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Abstract

In the paper [8], we introduced the notions of pseudo-hyperplane and pseudo-
embedding of a point-line geometry and proved that every generalized quadrangle of
order (s, t), 2 ≤ s <∞, has faithful pseudo-embeddings. The present paper focuses
on generalized quadrangles of order (3, t). Using the computer algebra system GAP
[12] and invoking some theoretical relationships between pseudo-hyperplanes and
pseudo-embeddings obtained in [8], we are able to give a complete classification of
all pseudo-hyperplanes of Q. We hereby find several new examples of tight sets
of generalized quadrangles, as well as a complete classification of all 2-ovoids of
Q. We use the classification of the pseudo-hyperplanes of Q to obtain a list of all
homogeneous pseudo-embeddings of Q.
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1 Introduction

1.1 Overview

Pseudo-hyperplanes and pseudo-embeddings are notions which were introduced in De
Bruyn [8]. For partial linear spaces with three points per line, these concepts coin-
cide with the well known notions of hyperplanes and projective embeddings. In [8], it
was proved that every generalized quadrangle of order (s, t), 2 ≤ s < ∞, has faithful
pseudo-embeddings. In the present paper, we study the pseudo-hyperplanes and pseudo-
embeddings of the generalized quadrangles (GQ’s) with four points per line. There are,
up to isomorphism, five such GQ’s, namely the (4 × 4)-grid, W (3), Q(4, 3), Q(5, 3) and
the unique generalized quadrangle GQ(3, 5) of order (3, 5).
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With the aid of the computer algebra system GAP [12] and some theoretical rela-
tionships between pseudo-hyperplanes and pseudo-embeddings, we are able to obtain a
complete classification of all pseudo-hyperplanes for each of the five GQ’s of order (3, t).
We also list several properties of these pseudo-hyperplanes.

Tight sets and m-ovoids of GQ’s are certain nice sets of points. They are also called in-
triguing sets in the literature. We have examined each of the obtained pseudo-hyperplanes
to determine whether it was an intriguing set or not. This investigation led to the discovery
of several new examples of tight sets of GQ’s. The classification of the pseudo-hyperplanes
automatically gives rise to a complete classification of all 2-ovoids of each of the five GQ’s
of order (3, t). Such a classification of the 2-ovoids was previously known for four of the
five GQ’s, but not for GQ(3, 5). We will find that the GQ GQ(3, 5) has up to isomorphism
two 2-ovoids. One of these two 2-ovoids seems to be new.

A point-line geometry which has a pseudo-embedding must admit the so-called univer-
sal pseudo-embedding. Every other pseudo-embedding can be derived from this universal
pseudo-embedding by taking so-called quotients. These quotients can usually be taken
in many ways, leading to many nonisomorphic pseudo-embeddings. We will therefore
narrow our point of view to a very nice class of pseudo-embeddings, namely the homo-
geneous pseudo-embeddings. These are pseudo-embeddings with the property that the
full group of automorphisms of the geometry lifts to a group of automorphisms of the
pseudo-embedding space. We will describe a method in terms of pseudo-hyperplanes to
determine all homogeneous pseudo-embeddings and apply it to the GQ’s of order (3, t),
leading to a complete list of homogeneous pseudo-embeddings. The determination of all
these homogeneous pseudo-embeddings will also be realized with the aid of the computer
algebra system GAP.

We will state our main results in Section 1.4. But before we can do that, we need to
give the necessary technical background to understand these results. This will be done in
Sections 1.2 and 1.3.

1.2 Pseudo-embeddings and pseudo-hyperplanes of point-line
geometries

Let S = (P ,L, I) be a point-line geometry with the property that the number of points
on each line is finite and at least three.

A pseudo-hyperplane of S is a proper subset H of P such that every line contains an
even number of points of P \ H. If H1 and H2 are two distinct pseudo-hyperplanes of
S, then the complement H1 ∗ H2 := P \ (H1∆H2) of the symmetric difference H1∆H2

of H1 and H2 is again a pseudo-hyperplane of S. In the case S is finite, the definition
of pseudo-hyperplane can be rephrased in coding theoretical terms: a proper subset H
of P is a pseudo-hyperplane if and only if the characteristic vector of its complement
P \H belongs to the dual code of S. Here, the code of S is defined as the subspace of FP2
generated by the characteristic vectors of the lines.

Suppose V is a vector space over the field F2 of order 2. A pseudo-embedding of S into
the projective space Σ = PG(V ) is a mapping e from P to the point set of Σ satisfying:
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(1) < e(P) >Σ= Σ; (2) if L is a line of S with points x1, x2, . . . , xk, then the points
e(x1), e(x2), . . . , e(xk−1) of Σ are linearly independent and e(xk) =< v̄1 + v̄2 + · · ·+ v̄k−1 >
where v̄i, i ∈ {1, 2, . . . , k − 1}, is the unique vector of V for which e(xi) =< v̄i >Σ.
If moreover e is an injective mapping, then the pseudo-embedding e : S → Σ is called
faithful. Two pseudo-embeddings e1 : S → Σ1 and e2 : S → Σ2 of S are called isomorphic
(e1
∼= e2) if there exists an isomorphism φ : Σ1 → Σ2 such that e2 = φ ◦ e1.
Suppose e : S → PG(V ) is a pseudo-embedding of S and G is a group of automor-

phisms of S. We say that e is G-homogeneous if for every θ ∈ G, there exists a (necessarily
unique) projectivity ηθ of PG(V ) such that e(xθ) = e(x)ηθ for every point x of S. If G is
the full automorphism group of S, then e is also called a homogeneous pseudo-embedding.

Suppose e : S → Σ is a pseudo-embedding of S and α is a subspace of Σ satisfying
the following two properties:

(Q1) if x is a point of S, then e(x) 6∈ α;

(Q2) if L is a line of S with points x1, x2, . . . , xk, then α ∩ < e(x1), e(x2), . . . , e(xk) >Σ= ∅.

Then a new pseudo-embedding e/α : S → Σ/α can be defined which maps each point x
of S to the point < α, e(x) > of the quotient projective space Σ/α. This new pseudo-
embedding e/α is called a quotient of e. If e1 : S → Σ1 and e2 : S → Σ2 are two
pseudo-embeddings of S, then we say that e1 ≥ e2 if e2 is isomorphic to a quotient of e1.
A pseudo-embedding ẽ : S → Σ̃ is called universal if ẽ ≥ e for any pseudo-embedding e
of S. By [8, Theorem 1.2(1)], we know that if S has a pseudo-embedding, then S also
has a universal pseudo-embedding. This universal pseudo-embedding is unique, up to
isomorphism. If S has a faithful pseudo-embedding, then the universal pseudo-embedding
of S is also faithful. If ẽ : S → PG(Ṽ ) is the universal pseudo-embedding of S, where

Ṽ is some vector space over F2, then the dimension of Ṽ is called the pseudo-embedding
rank of S.

Most of the notions defined in this subsection were introduced in De Bruyn [8]. Observe
that for partial linear spaces with three points per line, the notions of pseudo-hyperplanes
and pseudo-embeddings coincide with the well known notions of hyperplanes and projec-
tive embeddings. We hope that the theory of pseudo-hyperplanes and pseudo-embeddings
will find some interesting applications in finite geometry. A few applications can already
be found in [8] and the present paper. The concept of a pseudo-embedding has also im-
plicitly played some role in a number of papers, like for instance in the papers [14, 15]
where Li was able to determine the universal embedding dimensions of certain symplectic
and Hermitian dual polar spaces. We hope that the study of pseudo-hyperplanes and
pseudo-embeddings will offer some additional insight in these problems, as well as some
related problems.

1.3 Generalized quadrangles and some of their special subsets

Let s and t be possibly infinite cardinal numbers. A point-line geometry Q is called a
generalized quadrangle (GQ) of order (s, t) if the following properties are satisfied:
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• every two distinct points are incident with at most 1 line;
• every line is incident with precisely s+ 1 ≥ 2 points;
• every point is incident with precisely t+ 1 ≥ 2 lines;
• for every line L and every point x not incident with L, there exists a unique point

on L collinear with x.

