of the SCF which occurs in a layer thus varies

between Kmin
t, k , its value at the minimum load of the ap-

plied load cycle, and Kmax
t, k , its value at the maximum load

of the applied load cycle.
The occurring stress ratio at the point of interest is

also different from the stress ratio which is applied in the
far-field, and is therefore recalculated as well:

Rpeak =
σmin
k, peak

σmax
k, peak

(14)

2.3. Step 3: predicting the cycles to crack initiation

Once the occurring stress cycle has been determined,
the fatigue initiation life can be estimated by looking up

a calculated stress amplitude in S-N data available in the
literature. It has been found that the cycles to failure of
notched monolithic aluminium specimens is close to the
cycles to a crack length of 1 [mm] in the aluminium layers
of an FML with the same shape [7, 16]. Crack initiation,
therefore, is assumed to have taken place at this crack
length, and S-N data for monolithic aluminium will be
treated as S-Ni data for the metal layers in a FML, and no
factor is used to account for a possible discrepancy between
the two.

The question remains which stress to compare to the
S-N curve. The stress ratio of this stress and SCF in the
analysed case, moreover, should be equal to the stress ratio
and SCF of the S-N data for a correct estimation. In case
they are not, correction formulae need to be applied to
correct for the difference.

2.3.1. Choice of reference stress

A reference stress needs to be chosen which is used to
compare the analysed case with S-N data. Recall from the
previous section that the existence of thermal stress results
in a variation of the SCF and stress ratio with applied load.

FCI is a material surface phenomenon [2], and it is thus
concluded that the stress cycle at the peak stress point is
dominating the number of cycles to initiation. It would be
ideal to compare the peak stress cycle with data that also
relates the peak stress in notched specimens to cycles to
failure. S-N data, however, is usually given with nominal
stress on the ordinate and number of cycles to failure on
the abscissa.
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It is not correct to translate S-N curves based on nom-
inal stress amplitude by simply multiplying with the cor-
responding SCF to relate peak stress amplitude to cycles
to failure. The influence of the SCF, namely, differs for
low- and high-cycle fatigue [2].

The combination of nominal stress amplitude, Sa, nom,
and peak stress ratio, Rpeak, are therefore used as the ref-
erence stress cycle. This allows for a comparison on the
basis of nominal stress, while using the correct stress ratio
occurring at the point of interest.

2.3.2. Adapting the load cycle to match the mean stress

The reference stress cycle has to be converted towards
the mean stress level that was used to produce the S-N
data with which the amplitude of this stress cycle is to be
compared.

The mean value and the amplitude of the reference
stress occurring in a layer can be calculated using:

Sm, nom =

(
1 +Rnom

2

)
Smax
k, nom (15)

Sa, nom =

(
1−Rnom

2

)
Smax
k, nom (16)

The amplitude for zero mean reference stress is calcu-
lated using the Goodman relation instead of alternative
relations, because it is generally a conservative approxi-
mation [2]:

Sa, nom|Sm=0 =
Sa, nom

1 +
Sm, nom

Su

(17)

To find the amplitude of the stress cycle in the S-N
curve, Sa, S-N, that is equivalent to the stress cycle of the
test case, the Goodman relation is used once again, this
time with the stress ratio of the S-N curve, RS-N:

Sa, S-N = Sa, nom|Sm=0

(
1− Sm, S-N

Su

)
(18)

where the same amplitude for zero mean stress as in equa-
tion (17) is used, because it characterises the stress cycle
under consideration.

The mean value of the equivalent stress cycle in the
S-N data, Sm, S-N, is still an unknown at this point. The
mean value of any constant-amplitude load cycle can be
written as a function of the corresponding amplitude with
use of the stress ratio:

Smax =

(
2

1−R

)
Sa (19)

in which the denominator will never be zero because R = 1
would mean there is no load variation. Hence, for the mean
value of the peak stress of a load cycle described by the
S-N curve, it follows that:

Sm, S-N = Smax, S-N − Sa, S-N

=

(
2

1−RS-N
− 1

)
Sa, S-N (20)

Equation 18 can now be rewritten using equation 20
to obtain a relation for Sa, S-N that is solely dependent on
terms that are known and gives the peak stress amplitude
in the S-N data that is equivalent to the reference stress
amplitude Sa, nom occurring in a metal layer of the lami-
nate under consideration:

Sa, S-N = Sa, nom|Sm=0

1−

(
2

1−RS-N
− 1
)
Sa, S-N

Su


=

Sa, nom|Sm=0

1 + Sa, nom|Sm=0

(
2

1−RS-N
−1

Su

) (21)

2.3.3. Adapting the load cycle to match the SCF

A different stress distribution in a plate loaded by a
repetitive load leads to a different fatigue life, even if the
peak stress remains the same [2]. The shape of the stress
distribution is determined by, among others, the SCF, so
using S-N data with a different SCF value than the case at
hand may lead to a wrong life estimation. The reference
stress amplitude, therefore, needs another translation to
be suitable for comparison to the S-N data used. In HSB
62131-01 [17], a method for the prediction of the fatigue life
for cases with SCF values different to available S-N data
is described. The method makes a distinction between
two translation methods which are termed ‘method 1,’ and
‘method 2’ for the remainder of this paper

If one S-N curve is used, SCF translation method 1
is applied, which entails multiplying the stress amplitude
with a load factor f to account for different SCF values of
the S-N curve. In general, the closer the SCF values, the
more accurate the obtained prediction will be. The load
factors are calculated using:

f =


Kt Kt, S-N = 1, Kt ≥ 1
Kt

Kt, S-N
Kt, S-N > 1, Kt > Kt, S-N

1 Kt, S-N > 1, Kt ≤ Kt, S-N

(22)

and thus the corrected stress amplitude is found by:

Sa, corrected = f · Sa, S-N (23)

which is used to predict the cycles to crack initiation from
the corresponding S-N curve.

If more than one S-N curve is available, SCF correction
method 2 can be used, where two S-N curves with the
same stress ratio are selected to perform an interpolation
or extrapolation, depending on the choice of curves, to
predict the cycles to crack initiation. A prediction for
the cycles to crack initiation is made using each chosen
S-N curve, making use of the stress amplitude Sa, S-N from
section 2.3.2, after which the final result is found using:

log(N) = log(N2)+

(log(N2)− log(N1))
log(Kt)− log(Kt, S-N2)

log(Kt, S-N2)− log(Kt, S-N1)

(24)
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Table 1. Crack initiation life test data and corresponding calculated
nominal stress amplitude in the metal layers, peak stress ratio and
maximum SCF for Glare 4B-3/2-0.3 with Kt, iso = 2.7, R = 0.05 [7]

Sa, net Ni Sa, nom Rpeak Kt, max

[MPa] [cycles] [MPa] [-] [-]

110 2599 160.4 0.073 2.879
100 3993 145.8 0.075 2.866
90 6118 131.2 0.078 2.850
80 9739 116.6 0.082 2.831
70 18427 102.1 0.086 2.807
60 34706 87.5 0.092 2.775
50 68583 72.9 0.099 2.733

where N is the resulting amount of cycles to initiation, N1

and N2 are the cycles to initiation using the individual S-
N curves, and Kt, S-N1 and Kt, S-N2 the SCF values of the
corresponding S-N curves used. The index 1 always points
to the S-N curve with the lower SCF value of the two.

The applicability of both the SCF correction methods
mentioned above is limited to high cycle fatigue (N >
5 · 103 cycles) [17].

3. Results and discussion

Homan and Schra [7] have tested the cycles to crack
initiation on Glare 4B laminates. The results of one test
series on Glare 4B-3/2-0.3 can be found in table 1. This
material has a stiffness of 48.7 [GPa] and a nominal tensile
yield and ultimate strength of 251 [MPa] and 572 [MPa]
in longitudinal direction [1]. The constituent mechanical
properties are given in table 2. More information about
(this type of) Glare can be found in [1]. The cycles to
initiation were obtained as a function of net section stress
amplitude Sa, net, which is explained in section 2.2.1. The
prediction methodology for cycles to crack initiation de-
scribed in section 2 is used in this section to predict the
cycles to initiation in the same situations. The material
properties that were used in the simulation for the Glare
constituents were those given by Homan [6] which can be
found in 2. Comparing the predictions with the experi-
mental S-Ni data obtained by the tests enables conclusions
to be made about the validity of the prediction methodol-
ogy.

