
Complexity of fuzzy answer set programming under

 Lukasiewicz semantics

Marjon Blondeela,1, Steven Schockaertb, Dirk Vermeira, Martine De Cockc

aVrije Universiteit Brussel, Department of Computer Science, Pleinlaan 2, 1050 Brussel,
Belgium

bCardiff University, School of Computer Science and Informatics, 5 The Parade, Cardiff,
CF24 3AA, UK

cGhent University, Department of Applied Mathematics, Computer Science and
Statistics, Krijgslaan 281 (S9), 9000 Gent, Belgium

Abstract

Fuzzy answer set programming (FASP) is a generalization of answer set pro-
gramming (ASP) in which propositions are allowed to be graded. Little is
known about the computational complexity of FASP and almost no tech-
niques are available to compute the answer sets of a FASP program. In this
paper, we analyze the computational complexity of FASP under Lukasiewicz
semantics. In particular we show that the complexity of the main reason-
ing tasks is located at the first level of the polynomial hierarchy, even for
disjunctive FASP programs for which reasoning is classically located at the
second level. Moreover, we show a reduction from reasoning with such FASP
programs to bilevel linear programming, thus opening the door to practi-
cal applications. For definite FASP programs we can show P-membership.
Surprisingly, when allowing disjunctions to occur in the body of rules – a
syntactic generalization which does not affect the expressivity of ASP in the
classical case – the picture changes drastically. In particular, reasoning tasks
are then located at the second level of the polynomial hierarchy, while for
simple FASP programs, we can only show that the unique answer set can
be found in pseudo-polynomial time. Moreover, the connection to an exist-
ing open problem about integer equations suggests that the problem of fully

Email addresses: Marjon.Blondeel@vub.ac.be (Marjon Blondeel),
S.Schockaert@cs.cardiff.ac.uk (Steven Schockaert), Dirk.Vermeir@vub.ac.be (Dirk
Vermeir), Martine.DeCock@UGent.be (Martine De Cock)

1Funded by a joint Research Foundation-Flanders (FWO) project

Preprint submitted to Elsevier October 12, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55799212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

characterizing the complexity of FASP in this more general setting is not
likely to have an easy solution.

Keywords: Answer set programming, Lukasiewicz logic, Computational
complexity

1. Introduction

Answer set programming (ASP) [1] is a form of declarative programming
that can be used to model combinatorial search problems. Specifically, a
search problem is translated into a disjunctive ASP program, i.e. a set of
rules of the form

r : a1 ∨ . . . ∨ an ← b1 ∧ . . . ∧ bm ∧ not c1 ∧ . . . ∧ not ck,

with ai, bj, cl literals (atoms or negated atoms) or constants (“true” or “false”)
and “not” the negation-as-failure operator. In ASP there are two types of
negation: strong negation “¬” and negation-as-failure “not”. The intuitive
difference is that a literal ¬a is true when ¬a can be derived, whereas not a
is true if a cannot be derived. Rule r indicates that whenever the body
b1 ∧ . . . ∧ bm ∧ not c1 ∧ . . . ∧ not ck holds, the head a1 ∨ . . . ∨ an should hold
as well. For example, consider the following ASP program P .

r1 : beach ← sunny ∧ not raining
r2 : sunny ← 1

Rule r1 informally means that we will go to the beach if there is no reason
to think that it is raining and if we are sure that it is sunny. A rule such as
r2 is called a fact; the head is unconditionally true, it is sunny. Given such
a program, the idea is to find a minimal consistent set of literals that can
be derived from the program, where consistent means that an atom a and
its negation ¬a cannot be both elements of this set. These “answer sets”
then correspond to the solutions of the original search problem. By rule r2

it follows that the literal “sunny” must be an element of each answer set.
Explicitely, the only answer set of P is {sunny, beach}.

If the head of each rule in an ASP program consists of at most one literal,
the program is called normal. If, in addition, a normal program does not
contain “not”, it is called definite. Given a disjunctive ASP program P and
a literal l, we are interested in the following three decision problems.

2

1. Existence: Does P have an answer set?

2. Set-membership: Does there exist an answer set I of P such that
l ∈ I?

3. Set-entailment: Does l ∈ I hold for each answer set I of P?

A summary of the complexity for these decision problems in classical ASP
is given in Table 1. Recall that ΠP

2 = coΣP
2 , where ΣP

2 is the class of problems
that can be solved in polynomial time on a non-deterministic machine using
an NP oracle.