By De Bruyn [8, Corollary 3.11(1)], every generalized quadrangle of order (s, t), 2 ≤ s <
∞, has faithful pseudo-embeddings.

In the present paper, we are interested in the GQ’s of order (3, t). By Brouwer [4],
any such GQ must be finite. A classification of all finite GQ’s of order (3, t) was obtained
by Dixmier and Zara [11], see also Payne and Thas [19, Section 6.2]. There are, up to
isomorphism, five examples of such GQ’s: (1) the (4 × 4)-grid; (2) W (3); (3) Q(4, 3);
(4) Q(5, 3); (5) the unique GQ of order (3, 5), which we will denote by GQ(3, 5). The
examples mentioned in (2), (3), (4) and (5) belong to infinite families of GQ’s which we
will now describe.

Suppose ζ is a symplectic polarity of the projective space PG(3, q). Then the points
and lines of PG(3, q) which are totally isotropic with respect to ζ define a GQ of order
(q, q) which we will denote by W (q).

Consider in the projective space PG(4, q) a quadric Q whose equation with respect to
some reference system is given by X2

0 +X1X2 +X3X4 = 0. Then the points and lines of
PG(4, q) contained in Q define a GQ of order (q, q) which we will denote by Q(4, q). The
GQ Q(4, q) is isomorphic to W (q) if and only if q is even.

Consider in the projective space PG(5, q) a quadric Q whose equation with respect to
some reference system is given by X2

0 + δX0X1 + X2
1 + X2X3 + X4X5 = 0. Here, δ ∈ Fq

such that the quadratic polynomial X2 + δX + 1 ∈ Fq[X] is irreducible. Then the points
and lines of PG(5, q) contained in Q define a GQ of order (q, q2) which we will denote by
Q(5, q).

Let PG(2, q), q even, be embedded as a hyperplane in PG(3, q), and let H be a
hyperoval of PG(2, q). Then the points of PG(3, q) \ PG(2, q) together with those lines
of PG(3, q) which are not contained in PG(2, q) and which contain a unique point of H
define a GQ of order (q − 1, q + 1) which we will denote by T ∗2 (H). If q = 4, then T ∗2 (H)
is isomorphic to the unique generalized quadrangle of order (3, 5).

A set X of points of a generalized quadrangle Q = (P ,L, I) of order (s, t), s <∞, is said
to be even [resp., odd] if it intersects each line in an even [resp. odd] number of points.
If s is odd, then the pseudo-hyperplanes of Q are precisely the even sets distinct from P .
If s is even, then the pseudo-hyperplanes of Q are precisely the odd sets distinct from P .

Let Q = (P ,L, I) be a generalized quadrangle of order (s, t), with s, t finite.
A set X of points of Q is called an m-ovoid, m ∈ {0, 1, . . . , s + 1}, if every line of Q

intersects X in precisely m points. The notion of m-ovoid was introduced by Thas [22].
If X is a set of points of Q, then the total number of ordered pairs of distinct collinear

points of X is bounded above by |X| ·
(
|X|
s+1

+ (s − 1)
)

, see e.g. Payne and Thas [19,

Theorem 1.10.1]. If equality occurs, then X is called i-tight where i = |X|
s+1

. The number
i is a nonnegative integer. The notion of a tight set was introduced by Payne [16].
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A set X of points of Q is called intriguing if there exist constants h1 and h2 such that
every point of X is collinear with precisely h1 points of X and every point not contained
in X is collinear with precisely h2 points of X. The notion of an intriguing set was
introduced in Bamberg, Law and Penttila [3], where it was shown ([3, Theorem 4.1]) that
the intriguing sets of GQ’s are precisely the tight sets and the m-ovoids for some m ≥ 0.
If X is a set of points of Q such that the setwise stabilizer of X (in the full automorphism
group Aut(Q) of Q) has one orbit on X and one orbit on the complement of X, then X
must be an intriguing set. We will discover several examples of such intriguing sets later.

A 1-ovoid of a generalized quadrangle is also called an ovoid. All ovoids of all gen-
eralized quadrangles of order (3, t) are known. Obviously, the (4 × 4)-grid has up to
isomorphism a unique ovoid. The generalized quadrangles W (3) and Q(5, 3) have no
ovoids, see e.g. Payne and Thas [19, Theorems 1.8.3 and 1.8.4].

It is known that the generalized quadrangle Q(4, 3) has up to isomorphism a unique
ovoid. If Q is the underlying quadric of Q(4, 3) and PG(4, 3) the ambient projective space
of Q, then every ovoid of Q(4, 3) is obtained by intersecting Q with a hyperplane Π of
PG(4, 3) such that Π ∩ Q is a nonsingular elliptic quadric of Π, see e.g. Brouwer and
Wilbrink [5, p, 160].

The generalized quadrangle GQ(3, 5) has up to isomorphism a unique ovoid. Suppose
GQ(3, 5) = T ∗2 (H), where H is a hyperoval of a hyperplane PG(2, 4) of the projective
space PG(3, 4). If α is a plane of PG(3, 4) disjoint from H, then α \PG(2, 4) clearly is an
ovoid of GQ(3, 5). By Payne [17, VI1], every ovoid of GQ(3, 5) can be obtained in this
way. Observe also that GQ(3, 5) has partitions in ovoids. Indeed, if L is a line of PG(2, 4)
disjoint from H and if α1, α2, α3, α4 are the four planes of PG(3, 4) through L distinct
from PG(2, 4), then {αi \ PG(2, 4) | i ∈ {1, 2, 3, 4}} is a partition in ovoids.

The generalized quadrangle Q(4, 3) has many subquadrangles which are (4× 4)-grids.
If L1 and L2 are two disjoint lines of Q(4, 3) and Q ⊆ PG(4, 3) is the underlying quadric of
Q(4, 3), then < L1, L2 > ∩ Q determines a (4×4)-subgrid of Q(4, 3). Every (4×4)-subgrid
of Q(4, 3) is obtained in this way.

The generalized quadrangle GQ(3, 5) has many subquadrangles which are (4 × 4)-
grids. Suppose GQ(3, 5) = T ∗2 (H), where H is a hyperoval of a hyperplane PG(2, 4) of
the projective space PG(3, 4). If α 6= PG(2, 4) is a plane of PG(3, 4) containing precisely
two points of H, then α \ PG(2, 4) determines a (4 × 4)-subgrid of GQ(3, 5). Every
(4× 4)-subgrid of GQ(3, 5) is obtained in this way.

The generalized quadrangle Q(5, 3) has many subquadrangles isomorphic to Q(4, 3)
and many (4 × 4)-subgrids. Any Q(4, 3)-subquadrangle of Q(5, 3) is obtained by inter-
secting the underlying quadric Q of Q(5, 3) with a suitable hyperplane of the ambient
projective space of Q. If L1 and L2 are two disjoint lines of Q(5, 3), then < L1, L2 > ∩ Q
determines a (4 × 4)-subgrid of Q(5, 3), and every (4 × 4)-subgrid of Q(5, 3) is obtained
in this way.

1.4 The main results

In this paper, we realize the following goals for each of the five GQ’s of order (3, t).
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(a) Determine the pseudo-embedding rank of the GQ.
(b) Enumerate all pseudo-hyperplanes of the GQ and list some of their properties.
(c) Determine which of these pseudo-hyperplanes are intriguing sets.
(d) Enumerate all homogeneous pseudo-embeddings of the GQ.

The above goals will be achieved with the aid of the computer algebra system GAP [12].
In order to realize goals (b) and (d), we will make use of some theoretical relationships
between pseudo-hyperplanes and pseudo-embeddings which will be discussed in Section
2, see Proposition 2.3, Corollary 2.7 and the discussion after that corollary.