First, the influence of the changes the method described
by Homan [6] to the method explained in section 2 is as-
sessed by calculating the layer stresses using both methods
and looking at the relative difference between both an-
swers. Second, the metal layer stress is calculated for the
data in table 1 and subsequently corrected for the R-ratio
and the Kt-value of several S-N curves for monolithic alu-
minium to see how both agree. Third, the influence of the
choice of S-N curve and the choice of Kt correction method
on the prediction accuracy is evaluated on the basis of the
difference between prediction and test result. Finally, the

method is applied to other FMLs to evaluate its applica-
bility.

3.1. Layer stress calculation

Example calculations of the residual stresses and the
nominal layer stresses in the aluminium layers for three
different Glare laminates are made using both Homan’s
and the current method. The relative difference between
the two is calculated using:

δ =
SHoman − Scurrent

Scurrent
· 100% (25)

and the result is summarised in table 3. There is no differ-
ence at a 0◦ and 90◦ load direction. A significant error of
up to 60%, however, is observed at a 45◦ loading direction
for Glare 4B-3/2-0.3. For other laminates and loading di-
rections (other than 0◦ and 90◦) the amount of difference
is smaller, although still significant.

3.2. Comparison to S-N curves from literature

The aim of this section is to evaluate the accuracy of
calculating the reference stress from the far-field load value
using the method of section 2. The resulting data pairs
of reference stress amplitude and cycles to initiation are
compared with legacy S-N data for aluminium 2024-T3. A
good agreement between the two means that a prediction
for FCI in Glare can indeed be made using S-N curves for
monolithic aluminium available in literature.

The S-Ni-data for notched Glare 4B-3/2-0.3 specimens
with Kt = 2.7 [7] is compared to S-N data for monolithic
aluminium 2024-T3 obtained from HSB [18], see figures 5,
6, 7, and 8. The value of the SCF is what it would be if
isotropic specimens of the same geometry would be used.

Three different sets of data points can be seen in each
figure, along with an S-N curve. The empty circles cor-
respond to the average far-field laminate stress that was
applied in the tests. The solid squares are the correspond-
ing nominal stress values in the metal layers of the FML,
and the solid triangle are the results of adapting the nom-
inal stress value to the Kt and R value of the S-N curve
the data is compared to, according to section 2.3.

3.2.1. Metal layer stress instead of applied stress

Glare withstands a smaller net section stress than mono-
lithic aluminium to reach comparable crack initiation lives,
compare the circles in e.g. figure 5 with the line. Homan
already indicated that the stresses occurring in the alu-
minium layers should be used to compare FMLs to mono-
lithic materials [6]. The data points then lie much closer
to the S-N curve, as can be seen by the squares in the same
figure.
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Table 2. Mechanical and physical properties of Glare constituents [6] that served as input for the prediction methodology

Material properties Aluminium 2024-T3 S2-glass/FM94 epoxy

Youngs modulus [MPa] E1 72,400 48,900
E2 72,400 5,500

Shear modulus [MPa] G12 26,900 5,550

Poissons ratio [-]
ν12 0.33 0.33
ν21 0,33 0,0371

Coefficient of
[1/�]

α1 22 · 10−6 6.1 · 10−6

thermal expansion α2 22 · 10−6 26.2 · 10−6

Layer thickness [mm] t 0.3 0.133
Cure temperature [�] T - 125

Table 3. Percentile difference between Homan’s [6] and the current
method to calculate residual stress and total layer stress for several
Glare types and loading angles at an applied stress of 70 [MPa],
calculated using equation (25).

Glare Residual stress Layer stress*
type 0◦ 22.5◦ 45◦ 0◦ 22.5◦ 45◦

2A-3/2-0.3 0 -19.3 -35.6 -3.4 -5.8 -6.1
3-3/2-0.5 0 -6.1 33.9 -3.6 -3.1 -1.1

4B-3/2-0.3 0 26.8 60.0 -3.6 -0.7 4.0

*The layer stress includes the contribution of applied
load and residual stress

3.2.2. Applying corrections to approach the S-N data

The translation explained above would be very accu-
rate if the Kt, S-N and RS-N of the S-N curve are equal
to the Kt and R occurring in the aluminium layers of the
test case. This is, however, rarely the case, and additional
translations are necessary to obtain a good agreement be-
tween the test data and S-N curves. In sections 2.3.2 and
2.3.3, corrections were introduced to consider the differ-
ences between the Kt and R values of test case and S-N
data. To find out the range of applicability of both correc-
tion methods, an analysis is performed using aluminium S-
N data with a variety of Kt, S-N and RS-N values, obtained
from HSB [18]. Method 1 has been chosen to correct for a
difference in SCF in this section.