Table 1: Complexity of inference in ASP [1, 2]

existence set-membership set-entailment
disjunctive ΣP

2 -complete ΣP
2 -complete ΠP

2 -complete
normal NP-complete NP-complete coNP-complete
definite in P in P in P

Although ASP has been successfully applied to model combinatorial prob-
lems in a concise and declarative manner, it is not directly suitable for ex-
pressing problems with continuous domains. Fuzzy answer set programming
(FASP) (e.g. [3, 4]) is a generalization of ASP based on fuzzy logics [5] that
is capable of modeling continuous systems by using an infinite number of
truth values corresponding to intensities of properties. Lukasiewicz logic, a
particular type of fuzzy logic, is often used in applications because it pre-
serves many desirable properties from classical logic. It is closely related to
mixed integer programming, as was first shown by McNaughton [6] in a non-
constructive way. Later, Hähnle [7] gave a concrete, semantics-preserving,
translation from a set of formulas in Lukasiewicz logic into a mixed integer
program. Checking the satisfiability of a Lukasiewicz logic formula thus es-
sentially corresponds to checking the feasibility of a mixed integer program.
Under Lukasiewicz semantics, a strict disjunctive FASP program is a set of
rules of the form

r : a1 ⊕ . . .⊕ an ← b1 ⊗ . . .⊗ bm ⊗ not c1 ⊗ . . .⊗ not ck

with ai, bj, cl literals (atoms or negated atoms) or constants c (with c ∈ [0, 1]∩
Q), “not” the negation-as-failure operator, ⊕ and ⊗ resp. the Lukasiewicz
disjunction and conjunction and ← the Lukasiewicz implicator (see Section
2.2). Special kinds of strict disjunctive FASP programs we are interested in

3

are strict normal FASP programs, i.e. strict disjunctive FASP programs in
which each rule has at most one literal in the head, and strict definite FASP
programs, i.e. strict normal FASP programs that do not contain “not”. The
label “strict” refers to the fact that in terms of syntax they adhere strictly
to the standard syntax of classical ASP, i.e. the body of a rule consists of a
conjunction of (negation-as-failure) literals or constants, while the head is a
disjunction. In this paper, we will also consider FASP programs with more
syntactical freedom, in particular sets of rules with other connectives from
 Lukasiewicz logic in the body and the head. We will refer to this more general
class of FASP programs as regular FASP programs. The class of strict FASP
programs is a subclass of the class of regular FASP programs.

As will become clear when defining the semantics, in a FASP program
the truth value of the head of each rule must be greater or equal to the truth
value of the body of this rule. In line with the idea of ASP – which attempts
to make as few literals true as possible to satisfy the rules of a program –
we are interested in finding the lowest truth degrees that we can assign to
each of the literals such that the rules are still satisfied. In this way FASP
can model search problems in continuous domains entirely similar as ASP
does for search problems with discrete domains. For example, consider the
following program P .

r1 : open ← not closed
r2 : closed ← not open

The properties “open” and “closed” can be given a value in [0, 1] depending
on the extent, e.g. the angle, to which a door is opened resp. closed. Rule r1

intuitively means that the door is open to at least a degree greater or equal
to the extent to which the door is not closed and vice versa for rule r2. As
will become clear in Section 2.3, all answer sets of this program are of the
form I(open) = x and I(closed) = 1 − x for some x ∈ Q and there are no
other answer sets. Note that answer sets are now fuzzy sets on the set of
literals, i.e. mappings I from the set of literals into [0, 1].

In recent years, a variety of approaches to FASP have been proposed (e.g.
[8, 9, 10, 11, 12, 13, 14]). The main differences are the type of connectives
that are allowed, the truth lattices that are used, the definition of a model
of a program and the way that partial satisfaction of rules is handled. Note
that the idea behind FASP is not to deal with uncertainty, but with partial
truth. See [15] for a discussion on the difference between these two concepts.
Although there exist fuzzy frameworks in which uncertainty can be modelled,

4

e.g. by using intervals of truth values [14], it is more naturally to extend
ASP with possibility theory (e.g. [16]) or with probability theory (e.g. [17])
to deal with uncertainty. Still, FASP is sometimes useful as a vehicle to
simulate probabilistic or possibilistic extensions of ASP, as its ability to model
continuity can be used to manipulate certainty degrees [16, 18].

In this paper, we will investigate the complexity of important decision
problems for FASP. Given a regular FASP program P , a literal l and a value
λl ∈ [0, 1]∩Q, we are interested in the following decision problems which are
generalizations of the ones for ASP.