Theorem 1.1 (a) The pseudo-embedding rank of the (4× 4)-grid is equal to 9.
(b) The pseudo-embedding rank of W (3) is equal to 15.
(c) The pseudo-embedding rank of Q(4, 3) is equal to 15.
(d) The pseudo-embedding rank of Q(5, 3) is equal to 21.
(e) The pseudo-embedding rank of GQ(3, 5) is equal to 18.

In Theorem 1.1, there are a number of results which are basically known. We have added
these claims to Theorem 1.1 for reasons of completeness.

The result stated in Theorem 1.1(a) is known, see De Bruyn [8, Proposition 3.7].
The result stated in Theorem 1.1(b) is basically known. If S is a finite point-line

geometry admitting a pseudo-embedding, then the pseudo-embedding rank of S is equal
to v− rankF2(M) where v is the total number of points of S and M is an incidence matrix
of S (see Proposition 2.2). If S is isomorphic to the symplectic generalized quadrangle
W (q), then this number is equal to 1

2
q(q2 + 1) by Theorem 9.4 of Bagchi, Brouwer and

Wilbrink [1].
Since Q(4, 3) is the point-line dual of W (3) and both GQ’s have the same number

of points (namely 40), the pseudo-embedding ranks of these GQ’s must coincide by De
Bruyn [8, Proposition 3.1].

Theorem 1.2 (a) Up to isomorphism, the (4× 4)-grid has 10 even sets.
(b) Up to isomorphism, W (3) has 20 even sets.
(c) Up to isomorphism, Q(4, 3) has 21 even sets.
(d) Up to isomorphism, Q(5, 3) has 22 even sets.
(e) Up to isomorphism, GQ(3, 5) has 47 even sets.

It is straightforward to determine all even sets of the (4 × 4)-grid G. All ten examples
of such sets will be described in Section 4. For the other generalized quadrangles we
will invoke GAP to classify all even sets. These even sets, together with some of their
properties, are listed in the various tables of Section 5. In Sections 4 and 5, we will use
the classification of the even sets to determine all homogeneous pseudo-embeddings of all
GQ’s of order (3, t). All these homogeneous pseudo-embeddings turn out to be faithful.
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Theorem 1.3 (a) Up to isomorphism, the (4 × 4)-grid has two homogeneous pseudo-
embeddings, the universal one in PG(8, 2) and another one in PG(4, 2).

(b) Up to isomorphism, there exists a unique homogeneous pseudo-embedding of W (3),
namely the universal pseudo-embedding in PG(14, 2).

(c) Up to isomorphism, there exist two homogeneous pseudo-embeddings of Q(4, 3), the
universal one in PG(14, 2) and another one in PG(8, 2).

(d) Up to isomorphism, there exists a unique homogeneous pseudo-embedding of Q(5, 3),
namely the universal pseudo-embedding in PG(20, 2).

(e) Up to isomorphism, GQ(3, 5) has five homogeneous pseudo-embeddings. The cor-
responding pseudo-embedding spaces are respectively PG(17, 2) (universal pseudo-embed-
ding), PG(16, 2), PG(12, 2), PG(10, 2) and PG(6, 2).

The universal pseudo-embedding of the (4× 4)-grid was explicitly described in De Bruyn
[8, Proposition 3.7]. The homogeneous pseudo-embedding of the (4× 4)-grid in PG(4, 2)
will be described in Theorem 4.1. In Section 5, we will show that the homogeneous
pseudo-embeddings of GQ(3, 5) into PG(6, 2) and PG(12, 2) are induced by homogeneous
pseudo-embeddings of the affine space AG(3, 4) into which GQ(3, 5) is fully embeddable.
These two pseudo-embeddings of AG(3, 4) are in fact all homogeneous pseudo-embeddings
of AG(3, 4). Indeed, in De Bruyn [9, Theorem 1.5], we will show that every affine space
AG(n, 4), n ≥ 2, has up to isomorphism two homogeneous pseudo-embeddings, the uni-
versal one in PG(n2 + n, 2) and another one in PG(2n, 2). In [9, Theorem 1.7], we will
show that the two homogeneous pseudo-embeddings of Q(4, 3) are induced by the two
homogeneous pseudo-embeddings of AG(4, 4) into which Q(4, 3) is fully embeddable. In
[9], also explicit constructions will be given for the two homogeneous pseudo-embeddings
of AG(n, 4), n ≥ 2. Using this, it is thus possible to give explicit constructions for the
two homogeneous pseudo-embeddings of Q(4, 3), as well as two of the five homogeneous
pseudo-embeddings of GQ(3, 5).

Now that we have a complete list of all pseudo-hyperplanes of all GQ’s of order (3, t),
we can check whether they are also intriguing sets. This indeed turns out to be the case
for several of the pseudo-hyperplanes we have found, see the Tables 1, 2, 3, 4, 6 and 7
of Sections 4 and 5. From these tables we also observe that every nonempty pseudo-
hyperplane which is intriguing is very nice in the sense that the stabilizer of the pseudo-
hyperplane has one orbit on the pseudo-hyperplane and also one orbit on the complement
of the pseudo-hyperplane.

In the following corollary to our classification of the pseudo-hyperplanes, we collect
the number of nonempty pseudo-hyperplanes which are also tight. Most of the tight sets
of Q(5, 3) and GQ(3, 5) alluded to in the corollary have not been described before in the
literature. (Several constructions and classification results for tight sets of GQ’s can be
found in Payne [16, 18] and Bamberg, Law & Penttila [3].) For the tight sets of W (3)
occurring in Corollary 1.4, one can give rather easy constructions, see Section 5. The
tight set of the (4× 4)-grid is just the union of two disjoint lines.
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Corollary 1.4 (a) Up to isomorphism, the (4× 4)-grid has a unique nonempty pseudo-
hyperplane which is also a tight set.

(b) Up to isomorphism, the generalized quadrangle W (3) has four nonempty pseudo-
hyperplanes which are also tight sets.

(c) The generalized quadrangle Q(4, 3) has no nonempty pseudo-hyperplanes which are
also tight sets.

(d) Up to isomorphism, the generalized quadrangle Q(5, 3) has seven nonempty pseudo-
hyperplanes which are also tight sets.

(e) Up to isomorphism, the generalized quadrangle GQ(3, 5) has six nonempty pseudo-
hyperplanes which are also tight sets.

A complete classification of all m-ovoids of all GQ’s of order (3, t) exists, except for
the 2-ovoids of GQ(3, 5). Since 2-ovoids of GQ’s of order (3, t) are examples of pseudo-
hyperplanes, we must find them back in our classification of the pseudo-hyperplanes.
Consulting Tables 1, 2, 3, 4, 6 and 7 of Sections 4 and 5, we easily find:

Corollary 1.5 (a) Up to isomorphism, the (4× 4)-grid has two 2-ovoids.
(b) Up to isomorphism, the generalized quadrangle W (3) has a unique 2-ovoid.
(c) Up to isomorphism, the generalized quadrangle Q(4, 3) has a unique 2-ovoid.
(d) Up to isomorphism, the generalized quadrangle Q(5, 3) has a unique 2-ovoid.
(e) Up to isomorphism, the generalized quadrangle GQ(3, 5) has two 2-ovoids.

It is straightforward to verify that the (4 × 4)-grid has up to isomorphism two 2-ovoids.
These two 2-ovoids will be described in Section 4 (Sets of Type 6 and 10, respectively).

The generalized quadrangle W (3) is known to have 2-ovoids, see Cossidente, Culbert,
Ebert & Marino [7, Theorem 2.1] and Bamberg, Law & Penttila [3, Theorem 5.1]. By
a computer result of Bamberg, Kelly, Law and Penttila [2, Section 7.1], W (3) has up to
isomorphism a unique 2-ovoid.

By Segre [21], the generalized quadrangle Q(5, 3) has up to isomorphism a unique
2-ovoid. The uniqueness of the 2-ovoid of Q(5, 3) is an immediate consequence of the
uniqueness of the hemi-system on the Hermitian surface H(3, 9).