As can be concluded from figures 5 to 8, the correction
results in a very good agreement for the cases where the
value of Kt in the S-N data lies below that of the predicted
case, as shown in figures 5 and 6. The method is far less
accurate for the other two cases.

When Kt, S-N is larger than Kt, max, applying the cor-

rection f =
Kt, max

Kt, S-N
would result in an unconservative pre-

diction, because the points would fall significantly below
the S-N curve. Equation (22), therefore, is such that it
does not adapt stress amplitude in case the Kt, S-N falls
below Kt, max and thus the original amplitude is used to
obtain a conservative prediction [17].

It seems from the data considered that when the test
data is compared to S-N curves with a Kt, S-N value lower
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Figure 5. Comparison of crack initiation life measurements of Glare
4B-3/2-0.3 [7] to an S-N curve with Kt = 2.0 and R = 0, valid above
N = 104cycles[18].

than the Kt, max, a good agreement is obtained when both
corrections to the stress amplitude are applied. When the
Kt, S-N of the used S-N curve is higher than Kt, max, the
agreement is not so good but conservative, because only
the stress ratio is corrected. The case with Kt, S-N = 1 was
analysed as well. Unfortunately, no match was obtained
and all estimations gave results higher than the run-out of
107.

The same analysis was performed for S-N curves with
R = 0.25, R = −0.5 and R = −1, where similar results
were obtained: the correction for the stress ratio always
improves the agreement and the correction for the stress
concentration factor only if the Kt, S-N is smaller than
Kt, max and not equal to 1. Applying the corrections ac-
cording to this case resulted in a good agreement for all
cases analysed.

The S-N curves are only valid for load levels that result
in 104 to 107 cycles to crack initiation [18]. The method
described in this paper therefore cannot be verified by com-
paring the Glare test results with higher load levels than
these data. Comparing the trend of the corrected test
data with the S-N curve in figure 6, however, does allow
for a conclusion to be made about these higher loads. S-N
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Figure 6. Comparison of crack initiation life measurements of Glare
4B-3/2-0.3 [7] to an S-N curve with Kt = 2.5 and R = 0, valid above
N = 104[cycles] [18].
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Figure 7. Comparison of crack initiation life measurements of Glare
4B-3/2-0.3 [7] to an S-N curve with Kt = 3.6 and R = 0, valid above
N = 104[cycles] [18].

curves show a decreasing slope towards a maximum stress
close to the ultimate stress in the direction of the stress-
axis [2]. This means that corrected data points with stress
levels above 140 [MPa] in figure 6 will fall above the S-N
curve. This leads to conservative predictions at load levels
above the maximum load level of the S-N data, because
the proposed method will predict a lower amount of cycles
if S-N data were available at these levels.

3.3. Evaluation of FCI predictions

The predicted cycles to initiation using S-N curves of
monolithic notched metal plates are compared to S-Ni-test
results of notched FML plates in this section.

The accuracy of the predictions is evaluated using the
absolute value of the ratio of the predicted cycles to crack
initiation with the expected value, i.e. the test result, as
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Figure 8. Comparison of crack initiation life measurements of Glare
4B-3/2-0.3 [7] to an S-N curve with Kt = 5.2 and R = 0 [18].

Table 4. Average error η, see equation (26), of fatigue crack initiation
life predictions for Glare 4B-3/2-0.3 with Kt, iso = 2.7, R = 0.05 [7]
to replicate the test results of table 1.

RS-N

Kt, S-N 0.25 0.0 -0.5 -1.0

2.0 0.272 0.192 0.292 0.642

2.5 0.45 0.33 0.491 0.882

3.6 0.511 0.511 0.412 0.462

5.2 0.671 0.722 0.713 0.713

2.0 & 2.5 0.76 0.38 0.541 0.761

2.0 & 3.6 0.301 0.311 0.572 1.602

2.0 & 5.2 0.951 0.662 1.103 2.873

2.5 & 3.6 0.531 0.341 0.572 1.072

2.5 & 5.2 0.901 0.522 0.713 1.343

3.6 & 5.2 0.361 0.302 0.383 0.693

Excluding 1 110, 2 100 and 110, and 3 90, 100, and 110 [MPa]

a measure of relative error:

η =

∣∣∣∣Npredicted

Nexpected
− 1

∣∣∣∣ (26)

Table 4 contains the average error of the prediction of
multiple data points for the FCI in notched Glare 4B-3/2-
0.3 using various S-N curves for notched aluminium. A
value in the table belongs to predictions that are made
using the S-N curve(s) of the R- and Kt-values indicated.
These values show the average error to predict the cycles
to initiation for each data point in table 1, which is de-
termined by using equation (26) for each data point and
taking the average value of the set of results. When two
values for Kt are indicated in table 4, method 2 was ap-
plied, otherwise method 1 was used.