1. Existence: Does there exist an answer set I of P?

2. Set-membership: Does there exist an answer set I of P such that
I(l) ≥ λl?

3. Set-entailment: Is I(l) ≥ λl for each answer set I of P?

By our particular choice of semantics, FASP relates to Lukasiewicz logic
as ASP does to classical logic. For Lukasiewicz logic, satisfiability is an
NP-complete problem [19]. Since this problem has the same complexity for
classical logic, one would expect ASP and FASP to have the same complexity
as well. This expectation is reinforced by the fact that in the case of proba-
bilistic ASP, the complexity of the existence problem has been shown to be
ΣP

2 -complete [20], i.e. the same as the complexity of the existence problem
in classical ASP. On the other hand, it does not necessarily need to hold
that the computational complexity remains the same. There are for instance
fuzzy description logics that, unlike the classical case, do not have the finite
model property under Lukasiewicz logic or under product logic [21] and there
are description logics that are undecidable under Lukasiewicz logic [22].

The main contributions of this paper are the following:

• Although existence and set-membership are ΣP
2 -complete for disjunc-

tive ASP, for strict disjunctive and strict normal FASP we will show
NP-completeness. Moreover, we will show that not allowing constraints,
i.e. rules in which the head contains exactly one constant, and strong
negation does not affect the complexity for set-membership.

• We will show that the existence of an answer set for a strict normal
FASP program without constraints and without strong negation is al-
ways guaranteed and hence that the complexity of the existence prob-
lem for this class of FASP programs is “constant”. However, for strict

5

disjunctive FASP without constraints and without strong negation we
are only able to show membership in NP for the existence problem.

• If more syntactic freedom is allowed, i.e. for regular FASP programs,
then we can show ΣP

2 -completeness for set-membership and existence
and ΠP

2 -completeness for set-entailment by using known complexity
results about fuzzy equilibrium logic [23]. However, if we restrict
ourselves to programs with at most one literal in the head of each
rule, then we can only show ΣP

2 -membership and NP-hardness for set-
membership and existence and ΠP

2 -membership and coNP-hardness for
set-entailment. If in addition, we do not allow “not” in the rules we
can only find a pseudo-polynomial time algorithm to compute answer
sets based on computing least fixpoints.

• Although in general we can only show membership in NP ∩ coNP, for
several subclasses of the class of regular definite FASP programs we
can show P-membership. In particular, for regular definite FASP pro-
grams with only conjunction and maximum or only disjunction in the
body of rules we can provide a polynomial time algorithm to compute
answer sets. This is also the case for regular definite FASP programs
with a cycle free dependency graph or with only polynomially bounded
constants.

An overview of the complexity results that we can establish is provided
in Tables 2 and 3.

Table 2: Complexity of inference in strict FASP
strict FASP existence set-membership set-entailment

no restrictions disjunctive NP-complete NP-complete coNP-complete
normal NP-complete NP-complete coNP-complete
definite in P in P in P

no constraints, no strong negation disjunctive in NP NP-complete in coNP
normal in P NP-complete in coNP
definite in P in P in P

Finally, we will provide an implementation into bilevel linear program-
ming for strict disjunctive FASP which opens the door to practical appli-
cations. Intuitively, in a bilevel linear programming problem there are two
agents: the leader and the follower. The leader goes first and attempts to
optimize his/her objective function. The follower observes this and subse-
quently makes his/her decision. Since it caught the attention in the 1970s,

6

Table 3: Complexity of inference in regular FASP
regular FASP existence set-membership set-entailment

no restrictions disjunctive ΣP
2 -complete ΣP

2 -complete ΠP
2 -complete

normal NP-hard, in ΣP
2 NP-hard, in ΣP

2 coNP-hard, in ΠP
2

definite in NP ∩ coNP in NP ∩ coNP in NP ∩ coNP
only ⊗ and max in body definite in P in P in P

only ⊕ in body definite in P in P in P
cycle free definite in P in P in P

polynomially bounded
constants definite in P in P in P

there have been many algorithms proposed for solving bilevel linear program-
ming problems (e.g. [24, 25, 26]). A popular way to solve such a problem, e.g.
in [24], is to translate the bilevel linear programming problem into a nonlinear
programming problem using Kuhn-Tucker constraints. This new program is
a standard mathematical program and relatively easy to solve because all but
one constraint is linear. In a later study [27], an implicit approach to sat-
isfying the nonlinear complementary constraint was proposed, which proved
to be more efficient than the known strategies. By showing a reduction of
strict disjunctive FASP into bilevel programming we thus provide a basis to
build solvers for FASP.