Since Q(4, 3) occurs as a subquadrangle of Q(5, 3) and the latter has 2-ovoids, also
Q(4, 3) must have 2-ovoids. By a computer result of Bamberg, Kelly, Law and Penttila [2,
Section 7.3], the generalized quadrangle Q(4, 3) has up to isomorphism a unique 2-ovoid.

It is not so difficult to construct a 2-ovoid in the generalized quadrangle GQ(3, 5).
Indeed, the union of any two disjoint ovoids of GQ(3, 5) is a 2-ovoid. The other 2-ovoid
of GQ(3, 5) seems to be unknown.

The close relationship between pseudo-hyperplanes and pseudo-embeddings (to be de-
scribed in Proposition 2.3) together with the fact that all 2-ovoids are pseudo-hyperplanes
will allow us to find all 2-ovoids using a computer algorithm that does not need to invoke
backtracking.
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2 Homogeneous pseudo-embeddings

In this section, we realize the following goals.

• We prove that if a point-line geometry S has a pseudo-embedding, then its universal
pseudo-embedding is homogeneous.

• We give a method in terms of pseudo-hyperplanes to determine whether a given
pseudo-embedding is G-homogeneous, where G is some group of automorphisms of
the point-line geometry.

• We describe a method for constructing and classifying G-homogeneous pseudo-em-
beddings.

We start with recalling three results from De Bruyn [8]. These results generalize some
earlier results of Ronan [20] regarding hyperplanes and projective embeddings of point-line
geometries with three points per line.

Proposition 2.1 ([8, Theorem 1.1]) Let S = (P ,L, I) be a point-line geometry with
the property that the number of points on each line is finite and at least three. Suppose
e : S → Σ is a pseudo-embedding of S and Π is a hyperplane of Σ. Then e−1(e(P) ∩ Π)
is a pseudo-hyperplane of S.

If a pseudo-hyperplane H is obtained from a pseudo-embedding e as described in Propo-
sition 2.1, then H is said to arise from e. Recall that if a point-line geometry has a
pseudo-embedding, then it also has a universal pseudo-embedding which is unique, up
to isomorphism. In the following proposition a construction is given which yields this
universal pseudo-embedding.

Proposition 2.2 ([8, Theorem 1.2(2)]) Let S = (P ,L, I) be a point-line geometry
with the property that the number of points on each line is finite and at least three. Let
V be a vector space over the field F2 with a basis B whose vectors are indexed by the
elements of P, say B = {v̄x |x ∈ P}. Let W denote the subspace of V generated by all
vectors of the form v̄x1 + v̄x2 + · · · + v̄xk where {x1, x2, . . . , xk} is the point set of some
line of S. If S has at least one pseudo-embedding, then v̄x 6∈ W for every point x of S.
Moreover, the map ẽ which associates with each point x ∈ P the 1-space {v̄x +W,W} of
V/W defines a pseudo-embedding of S into PG(V/W ) which is isomorphic to the universal
pseudo-embedding of S.

Proposition 2.3 ([8, Theorem 1.3]) Let S = (P ,L, I) be a point-line geometry with
the property that the number of points on each line is finite and at least three. If S has at
least one pseudo-embedding, then every pseudo-hyperplane of S arises from the universal
pseudo-embedding ẽ : S → Σ̃ of S. Moreover, the formula H = ẽ−1(ẽ(P)∩Π) determines
a one-to-one correspondence between the pseudo-hyperplanes H of S and the hyperplanes
Π of Σ̃.
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Theorem 2.4 Let S = (P ,L, I) be a point-line geometry with the property that the num-
ber of points on each line is finite and at least three. If S has a pseudo-embedding, then
its universal pseudo-embedding is homogeneous.

Proof. Let ẽ : S → PG(Ṽ ) denote the universal pseudo-embedding of S and let α ∈
Aut(S). Since ẽ ◦ α and ẽ ◦ α−1 are pseudo-embeddings of S into PG(Ṽ ), there exist by

the universality of ẽ linear mappings fα : Ṽ → Ṽ and f ′α : Ṽ → Ṽ such that fα ◦ ẽ = ẽ ◦α
and f ′α ◦ ẽ = ẽ ◦ α−1. Then f ′α ◦ fα ◦ ẽ = f ′α ◦ ẽ ◦ α = ẽ ◦ α−1 ◦ α = ẽ. As Ṽ is defined

over F2 and ẽ(S) spans PG(Ṽ ), this forces f ′α ◦ fα = idṼ . Similarly, fα ◦ f ′α = idṼ . So,
fα ∈ GL(V ). Since fα ◦ ẽ = ẽ ◦ α for every α ∈ Aut(S), the universal pseudo-embedding
ẽ of S is homogeneous. �

The following theorem allows us to determine whether a given pseudo-embedding is G-
homogeneous, where G is some group of automorphisms of the point-line geometry.

Theorem 2.5 Let S = (P ,L, I) be a point-line geometry with the property that the num-
ber of points on each line is finite and at least three, and let G be a group of automorphisms
of S. A pseudo-embedding e : S → Σ of S is G-homogeneous if and only if G stabilizes
the set of pseudo-hyperplanes of S arising from e.

Proof. (1) Suppose e : S → Σ is a G-homogeneous pseudo-embedding. Let H be a
pseudo-hyperplane of S arising from e, let θ ∈ G and let ηθ be the unique projectivity of
Σ such that e(x)ηθ = e(xθ) for every point x of S. If Π denotes the unique hyperplane of
Σ for which H = e−1(e(P) ∩ Π), then we have e(H) = e(P) ∩ Π, e(H)ηθ = e(P)ηθ ∩ Πηθ ,
e(Hθ) = e(Pθ) ∩ Πηθ and hence Hθ = e−1(e(P) ∩ Πηθ). So, also the pseudo-hyperplane
Hθ arises from the pseudo-embedding e.

(2) Conversely, suppose that e : S → Σ is a pseudo-embedding of S with the property
that for every θ ∈ G and every pseudo-hyperplane H of S arising from e, also the pseudo-
hyperplane Hθ arises from e. Let ẽ : S → Σ̃ denote the universal pseudo-embedding of
S and let α denote the subspace of Σ̃ for which ẽ/α ∼= e. Without loss of generality, we
may suppose that e = ẽ/α.

For every θ ∈ G, let ηθ be the unique projectivity of Σ̃ such that ẽ(x)ηθ = ẽ(xθ)
for every point x of S. For every pseudo-hyperplane H of S, let ΠH denote the unique
hyperplane of Σ̃ for which H = ẽ−1(ẽ(P) ∩ΠH). With a similar reasoning as in part (1),
we know that Hθ = ẽ−1(ẽ(P) ∩Πηθ

H ) for every θ ∈ G. Hence, ΠHθ = Πηθ
H for every θ ∈ G.

Let θ ∈ G and suppose α contains a point p not belonging to αηθ . Then there exists a
hyperplane Π of Σ̃ through α such that Πηθ does not contain p. Put H := ẽ−1(ẽ(P)∩Π).
Then Hθ = ẽ−1(ẽ(P) ∩ Πηθ). But this is impossible since this would imply that H arises
from e but Hθ not.

Let θ ∈ G and suppose that αηθ contains a point not belonging to α. Then α contains
a point not belonging to αη

−1
θ = αηθ−1 . Applying the previous paragraph with θ−1 instead

of θ, we obtain a contradiction.
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So, we have that αηθ = α for every θ ∈ G. This implies that ηθ induces a projectivity η′θ
of the quotient projective space Σ/α. For every point p of S, we have that e(p)η

′
θ = e(pθ).

So, e is indeed a G-homogeneous pseudo-embedding of S. �

Our next aim is to describe a method that can be used to construct G-homogeneous
pseudo-embeddings. This method will be based on a modification of the following result
from [8].