S-N curves with Kt = 1 give only run-outs for the
tested laminate and are thus excluded from the compar-
ison in table 4. The various load levels that were also
excluded from a large part of the table entries are a result
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of the method failing to produce an answer when the stress
amplitude lies above the highest value of the S-N curve.

The data in table 4 shows that the accuracy of the pre-
diction methodology is strongly influenced by the choice of
S-N data that is to serve as the base of the predictions. It
is important to realise that a bad agreement of a prediction
with test results, therefore, does not necessarily disprove
the validity of the method. It can simply mean that the
S-N data does not represent the metal layers in the FML
to a satisfactorily degree. The opposite is also true: a
good agreement between predictions and test result does
not validate the method, but could be a lucky choice of
S-N data. It is thus important to test the methodology in
a large variety of cases to establish its validity.

3.3.1. Accuracy of the predictions

The average error over all rows equals 0.57, 0.43, 0.58,
and 1.10 for S-N data with R = 0.25, 0.0, −0.5, and −1.0,
respectively. The applied load cycle has R = 0.05, leading
to 0.073 ≤ Rpeak ≤ 0.099. The S-N curves with the closest
value for the load ratio have R = 0.0, and the average
error of the column with this value for R is also the lowest
of the four. This leads to the conclusion that indeed the
best predictions are obtained when the load ratio of the
S-N data equals the case analysed.

The case analysed has Kt, max = 2.807, so in this case
the S-N curve with Kt, S-N = 2.5 lies closest to this value.
It can be seen in table 4 that the error using a single S-N
curve with this value of Kt is not the smallest in com-
parison to using other curves to predict crack initiation.
This is probably a result of scatter of the test data that is
used to evaluate the accuracy, and could be solved using
a larger dataset.

Based on the trends in the average error values using
method 1, it seems that it is beneficial to use S-N data that
has a lower Kt value than the case for which a prediction is
made, rather than a higher one. This is probably a result
of equation (22), which only corrects the prediction in case
the SCF of the S-N curve falls below the case analysed, as
mentioned in section 3.2.2.

3.3.2. Method 1 versus method 2

It was mentioned earlier that the column with the most
accurate results is R = 0.0. The average error of the pre-
dictions in this column using method 1 equals 0.44. The
average error is 0.42 when method 2 is applied. It thus
appears that both methods produce predictions that seem
equally accurate on average and no decision can be made
on whether one method is significantly better than the
other. A slight preference of method 1 over method 2 could
be based on the high errors seen using the latter method
when the R value is far off from the case analysed, while
method 1 remains relatively accurate.

The result of the two prediction methods is plotted
with the test results for a variety of stress amplitudes in
figure 9. The error, as defined by equation (26), is plotted
per stress level in figure 10. For each data point, the S-N
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Figure 9. Fatigue crack initiation life predictions for Glare 4B-3/2-
0.3 at several stress amplitudes using both methods mentioned in
section 2.3.3 compared to test results from table 1.

curves were used that had the smallest difference in Kt

and R values with the case analysed: Kt, S-N = 2.5 for
method 1, and Kt, S-N = 2.5 and 3.6 for method 2, and
R = 0 for all S-N data used.

It can be seen in the figures that both prediction meth-
ods approach the test results quite well. The amount of
error is low at stress amplitudes in the middle of the range
tested, and increases when the applied stress amplitude ei-
ther decreases or increases. The increasing error towards
a higher applied load is a result of the fact that the S-N
data used is not valid below 104 cycles [18], but it is still
used to make a prediction, see also the dashed part of the
S-N curves in figures 5 to 8. The increasing error towards
a lower applied load is a result of the decreasing slope of
the S-N curves towards the fatigue limit. This causes a
larger variation in cycles to initiation as compared to a
higher load, for the same variation in stress amplitude.