The paper is structured as follows. In the next section, we provide the
necessary background on ASP, Lukasiewicz logic and FASP followed by some
motivating examples for FASP in Section 3. In Section 5, resp. Section 6,
we will present complexity results for strict FASP, resp. regular FASP using
propositions and lemmas provided in Section 4. Finally, in Section 7, we will
show a reduction to bilevel linear programming for disjunctive FASP and in
Section 8 we present some concluding remarks. Furthermore, the proofs for
all results have been added in an appendix.

2. Preliminaries

2.1. Answer set programming (ASP)

A disjunctive ASP program is a finite set of rules of the form

r : a1 ∨ . . . ∨ an ← b1 ∧ . . . ∧ bm ∧ not c1 ∧ . . . ∧ not ck,

with ai, bj, cl literals (atoms a or negated atoms ¬a) and/or the constants 1
(true) or 0 (false) with i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} and l ∈ {1, . . . , k}. The
operator “not” is the negation-as-failure operator and “¬” is called strong

7

negation. Intuitively, the expression not a is true if there is no proof that
supports a. On the other hand, ¬a is essentially seen as a new literal, which
has no connection to a, except for the fact that answer sets containing both
a and ¬a will be designated as inconsistent. (Strongly) negated literals are
defined as follows: ¬l := ¬a if l = a and ¬l := a if l = ¬a (with a an
atom). An expression of the form not l (with l a literal) will be called a
negation-as-failure literal.

We refer to the rule by its label r. The expression a1 ∨ . . . ∨ an is called
the head rh of r and b1 ∧ . . . ∧ bm ∧ not c1 ∧ . . . ∧ not ck is the body rb of r.
In ASP, a rule of the form “0 ← α”, i.e. a constraint, is usually written as
“← α” and a rule of the form “α← 1”, i.e. a fact, as “α←”. In a constraint
the body is unconditionally false and in a fact the head is unconditionally
true.

Different classes of ASP programs are often considered, depending on the
type of rules they contain. If each rule in P has at most one literal in the
head, it is called a normal ASP program. If P is a normal ASP program not
containing negation-as-failure, it is called a definite ASP program. A definite
ASP program not containing strong negation with exactly one atom in the
head of each rule is called a simple ASP program.

An interpretation I of P is any consistent set of literals I ⊆ LP with

LP = {l | l literal in P} ∪ {¬l | l literal in P}

and where we say that I is consistent if for no literal l in LP we have that
l ∈ I and ¬l ∈ I. The set of interpretations I ⊆ LP will be denoted by
P(LP). A literal l is true in I, written as I |= l, iff l ∈ I. An interpretation
I ∈ P(LP) can be extended to rules as follows:

• I |= 1, I 2 0,

• I |= not l iff I 2 l,

• I |= (α ∧ β) iff I |= α and I |= β,

• I |= (α ∨ β) iff I |= α or I |= β,

• I |= (α← β) iff I |= α or I 2 β.

with l a literal and α and β propositional formulas in negation-normal form.
An interpretation I ∈ P(LP) is called a model of a disjunctive ASP

program P if I |= r for each rule r ∈ P . A model I of P is minimal if

8

there exists no model J of P such that J ⊂ I, i.e. J ⊆ I and J 6= I.
An interpretation I ∈ P(LP) is called an answer set of a disjunctive ASP
program P without negation-as-failure if it is a minimal model of P . It
can be shown that a simple ASP program has exactly one answer set. To
define the semantics for disjunctive ASP programs P that contain negation-
as-failure, one starts from a candidate answer set I ∈ P(LP) and computes
the Gelfond-Lifschitz reduct P I [28] by removing all rules in P that contain
expressions of the form not l with l ∈ I and removing all expressions of the
form not l in the remaining rules. An interpretation I ∈ P(LP) is called an
answer set of P if it is an answer set of the negation-as-failure free program
P I .

Example 1. Consider the normal ASP program P

b ← not a
a ← not b

with a and b atoms. For the interpretation I1 = {a}, we have that P I1 is
equal to

a ←
Since I1 is a minimal model of P I1, we conclude that I1 is an answer set of
P . Similarly, I2 = {b} is also an answer set of P . One can easily check that
I1 and I2 are the only answer sets.