Proposition 2.6 ([8, Theorem 1.4(3)]) Let S = (P ,L, I) be a point-line geometry
with the property that the number of points on each line is finite and at least three.

• If e : S → Σ is a pseudo-embedding of S, then the set H of all pseudo-hyperplanes
of S arising from e satisfies the following properties:

(a) if H1 and H2 are two distinct elements of H, then also H1 ∗H2 belongs to H;
(b) if L is a line of S containing an odd number of points, then for every point x of L

there exists a pseudo-hyperplane of H which has only the point x in common with L;
(c) if L is a line of S containing an even number of points, then for any two distinct

points x1 and x2 of L, there exists a pseudo-hyperplane of H having only the points x1

and x2 in common with L;
(d) for every point x of S, there exists a pseudo-hyperplane of H not containing x.

• Conversely, suppose that H is a finite set of pseudo-hyperplanes of S satisfying the
conditions (a), (b), (c) and (d) above. Then there exists a pseudo-embedding e of S such
that the pseudo-hyperplanes of S arising from e are precisely the elements of H. This
pseudo-embedding e is uniquely determined, up to isomorphism. This pseudo-embedding
e is faithful if and only if for any two distinct points x1 and x2 of S, there exists a
pseudo-hyperplane of H containing x1 but not x2.

Observe that condition (d) in Proposition 2.6 follows from conditions (b) and (c) if there
is at least one line incident with x.

The following result is an immediate consequence of Theorem 2.5 and Proposition 2.6.

Corollary 2.7 Let S = (P ,L, I) be a point-line geometry with the property that the num-
ber of points on each line is finite and at least three. Let G be a group of automorphisms
of S. Let H be a finite set pseudo-hyperplanes of S satisfying the conditions (a)-(d) of
Proposition 2.6 and let e be the unique pseudo-embedding of S such that H is the set
of pseudo-hyperplanes of S arising from e. Then e is G-homogeneous if and only if G
stabilizes H.

Let S = (P ,L, I) be a finite point-line geometry with the property that the number of
points on each line is finite and at least three, and let G be a group of automorphisms of S.
The G-homogeneous pseudo-embeddings of S can possibly be classified in the following
way.
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(1) Determine all G-orbits of pseudo-hyperplanes of S. We denote these orbits by Hi,
i ∈ I, where I is some suitable index set.

(2) Find all subsets J ⊆ I such that
⋃
j∈J Hj satisfies condition (a) of Proposition 2.6.

For each such subset J of I, the number |
⋃
j∈J Hj|+ 1 must be a power of 2.

(3) For every subset J ⊆ I for which
⋃
j∈J Hj satisfies condition (a) of Proposition

2.6, verify the conditions (b), (c) and (d) of Proposition 2.6 to find out whether
there exists a pseudo-embedding e of S for which

⋃
j∈J Hj is the set of all pseudo-

hyperplanes arising from e.

If we have successfully been able to perform the steps (1), (2) and (3), then we have found
all G-homogeneous pseudo-embeddings of S.

We will successfully use this method in Sections 4 and 5 to find all homogeneous
pseudo-embeddings of all generalized quadrangles of order (3, t).

3 Some constructions of pseudo-hyperplanes

As we have mentioned in Section 1, every GQ of order (3, t) has 2-ovoids. Each such
2-ovoid is an example of a pseudo-hyperplane. We also mentioned in Section 1 that if H1

and H2 are two distinct pseudo-hyperplanes, then also H1 ∗ H2 is a pseudo-hyperplane.
We now give a number of other constructions for pseudo-hyperplanes of GQ of order (3, t).

(1) Let Q be a generalized quadrangle of order (3, t). If X is a nonempty pseudo-
hyperplane of Q, then the complement of X is again a pseudo-hyperplane of Q.

(2) Let Q be a generalized quadrangle of order (3, t), let L be a line of Q and let x1, x2

be two distinct points of L. Let Y denote the set of all points of Q not contained in L
which are collinear with either x1 or x2. Then Y ∪ {x1, x2} is a pseudo-hyperplane of Q.

(3) Let Q be a generalized quadrangle of order (3, t) and let x1, x2 be two noncollinear
points of Q, then (x⊥1 ∪ x⊥2 ) \ ({x1, x2} ∪ (x⊥1 ∩ x⊥2 )) is a pseudo-hyperplane of Q. (For a
point x of Q, x⊥ denotes the set of points of Q collinear with or equal to x.)

(4) The union of two orthogonal hyperbolic lines of W (3) is a pseudo-hyperplane of
W (3).

(5) Let Q be either Q(4, 3), GQ(3, 5) or the (4× 4)-grid. Let O be an ovoid of Q and
x ∈ O. Then x⊥ ∪O is a pseudo-hyperplane of Q.

(6) Let Q be either Q(4, 3), GQ(3, 5) or the (4×4)-grid. Let O be an ovoid of Q and x
a point of Q not contained in O. Then (x⊥∪O)\ ({x}∪ (x⊥∩O)) is a pseudo-hyperplane
of Q.

(7) Let Q be either Q(4, 3) or GQ(3, 5). Let O1 and O2 be two distinct ovoids which
intersect in four points. Then (O1 ∪O2) \ (O1 ∩O2) is a pseudo-hyperplane of Q.

(8) Let Q be a nonsingular parabolic quadric of PG(4, 3) and let ζ be the orthogonal
polarity of PG(4, 3) corresponding to Q. The points and lines of PG(4, 3) contained in Q
define a generalized quadrangle Q(4, 3). Let α be a plane of PG(4, 3) intersecting Q in a
nonsingular conic of α such that the line αζ of PG(4, 3) is disjoint from Q. By De Soete
and Thas [10, Section 2], α ∩ Q is a so-called {0, 2}-set of points of Q(4, 3). This means
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that every point of Q(4, 3) not contained in α ∩ Q is collinear with either 0 or 2 points
of α ∩ Q. The GQ W (3) is the dual GQ of Q(4, 3). Let L1, L2, L3 and L4 denote those
lines of W (3) which correspond to the four points of α ∩ Q. Then every line of W (3)
distinct from L1, L2, L3 and L4 meets either 0 or 2 lines of the set {L1, L2, L3, L4}. So,
L1 ∪ L2 ∪ L3 ∪ L4 is a pseudo-hyperplane of W (3).

(9) By Knarr [13, Section 5], the generalized quadrangle Q(5, 3) has a set L of 10
mutually disjoint lines forming a {0, 2}-set of lines of Q(5, 3). The union of the 10 lines
of L is a pseudo-hyperplane of Q(5, 3).

(10) The union of two disjoint (4× 4)-subgrids of the generalized quadrangle GQ(3, 5)
is a pseudo-hyperplane of GQ(3, 5).

Lemma 3.1 Let Q1 be a generalized quadrangle of order (3, t1) which is a subgeometry
of a generalized quadrangle Q2 of order (3, t2). Let X be an even set of Q1 and let Y be
the set of all points y of Q2 \ Q1 such that y⊥ ∩ Q1 intersects X in an even number of
points. Then H = Q1 ∪ Y is an even set of Q2.

Proof. Observe that t1 and t2 are odd.
We prove that X contains an even number of points. Let L be an arbitrary line of

Q1. Then |L ∩ X| is even. Each point of X \ L is collinear with a unique point of L.
Now, there are an even number of points in L ∩ X (respectively, L \ X), through each
such point there are t1 lines of Q1 distinct from L and on each such line there are an odd
(respectively, even) number of points of X \ L. From these facts, one readily sees that
there are an even number of points in X \L. Hence, also |X| = |L∩X|+ |X \L| is even.