There is no data point for method 2 at Sa = 110 [MPa],
because the method predicts failure below a single cycle
as a result of trying to find a value above the upper stress
limit of the curve that constitutes the S-N data [18]. It is
decided not to include any result outside the limits of the
curve, which lie at 100 and 107 cycles.

3.3.3. Influence of stress concentration factor

The SCF is not constant during the application of a
load cycle, as was mentioned in section 2.2. A Kt, max and
a Kt, min are calculated for each occurring stress cycle,
based on the maximum and minimum peak stress.

The prediction of the cycles to crack initiation for Glare
4B-3/2-0.3 with Sa = 70 [MPa] is plotted in figure 11.
The Kt value is varied between Kt, min and Kt, max, as is
indicated by the vertical dotted lines in the figure. The
solid grey line belongs to the result of using a single S-N
curve each time, and the dashed black line to the result
of interpolating between two S-N curves. The dash-dot
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Figure 11. Prediction for the cycles to crack initiation of Glare 4B-
3/2-0.3 at Sa, net = 70 [MPa] using a SCF value between Kt, min =
1.60 and Kt, max = 2.81 and RS-N = 0.

line in the figure represents the number cycles to initiation
determined from fatigue testing.

The S-N curve with the value of Kt, S-N closest but
below the analysed SCF value was chosen each time for
method 1, because equation (22) does not correct for cases
where Kt ≤ Kt, S-N. The S-N curves which form the limits
of an interval of available Kt, S-N values, or the closest two
in case Kt lies below 2.0 or above 5.2, were chosen for
method 2.

The figure clearly shows that, regardless of the SCF
correction method, using the Kt, max results in an answer
that lies closest to the measured value. This is an ex-
pected result, since the maximum peak stress is the most
severe stress occurring and thus it is likely to drive dam-
age initiation. Repeating this analysis for other load cycles
consistently leads to the same conclusion.
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Figure 12. Prediction based on Sa, nom = 102.1 [MPa], Rpeak =
0.859 varied between Kt = 1.0 and Kt = 6.0 using the closest avail-
able S-N data with RS-N = 0 .

3.3.4. Sensitivity of estimated fatigue life

Two methods were explained above to correct the SCF
for the estimation of the cycles to initiation. In figure 12,
the results of both estimation methods are compared for
a larger range of Kt values than in figure 11.

The sudden steps or slope changes in the results clearly
show the switch from using one (set of) S-N curve(s) to
another. Method 1, moreover, keeps giving the same life
estimation if the Kt value of the closest S-N curve is higher
than the occurring Kt value, as can be seen by the hori-
zontal portion of the solid grey line in the figure.

Method 2 shows a smoother transition from interpo-
lating using one set of curves to another. This behaviour
is preferred especially in case of automated optimisation
of FML layups for crack initiation, because it means the
optimiser will see a gradient in the results which it can use
to find an optimum. No horizontal sections can be seen
in the dashed line, indicating that the estimation below
the lowest S-N curve is probably more accurate using in-
terpolation. This was already concluded from the lower
observed error in section 3.3.1.

3.3.5. Other materials

The presented prediction methodology proved to give
acceptable predictions for Glare 4B-3/2-0.3. In order to
show that the method is generic and can cope with any
type of FML, the validation process is extended to dif-
ferent laminates. In total, four additional laminates were
investigated from which the cycles to initiation life is pre-
dicted and compared to test results found in the literature.

Bradshaw and Gutierrez [19] present crack initiation
test data for aluminium 2024-T3 sheets combined with a
carbon/epoxy laminate. The FML has a layup that can
be written as [Al/45/0/ − 45/90/45/0/ − 45]s, where Al
stands for a 0.203 [mm] thick sheet. The type of the fibre
ply in the laminate is not specified in the paper. Neverthe-
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Figure 13. Fatigue crack initiation life predictions for an aluminium
carbon/epoxy laminate with a [Al/45/0/−45/90/45/0/−45]s layup
at several stress amplitudes using method 1 compared to test results
from [19].

less, Alderliesten and Rans [20] determined with the use of
reverse engineering that the prepreg layers consist of T800
carbon fibre plies with a 0.188 [mm] thickness. Multiple
specimens were tested for each load case and the given
test results in figure 13 are the mean values at each stress
amplitude. The test data of this laminate is compared to
the predicted results obtained using method 1 and an S-N
curve for aluminium with Kt, S-N = 2.0 and RS-N = 0.0
[18]. The relative error with respect to the test data is
given next to each test data point. The predictions show
a good agreement with the test data. More information
on the material properties and test set-up of the test data
can be found in [19].