Remark 1. A disjunctive ASP program P with strong negation can be trans-
lated to a disjunctive ASP program P ′ without strong negation, by replacing
each literal of the form ¬a with a new atom a′ and adding the constraint
← a∧ a′. An interpretation I ∈ P(LP) is an answer set of P iff there exists
an answer set I ′ ∈ P(LP ′) of P ′ such that a ∈ I iff a ∈ I ′ and ¬a ∈ I iff
a′ ∈ I ′ for each atom a ∈ LP .

2.2. Lukasiewicz logic

Fuzzy logics [5] are a class of logics whose semantics are based on truth
degrees taken from the unit interval [0, 1]. Lukasiewicz logic is a particular
type of fuzzy logic that is often used in applications since it preserves many
properties from classical logic and all the main reasoning tasks can be reduced
to mixed integer programming.

In this paper, we will consider formulas built from a set of atoms A,
constants c for each element c ∈ [0, 1] ∩ Q and the connectives conjunction

9

⊗, disjunction ⊕, max, min, negation ∼ and implication →. The semantics
of this logic are defined as follows. A fuzzy interpretation is a mapping
I : A→ [0, 1] that can be extended to arbitrary formulas:

• [c]I = c,

• [α⊗ β]I = max([α]I + [β]I − 1, 0),

• [α⊕ β]I = min([α]I + [β]I , 1),

• [max(α, β)]I = max([α]I , [β]I),

• [min(α, β)]I = min([α]I , [β]I),

• [α→ β]I = min(1− [α]I + [β]I , 1)

• [α↔ β]I = [(α→ β)⊗ (β → α)]I = [min(α→ β, β → α)]I and

• [∼ α]I = 1− [α]I .

for a constant c and α and β formulas. Note that for formulas α1, . . . , αn we
have

[
n⊗

i=1

αi]I = [α1 ⊗ . . .⊗ αn]I = max(
n∑

i=1

[αi]I − (n− 1), 0),

[
n⊕

i=1

αi]I = [α1 ⊕ . . .⊕ αn]I = min(
n∑

i=1

[αi]I , 1)

and it can be shown that the conjunction and disjunction operators are asso-
ciative, although the usual distribution laws do not hold. Moreover remark
that

[α1 → α2]I = 1 iff [α1]I ≤ [α2]I .

The set of all fuzzy interpretations A→ [0, 1]∩Q will be written as F(A).
We say that I ∈ F(A) is a fuzzy model of a set of formulas B if [α]I = 1 for
each α ∈ B.

10

2.3. Fuzzy answer set programming (FASP)

We now recall a fuzzy version of ASP based on [29], combining ASP
(Section 2.1) and Lukasiewicz logic (Section 2.2).

A regular FASP program (under Lukasiewicz semantics) is a finite set of
rules of the form

r : g(a1, . . . , an)← f(b1, . . . , bm, not c1, . . . , not ck),

with ai, bj, cl literals (atoms a or negated atoms ¬a) and/or constants c
(where c ∈ [0, 1] ∩Q) with i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} and l ∈ {1, . . . , k}
and “not” the negation-as-failure operator. The connectives f and g are
compositions of the Lukasiewicz connectives ⊗, ⊕, max and min. As for
ASP, ¬a is essentially seen as a new literal, which has no explicit connection
to a, except for the fact that answer sets containing both a and ¬a “to
a sufficiently high degree” will be designated as inconsistent. As before,
(strongly) negated literals are defined as follows: ¬l := ¬a if l = a and
¬l := a if l = ¬a (with a an atom). An expression of the form not l (with l
a literal) will be called a negation-as-failure literal.

We refer to the rule by its label r and g(a1, . . . , an) is called the head
rh of r and f(b1, . . . , bm, not c1, . . . , not ck) is called the body rb of r. Each
rule not containing negation-as-failure nor strong negation can be seen as an
implication rb → rh in Lukasiewicz logic. This formula is satisfied by a fuzzy
interpretation I iff I(rb) ≤ I(rh). As will be become clear in this section an
arbitrary rule has this same intuition: the truth degree of the head must be
greater or equal to the truth degree of the body. Rules of the form c ← α
with c a constant are called constraints. Intuitively such a rule implies that
the truth value of α cannot be greater than c. On the other hand, a rule
α← c is called a fact. The truth value of α must be at least c. As for ASP, we
will consider several classes of FASP programs. If a regular FASP program
has at most one literal in the head of each rule, it is called a regular normal
FASP program and if in addition it does not contain negation-as-failure, it is
called a regular definite FASP program. Finally, if a regular definite FASP
program does not contain strong negation and has exactly one atom in the
head of each rule, it is called a regular simple FASP program. Regular FASP
programs only containing rules of the form

a1 ⊕ . . .⊕ an ← b1 ⊗ . . .⊗ bm ⊗ not c1 ⊗ . . .⊗ not ck

are called strict disjunctive FASP programs. If a strict disjunctive FASP
program has at most one literal in the head of each rule, it is called a strict