We now prove that every line L of Q2 intersects H in an even number of points. We
distinguish four cases.
• Suppose L is a line of Q1. Then |L ∩H| = 4.
• Suppose L is a line of Q2 which intersects Q1 in a point u belonging to X. Then

(Q1\u⊥)∩X contains an odd number of points. This follows from the fact that |X| is even,
t1 +1 is even and that each of the t1 +1 lines of Q1 through u contains an even number of
points of X. If L = {u, y1, y2, y3}, then {(y⊥1 ∩Q1) \ {u}, (y⊥2 ∩Q1) \ {u}, (y⊥3 ∩Q1) \ {u}}
is a partition of Q1 \u⊥. Since (Q1 \u⊥)∩X contains an odd number of points, there are
an odd number of i ∈ {1, 2, 3} for which (y⊥i ∩Q1 ∩X) \ {u} contains an odd number of
points, or equivalently, for which (y⊥i ∩ Q1 ∩X) contains an even number of points. So,
|L ∩H| is even.
• Suppose L is a line of Q2 which intersects Q1 in a point u not belonging to X. Then

(Q1 \ u⊥) ∩X contains an even number of points. This follows from the fact that |X| is
even and that each of the t1 + 1 lines of Q1 through u contains an even number of points
of X. If L = {u, y1, y2, y3}, then {(y⊥1 ∩ Q1) \ {u}, (y⊥2 ∩ Q1) \ {u}, (y⊥3 ∩ Q1) \ {u}} is a
partition of Q1 \ u⊥. Since (Q1 \ u⊥) ∩ X contains an even number of points, there are
an even number of i ∈ {1, 2, 3} for which (y⊥i ∩Q1 ∩X) \ {u} = y⊥i ∩Q1 ∩X contains an
odd number of points. This implies that there are an even number of points of L which
are not contained in H.
• Suppose L = {y1, y2, y3, y4} is a line of Q2 which is disjoint from Q1. Then {y⊥1 ∩

Q1, y
⊥
2 ∩ Q1, y

⊥
3 ∩ Q1, y

⊥
4 ∩ Q1} is a partition of Q1 into ovoids. Since |X| is even, there
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are an even number of i ∈ {1, 2, 3, 4} for which y⊥i ∩ Q1 ∩X contains an even number of
points. So, also in this case we have that |L ∩H| is even. �

Observe that, with the notations of Lemma 3.1, we have:

If X ′ is the even set of Q1 which is the complement of X (in Q1) and H ′ is
the even set of Q2 which arises from X ′ (in the sense of Lemma 3.1), then
H = H ′.

4 The pseudo-hyperplanes and homogeneous pseudo-

embeddings of the (4× 4)-grid

Let k1, k2 ∈ N \ {0, 1, 2}. By De Bruyn [8, Proposition 3.7], the pseudo-embedding rank
of the (k1 × k2)-grid is equal to (k1 − 1)(k2 − 1). Actually the proof of Proposition 3.7
of [8] contains an explicit construction of the universal pseudo-embedding of this grid.
In the following theorem, we construct another homogeneous pseudo-embedding of the
(k1 × k2)-grid in case k1 and k2 are even.

Theorem 4.1 Let k1, k2 ≥ 4 be even integers. Then the (k1×k2)-grid has a homogeneous
faithful pseudo-embedding in PG(k1 + k2 − 4, 2).

Proof. We suppose that the point set of the (k1 × k2)-grid G is equal to {1, 2, . . . , k1} ×
{1, 2, . . . , k2} where two distinct points (i1, i2) and (j1, j2) are collinear if and only if either
i1 = j1 or i2 = j2. Let V be a (k1 +k2−3)-dimensional vector space over F2 having a basis
consisting of the following k1 +k2−3 vectors: ē[1, 1], ē[i1, 1], ē[1, i2] where 2 ≤ i1 ≤ k1−1
and 2 ≤ i2 ≤ k2 − 1. Define

ē[k1, 1] :=

k1−1∑
i=1

ē[i, 1], ē[1, k2] :=

k2−1∑
i=1

ē[1, i].

For every point (i1, i2) of G with i1, i2 ≥ 2, we define

ē[i1, i2] := ē[1, 1] + ē[i1, 1] + ē[1, i2].

Observe that the last formula remains valid if at least one of i1, i2 is equal to 1. For every
point p = (i1, i2) of G, we define

e(p) := 〈ē[i1, i2]〉 ∈ PG(V ).

It is straightforward to verify that e defines a homogeneous faithful pseudo-embedding of
G into PG(V ). �

Now, consider the (4× 4)-grid G. The fact that the pseudo-embedding rank of G is equal
to 9 implies by Proposition 2.3 that G has 29 = 512 even sets. These even sets can easily
be classified by hand. We list them below and call them even sets of Type 1, Type 2,
...,Type 10. In Table 1, we list a few of the basic properties of these sets.
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Type 1 Type 2 Type 3

e
e
e
e

e
e
e
e

e
e
e
e

e
e
e
e

u
u
u
u

u
u
u
u

u
u
u
u

u
u
u
u

e
e
u
u

e
e
u
u

e
e
e
e

e
e
e
e

Type 4 Type 5 Type 6

u
u
u
u

u
u
u
u

e
e
u
u

e
e
u
u

e
e
u
u

e
e
u
u

e
e
u
u

e
e
u
u

e
e
u
u

e
e
u
u

u
u
e
e

u
u
e
e

Type 7 Type 8 Type 9

u
u
u
u

e
e
u
u

e
u
e
u

u
e
e
u

e
e
u
u

e
u
e
u

e
u
u
e

e
e
e
e

e
e
u
u

e
e
u
u

e
u
e
u

e
u
e
u

Type 10

u
e
e
u

e
e
u
u

e
u
u
e

u
u
e
e
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Type # even sets # points Type of complement Remark

1 1 0 2 ∅
2 1 16 1 P
3 36 4 4 –
4 36 12 3 –
5 12 8 5 2-tight
6 18 8 6 2-ovoid
7 96 10 8 –
8 96 6 7 –
9 144 8 9 –
10 72 8 10 2-ovoid

Table 1: The even sets of the (4× 4)-grid

Now, let R be the following relation on the set I := {1, 2, . . . , 10}. If i1, i2 ∈ I, then
(i1, i2) ∈ R if i1 = i2 or if there exist two even sets H1 and H2 of Type i1 of G such
that H1 ∗ H2 is an even set of Type i2. Let R be the transitive closure of R, i.e. the
smallest transitive relation of the set I containing R. We determined R with the aid of
a computer. In the following two tables, we describe the relations R and R. An “X” in
row i and column j means that the couple (i, j) belongs to the relation.

R 1 2 3 4 5 6 7 8 9 10

1 X X – – – – – – – –
2 – X – – – – – – – –
3 – X X X X X X – X –
4 – X – X X X X – X –
5 X X – – X X – – – –
6 X X – – X X – – – –
7 – X X X X X X X X X
8 – X X X X X X X X X
9 X X X X X X X X X X
10 X X X X X X X X X X
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R 1 2 3 4 5 6 7 8 9 10

1 X X – – – – – – – –
2 – X – – – – – – – –
3 X X X X X X X X X X
4 X X X X X X X X X X
5 X X – – X X – – – –
6 X X – – X X – – – –
7 X X X X X X X X X X
8 X X X X X X X X X X
9 X X X X X X X X X X
10 X X X X X X X X X X

Now, we make the following convention. If H is an even set of G and e is a pseudo-
embedding of G, then we say that H arises from e if either H = P or H is a pseudo-
hyperplane arising from e.

For every i ∈ I, we define T (i) := {j ∈ I | (i, j) ∈ R}. By Theorem 2.5 and Proposition
2.6, if e is a homogeneous pseudo-embedding of G and if H is an even set of Type i arising
from e, then every even set whose type belongs to T (i) must also arise from e. So, if we
put Ω := {T (i) | i ∈ I}, then the following holds.

If e is a homogeneous pseudo-embedding of G and if Ie is the set of all i ∈ I
such that all even sets of Type i arise from e, then Ie is the union of a number
of elements of Ω.