Chang et al. [9] have tested aluminium 2024-T3 lam-
inates with S2-glass fibre and boron fibre layers in the
layup [Al/0,S2/0,B/0,S2/Al], where Al indicates a 0.3
[mm] aluminium layer, 0,S2 a 0.133 [mm] S2-glass layer
with fibres in longitudinal specimen direction, and 0,B a
0.133 [mm] boron fibre layer, again with fibres in longitu-
dinal specimen direction. In figure 14, the comparison of
the data points are given with a prediction using an S-N
curve for aluminium with Kt, S-N = 2.0 and RS-N = 0.0
[18]. It can be observed that the predictions are accept-
able for high stress levels, but the predictions tend to be
too optimistic for the lower stress levels. All in all the
agreement is reasonable.

Homan [6, 7] performed crack initiation tests on Glare
3-3/2-0.3 laminates as well, next to the tests on Glare 4B-
3/2-0.3 that were thoroughly treated earlier. The result
for this Glare laminate is given in figure 15. An S-N curve
with Kt, S-N = 2.5 and RS-N = 0.25 [18] was used to make
predictions. The prediction at lower stress levels agree well
with the test data, while at higher stresses the prediction
tends to become too conservative. For the highest two
stresses no predictions were obtained since these were out-
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Figure 14. Fatigue crack initiation life predictions for a
[Al/0, S2/0,B/0, S2/Al] aluminium boron laminate at several stress
amplitudes using method 1 compared to test results from [9].

of-the-range of the S-N curve.
Finally, predictions are made for a stainless steel lam-

inate. Shahinian [21] investigated carbon fibre-reinforced
stainless steel laminates with the following configuration:
[St/C/St/C/St]. Here St stands for a 5.0 [mm] 316L steel
layer and C for a 0.13 [mm] T700/FM94 carbon/epoxy
layer. In figure 16, the test results are given, along with
predictions. The S-N data for steel is obtained from [21]
as well, in which monolithic 316L steel specimens with a
thickness of 5.0 [mm] were tested at different stress levels
with Kt, S-N = 2.7 and RS-N = 0.05. The predictions are
all close to the test data, albeit on the optimistic side.

4. Conclusions

A complete methodology to obtain a prediction for cy-
cles to crack initiation in an FML has been presented. Due
to the presence of thermal stress, Kt was found not to re-
main a purely geometrical factor, but to vary with the
amount of load that is applied to the specimen along the
load cycle. The stress ratio in a region of stress concen-
tration shows the same load-dependent behaviour in the
presence of thermal stress. Using the values for Kt and
R at maximum applied load to predict the cycles to crack
initiation led to the best result.

Two methods were found to use S-N data with a differ-
ent Kt value than the case analysed to predict the cycles to
crack initiation: a correction and an interpolation method.
Both methods showed a comparable accuracy in predict-
ing the test results that were used to validate the complete
methodology. In a optimisation environment, though, the
interpolation method has preference over the correction
method, because it shows a smoother dependence on the
SCF as compared to the correction method.

It was shown that the number of cycles to crack initi-
ation of several types of FML can be predicted accurately

13



103 104 105 106

0.70 

0.59 

0.42 

0.24 

0.01 

0.20
60

80

100

120

140

160

S
a
[M

P
a
]

Ni [cycles] 

Prediction using method 1 with 
Kt,S-N = 2.5 and RS-N = 0.0

Test Result

Figure 15. Fatigue crack initiation life predictions for Glare 3-3/2-0.3
at several stress amplitudes using method 1 compared to test results
from [6, 7].

using the presented methodology. The obtained accuracy
depends on the S-N data that is used to make the pre-
dictions with. It was shown for Glare 4B-3/2-0.3 that the
closer the value of R of the S-N data approaches the value
of the case analysed, the higher the accuracy obtained.
Such a trend was not observed for the Kt value, although
a choice for S-N data with a different Kt can cause a signif-
icant change in precision. The method produces accurate
results for several other FMLs as well, showing its general
applicability.

Acknowledgements

The authors would like to thank dr. D. Zarouchas and
dr. M. Mahdavi-Shahri for their patience in the numer-
ous discussions about this paper, and dr. S. Koussios for
sharing his knowledge on the tangential stress around a
circular cut-out.