Now, we can easily see that Ω consists of the following four elements:
• I1 = {2};
• I2 = {1, 2};
• I3 = {1, 2, 5, 6};
• I4 = I.
Since I1 ⊂ I2 ⊂ I3 ⊂ I4, there are only four possibilities for a nonempty subset of

I that can be written as the union of a number of elements of Ω, namely the sets I1,
I2, I3 and I4 themselves. Now, for every j ∈ {1, 2, 3, 4}, let Hj denote the set of those
pseudo-hyperplanes of G whose type belong to Ij. We have verified that H1, H2, H3 and
H4 satisfy condition (a) of Proposition 2.6, but that only the sets H3 and H4 also satisfy
conditions (c) and (d).

We conclude that there are up to isomorphism two homogeneous pseudo-embeddings
of G, namely the homogeneous pseudo-embedding e3 corresponding to H3 and the homo-
geneous pseudo-embedding e4 corresponding to H4. The pseudo-embedding e4 must be
universal, while the pseudo-embedding e3 must be the one which was already described in
Theorem 4.1. Observe also that since |H4| = 29− 1 and |H3| = 25− 1, the corresponding
pseudo-embedding spaces are isomorphic to PG(8, 2) and PG(4, 2), respectively.
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5 The pseudo-hyperplanes and homogeneous pseudo-

embeddings of the generalized quadrangles W (3),

Q(4, 3), Q(5, 3) and GQ(3, 5)

Let Q = (P ,L, I) be one of the GQ’s W (3), Q(4, 3), Q(5, 3), GQ(3, 5), and let v denote
the total number of points of Q. We have v = 40, v = 40, v = 112 and v = 64 in the
respective cases.

Into the computer algebra system GAP [12], there are build many models of permu-
tation groups, including a model of the permutation representation of Aut(Q) on the set
{1, 2, . . . , v} which is equivalent with the permutation representation of Aut(Q) on the
point set P of Q. One can easily identify those subsets of size 4 of {1, 2, . . . , v} which
correspond to the lines of Q. In this way, we obtain a computer model of the GQ Q and
a computer model for the permutation representation of Aut(Q) on the point set P of Q.

Now, that we have identified the lines of Q in our computer model, we can implement
computer models for the vector space V and the subspace W ⊆ V which occur in Propo-
sition 2.2. The pseudo-embedding rank of Q is then equal to d := v − dim(W ). We find
that d = 15, d = 15, d = 21 and d = 18 in the respective cases. By Propositions 2.2 and
2.3, we then know that the total number of even sets of Q is equal to 2d.

By Propositions 2.2 and 2.3, we also know that there exists a one-to-one correspon-
dence between the hyperplanes Π of V through W and the pseudo-hyperplanes HΠ of Q.
We have implemented a procedure in GAP which allows us to turn each hyperplane Π of
V through W into the subset of {1, 2, . . . , v} which corresponds with HΠ ⊆ P .

We have subsequently used the following procedure to find all even sets of Q.

• Step 1: The empty set ∅ and the point set P of Q are examples of even sets. Put
N := 2.

• Step 2: Let GAP choose a random hyperplane Π of V through W and let GAP
calculate the corresponding pseudo-hyperplane H. Calculate the stabilizer SH of
H (in Aut(Q)). Then the total number of pseudo-hyperplanes isomorphic to H is

equal to NH := |Aut(Q)|
|SH |

. Verify whether H is isomorphic to one of the previous
obtained even sets. If this is not the case, then put N := N +NH .

• Step 3: If N < 2d, then go again to Step 2. If N = 2d, then we have found all even
sets and we are done.

In this way, we found that Q has M even sets, where M = 20, M = 21, M = 22 and
M = 47 in the respective cases. We have also written various procedures in GAP to find
various properties of the even sets. These properties can be found in Tables 2, 3, 4, 5, 6
and 7, where we have ordered the even sets according to the size of their orbits and the
number of points they contain1. Several of these even sets were already constructed in

1The structure of the stabilizers of the even sets of Type 6, 9 and 10 of Q(5, 3) (see Table 4) were
computed by Tim Penttila using the computer algebra system MAGMA [6]. (GAP remained irresponsive
when asked to compute these stabilizers.)
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Section 3.
• The even sets of Type (5) of W (3) were constructed in Section 3(2).
• The even sets of Type (9) of W (3) were constructed in Section 3(3).
• The even sets of Type (3) of W (3) were constructed in Section 3(4).
• The even sets of Type (6) of W (3) were constructed in Section 3(8).
• The even sets of Type (7) of Q(4, 3) were constructed in Section 3(2).
• The even sets of Type (3) of Q(4, 3) were constructed in Section 3(3).
• The even sets of Type (12) of Q(4, 3) were constructed in Section 3(5).
• The even sets of Type (13) of Q(4, 3) were constructed in Section 3(6).
• The even sets of Type (8) of Q(4, 3) were constructed in Section 3(7).
• The even sets of Type (4) of Q(4, 3) can be constructed as in Lemma 3.1 of Section

3 if one starts from an even set of Type i ∈ {3, 4, 9, 10} of a (4× 4)-subgrid G of Q(4, 3).
• The even sets of Type (6) of Q(5, 3) were constructed in Section 3(2).
• The even sets of type (7) of Q(5, 3) were constructed in Section 3(3).
• The even sets of Type (11) of Q(5, 3) were constructed in Section 3(9).
• The even sets of Type (5) of Q(5, 3) can be constructed as in Lemma 3.1 of Section

3 if one starts from an even set of Type i ∈ {7, 8} of a (4 × 4)-subgrid or an even set of
Type j ∈ {8, 9, 10, 15, 18, 21} of a Q(4, 3)-subquadrangle.
• The even sets of Type (8) of Q(5, 3) can be constructed as in Lemma 3.1 of Section

3 if one starts from an even set of Type i ∈ {5, 6, 11, 12, 13, 14, 16, 17, 19, 20} of a Q(4, 3)-
subquadrangle.
• The even sets of Type (9) of Q(5, 3) can be constructed as in Lemma 3.1 of Section

3 if one starts from an even set of Type i ∈ {3, 4, 9, 10} of a (4× 4)-subgrid.
• The even sets of Type (14) of GQ(3, 5) were constructed in Section 3(2).
• The even sets of Type (17) of GQ(3, 5) were constructed in Section 3(3).
• The even sets of Type (13) of GQ(3, 5) were constructed in Section 3(5).
• The even sets of Type (21) of GQ(3, 5) were constructed in Section 3(6).
• The even sets of Type (7) of GQ(3, 5) were constructed in Section 3(7).
• The even sets of Type (4) of GQ(3, 5) were constructed in Section 3(10).
• Every even set of Type (3) of GQ(3, 5) is the union of two disjoint ovoids.

Remarks. (1) Every even set of GQ(3, 5) which can be obtained as described in Lemma
3.1 is either the whole set of points or the union of two disjoint (4× 4)-subgrids.

(2) Let Q be a generalized quadrangle of order (3, t). Recall that if H1 and H2 are two
distinct pseudo-hyperplanes ofQ, thenH1∗H2 is again a pseudo-hyperplane ofQ. Starting
from the list of pseudo-hyperplanes ofQ described above, one can find many other pseudo-
hyperplanes of Q in this way. In fact, every pseudo-hyperplane of Q can be obtained from
this list of pseudo-hyperplanes by successive application of this construction. We give one
example. Let L1 and L2 be two orthogonal hyperbolic lines of W (3), let x1 ∈ L1 and
x2 ∈ L2. Then H1 = L1 ∪ L2 and H2 = {x1, x2} ∪ ((x⊥1 ∪ x⊥2 ) \ x1x2) are two pseudo-
hyperplanes of W (3) (of respective Types (3) and (5)). The pseudo-hyperplane H1 ∗H2

of W (3) contains 28 points and is of Type (12).
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The decision whether a given pseudo-hyperplane is an intriguing set can easily be done
with the aid of the following lemma.