References

[1] A. Vlot, J. W. Gunnink, Fibre Metal Laminates, an introduc-
tion, Kluwer Academic Publishers, Dordrecht, The Netherlands,
2001.

[2] J. Schijve, Fatigue of Structures and Materials, Springer, 2009,
ISBN-13: 978-1-4020-6807-2.

[3] A. Vlot, Glare, history of the development of a new aircraft
material, Kluwer Academic Publishers, Dordrecht, The Nether-
lands, 2001.

[4] R. C. Alderliesten, On the available relevant approaches for fa-
tigue crack propagation prediction in glare, International Jour-
nal of Fatigue 29 (2007) 289–304.

[5] R. C. Alderliesten, Analytical prediction model for fatigure
crack propagation and delamination growth in glare, Interna-
tional Journal of Fatigue 29 (2007) 628–646.

[6] J. J. Homan, Fatigue initiation in fibre metal laminates, Inter-
national Journal of Fatigue 28 (2006) 366–374.

104 105 106

0.33

0.36

0.49

0.37

80

90

100

110

120

130

S
a
[M

P
a
]

Ni [cycles] 

Prediction using method 1 with 
Kt,S-N = 2.7 and RS-N = 0.05

Test Result

Figure 16. Fatigue crack initiation life predictions for stainless steel
carbon/epoxy laminate with a layup of [St/C/St/C/St] at several
stress amplitudes using method 1 compared to test results from [21].

[7] J. J. Homan, L. Schra, Application of aluminium alloy 2024-
T3 fatigue life data to Glare laminates, GTP methods projects
2.4.3.2-B, 2.4.3.3-B and 2.3.3.4-B, NLR Report NLR-CR-2002-
185, National Aerospace Laboratory of the Netherlands (June
2002).

[8] P.-Y. Chang, J.-M. Yang, H. Seo, H. T. Hahn, Off-axis fatigue
cracking behaviour in notched fibre metal laminates, Fatigue &
Fracture of Engineering Materials & Structures 30 (2007) 1158–
1171.

[9] P.-Y. Chang, P.-C. Yeh, J.-M. Yang, Fatigue crack initiation in
hybrid boron/glass/aluminum fiber metal laminates, Materials
Science and Engineering A 496 (2008) 273–280.

[10] S. Tsai, H. Hahn, Introduction to composite materials, Tech-
nomic Publishing Company Inc., 1980.

[11] S. Lekhnitskii, Anisotropic plates, Routledge, reprint edition,
1968.

[12] R. Peterson, Stress Concentration Factors, John Wiley & Sons
Inc., 1974.

[13] Stress concentration factors, Tech. rep., Engineering Sciences
Data Unit, London.

[14] R. B. Heywood, Designing against Fatigue, Chapman and Hall,
London, 1962.

[15] T. Beumler, Flying Glare, A contribution to aircraft certifica-
tion issues on strength properties in non-damaged and fatigue
damaged Glare structures, PhD dissertation, Delft University
of Technology, 2004.

[16] R. Alderliesten, Fatigue and damage tolerance of hybrid mate-
rials & structures - some myths, facts & fairytales., in: ICAF
2009, ICAF 2009, Bridging the Gap between Theory and Oper-
ational Practice, 2009, pp. 1245–1260.

[17] J. J. Homan, Handbuch Struktur Berechnung (HSB), 62131-01
issue A: Guidelines for the prediction of the fatigue life for Kt
values different to available databases, Tech. rep. (2009).

[18] V. Hoang, L. Schwarmann, Handbuch Struktur Berechnung
(HSB), 63111-01 issue D: Zeitfestigkeit 3.1354 T3, Tech. rep.
(1986).

[19] R. Bradshaw, S. Gutierrez, Characterization of fatigue crack
initiation and growth in hybrid aluminium-graphite fibre com-
posite laminates using image analysis, Fatigue and Fracture of
Engineering Materials and Structures 30 (2007) 766–781.

[20] R. Alderliesten, C. Rans, If knowing is half the battle, the un-
derstanding is the other half: Example of reverse engineering
to reconstruct data on boeing laminates, in: 10th Boeing Spon-
sored Industry Wide Unitized Structures Technical Interchange
Conference, 2008.

14



[21] R. Shahinian, The next generation Fibre Metal Laminates: A
preliminary study of the material properties of carbon fibre-
reinforced stainless steel laminates, Internship report, Delft Uni-
versity of Technology, 2006.

15