Lemma 5.1 Let X be a pseudo-hyperplane of Q and let [a0, 0, a2, 0, a4] denote the value
of Il corresponding to X (as occurring in the tables). Then:
• X is a 2-ovoid if and only if a0 = a4 = 0;
• X is a tight set if and only if |X| · ( |X|

4
+ 2) = 2a2 + 12a4.

Moreover, if X is a tight set, then X is |X|
4

-tight.

For the generalized quadrangle W (3), we find that there exists up to isomorphism a
unique 2-ovoid and a unique i-tight pseudo-hyperplane for every i ∈ {2, 4, 6, 8}. The
uniqueness of the 2-ovoid was already proved in Bamberg, Kelly, Law and Penttila [2,
Section 7.1]. The 2-tight and 4-tight pseudo-hyperplanes have been described above.
The 8-tight pseudo-hyperplanes are precisely the complements of the 2-tight pseudo-
hyperplanes and the 6-tight pseudo-hyperplanes are precisely the complements of the
4-tight pseudo-hyperplanes.

For the generalized quadrangle Q(5, 3), we find that there exists up to isomorphism a
unique 2-ovoid and a unique i-tight pseudo-hyperplane for every i ∈ {8, 10, 12, 14, 16, 18,
20}. As already told in Section 1, the uniqueness of the 2-ovoid is a consequence of the
uniqueness of the hemi-system on the Hermitian surface H(3, 9) which is due to Segre
[21]. As mentioned above, the 10-tight pseudo-hyperplane of Q(5, 3) is the union of ten
mutually disjoint lines of Q(5, 3) forming a {0, 2}-set of lines. As far as the author knows,
the other tight sets have not been described before in the literature.

For the generalized quadrangle Q(4, 3), we find that there exists up to isomorphism a
unique 2-ovoid. The uniqueness of this 2-ovoid was already proved in Bamberg, Kelly,
Law and Penttila [2, Section 7.3].

For the generalized quadrangle GQ(3, 5), we find that there are up to isomorphism two
2-ovoids. One of these 2-ovoids (Type 3) is the union of two disjoint ovoids. The other
2-ovoid seems to be unknown. Up to isomorphism, GQ(3, 5) has a unique i-tight pseudo-
hyperplane for every i ∈ {4, 6, 10, 12}. Up to isomorphism, there are two 8-tight pseudo-
hyperplanes. As told before, one of these 8-tight sets (Type 4) is the union of two disjoint
(4 × 4)-grids. As far as the author knows, the other tight sets have not been described
before in the literature.

We now turn our attention to the classification of the homogeneous pseudo-embeddings
of Q. We will follow the same procedure with which we were able to determine all
homogeneous pseudo-embeddings of the (4×4)-grid. Recall that Q has up to isomorphism
M even sets which we call the even sets of Type 1, Type 2, ..., Type M . Similarly as in the
case of the (4 × 4)-grid, relations R and R can be defined on the set I := {1, 2, . . . ,M},
as well as a set Ω of subsets of I. For every subset J of I, we denote by H(J) the set of
all pseudo-hyperplanes of Q whose type belongs to J . Let Ω′ be the set of all nonempty
J ′ ⊆ I which can be written as the union of a number of elements of Ω (at least one)
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and for which |H(J ′)| + 1 is a power of 2. Recall that if H(J) coincides with the set of
pseudo-hyperplanes of Q arising from a particular homogeneous pseudo-embedding of Q,
then necessarily J ∪{2} ∈ Ω′. With the aid of GAP, we have computed Ω′ for each of the
four possibilities of Q.

If Q = W (3), then M = 20. We find that Ω′ contains three elements, namely the
sets J1 = {2}, J2 = {1, 2} and J3 = I. Among the sets H(J1), H(J2) and H(J3),
only H(J3) satisfies the conditions (a), (c) and (d) of Proposition 2.6, implying that
the universal pseudo-embedding of W (3) is the up to isomorphism unique homogeneous
pseudo-embedding of W (3).

If Q = Q(4, 3), then M = 21. We find that Ω′ = {J1, J2, J3, J4}, where J1 = {2}, J2 =
{1, 2}, J3 = {1, 2, 3, 4, 7} and J4 = I. Among the sets H(J1), H(J2), H(J3) and H(J4),
only H(J3) and H(J4) satisfy the conditions (a), (c) and (d) of Proposition 2.6, implying
that Q(4, 3) has up to isomorphism two homogeneous pseudo-embeddings, the universal
one corresponding toH(J4) and another one corresponding toH(J3). Since |H(J3)| = 29−
1, the pseudo-embedding space of the latter homogeneous pseudo-embedding is PG(8, 2).
The two homogeneous pseudo-embeddings are faithful by Proposition 2.6.

If Q = Q(5, 3), then M = 22. We find that Ω′ contains three elements, namely the
sets J1 = {2}, J2 = {1, 2} and J3 = I. Among the sets H(J1), H(J2) and H(J3), only
H(J3) satisfies the conditions (a), (c) and (d) of Proposition 2.6. This implies that the
universal pseudo-embedding of Q(5, 3) is the up to isomorphism unique homogeneous
pseudo-embedding of Q(5, 3).

If Q = GQ(3, 5), then M = 47. We find that Ω′ = {J1, J2, . . . , J7}, where J1 =
{2}, J2 = {1, 2}, J3 = {1, 2, 3, 4}, J4 = {1, 2, 3, 4, 7, 8, 24}, J5 = {1, 2, 3, 4, 9, 10, 14,
17, 18, 22, 25, 26}, J6 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 17, 18, 19, 20, 22, 24, 25, 26, 27, 28,
29, 30, 31, 34, 35, 42, 43, 46, 47} and J7 = I. Among the sets H(J1),H(J2), . . . ,H(J7), all
but H(J1) and H(J2) satisfy the conditions (a), (c) and (d) of Proposition 2.6, imply-
ing that the generalized quadrangle GQ(3, 5) has up to isomorphism five homogeneous
pseudo-embeddings. All these pseudo-embeddings are faithful by Proposition 2.6. The
homogeneous pseudo-embedding corresponding to H(J7) is the universal one. As above,
the dimensions of the homogeneous pseudo-embeddings can be calculated by means of the
number of pseudo-hyperplanes contained in H(Ji), i ∈ {3, 4, 5, 6, 7}. These dimensions
are as stated in Theorem 1.3.

Observe also that GQ(3, 5) is a subgeometry of the affine 3-space AG(3, 4) (with the
same points, but fewer lines) and that every automorphism of GQ(3, 5) is induced by
an automorphism of AG(3, 4) (see e.g. Payne [17, V5]). So, every homogeneous pseudo-
embedding of AG(3, 4) will induce a homogeneous pseudo-embedding of GQ(3, 5). Now,
by De Bruyn [8, Corollary 4.4], the pseudo-embedding rank of AG(3, 4) is 13. Hence, the
universal pseudo-embedding of AG(3, 4) will induce a homogeneous pseudo-embedding
of GQ(3, 5) which is isomorphic to the homogeneous pseudo-embedding of GQ(3, 5) in
PG(12, 2) corresponding to H(J5). This implies the following.
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Lemma 5.2 The pseudo-hyperplanes of AG(3, 4) are precisely the pseudo-hyperplanes of
GQ(3, 5) belonging to the set H(J5).

Those pseudo-hyperplanes of AG(3, 4) which are empty or can be written as the union of
two disjoint planes of AG(3, 4) are precisely the pseudo-hyperplanes of GQ(3, 5) belonging
to the set H(J3). By Corollary 2.7, these pseudo-hyperplanes determine a homogeneous
pseudo-embedding of AG(3, 4). So, also the homogeneous pseudo-embedding of GQ(3, 5)
in PG(6, 2) corresponding to H(J3) is induced by a homogeneous pseudo-embedding of
AG(3, 4). By Lemma 5.2, the homogeneous pseudo-embedding of GQ(3, 5) corresponding
to H(J4) cannot be induced by a pseudo-embedding of AG(3, 4) since H(J4) contains
pseudo-hyperplanes which are not contained in H(J5).
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