11

normal FASP program and if a strict normal FASP program does not con-
tain negation-as-failure, it is called a strict definite FASP program. A strict
definite FASP program not containing strong negation and with exactly one
atom in the head of each rule is called a strict simple FASP program.

A fuzzy interpretation I of a regular FASP program P is any consistent
element I ∈ F(LP), where consistent means that I(l) + I(¬l) ≤ 1 for each
l ∈ LP with

LP = {l | l literal in P} ∪ {¬l | l literal in P}.

We use this definition of consistency because we want to generalize the clas-
sical definition of consistency from Section 2.1. Hence we want to have
I(l) ⊗ I(¬l) = 0 for each answer set I and each literal l. This is equiva-
lent to I(l) + I(¬l) ≤ 1. Note that this definition of consistency coincides
with the approach in [11]. The set of all atoms in P is denoted by BP .

A fuzzy interpretation I ∈ F(LP) is extended to rules as follows:

• [c]I = c

• [not l]I = 1− I(l)

• [f(α, β)]I = f([α]I , [β]I) where f is a prefix notation for ⊗, ⊕, max or
min and f is the corresponding function defined on [0, 1] (see Section
2.2)

• [α← β]I = min(1− [β]I + [α]I , 1)

with c a constant, l a literal and α and β relevant expressions. Remark that
[α← β]I = 1 iff [α]I ≥ [β]I .

A fuzzy interpretation I ∈ F(LP) is a fuzzy model of a regular FASP
program P if [r]I = 1 for each rule r ∈ P . For I1, I2 ∈ F(LP) we write
I1 ≤ I2 iff I1(l) ≤ I2(l) for each l ∈ LP . A fuzzy model I of P is a minimal
fuzzy model if there exists no fuzzy model J of P such that J < I, i.e. J ≤ I
and J 6= I. A fuzzy interpretation I ∈ F(LP) is called an answer set of a
regular FASP program P without negation-as-failure if it is a minimal fuzzy
model of P . Remark that such a regular FASP program can have none, one
or several answer sets [30]. However, similar as for ASP, a regular simple
FASP program P has exactly one answer set which coincides with the least
fixpoint of the immediate consequence operator ΠP [8]. This operator maps
fuzzy interpretations to fuzzy interpretations and is defined as

ΠP (I)(a) = sup{[rb]I | (a← rb) ∈ P},

12

for an atom a ∈ BP and I ∈ F(BP). Remark that an atom not occurring the
head of any rule in a regular simple FASP program will always have truth
value 0 in the answer set.

For programs with negation-as-failure, a generalization of the Gelfond-
Lifschitz reduct [29] is used. In particular, for a program P and a fuzzy
interpretation I ∈ F(LP) the reduct P I of P w.r.t. I is obtained by replacing
in each rule r ∈ P all expressions of the form not l by the interpretation
[not l]I . For a literal l, we write lI = l and (not l)I = [not l]I and inductively
we write αI for a head or a body α of a rule and rI for a rule r in which
all expressions of the form not l have been replaced by the interpretation
[not l]I . This new program P I = {rI | r ∈ P} is a regular negation-as-failure
free FASP program and I is called an answer set of P if I is an answer set
of P I .

Let us reconsider the example from Section 1.

Example 2. Consider the strict normal FASP program P

b ← not a
a ← not b

with a and b atoms. We show that for each x ∈ [0, 1]∩Q, Mx with Mx(a) = x
and Mx(b) = 1−x, is an answer set of P . We first compute the reduct PMx:

b ← 1− x
a ← x

The minimal model of PMx is then exactly Mx. Note that there are infinitely
many answer sets.

3. Motivating examples

In this section we present some motivating and illustrating examples for
FASP. The first example shows how strict disjunctive FASP can be used
to model sensor networks. This is followed by an example showing how
strict simple FASP can be used to compute transitive closures of proximity
relations. A version of the ATM location selection problem and a fuzzy graph
coloring problem will be tackled using regular normal FASP.

13

3.1. Sensor networks
Forest fires cause massive loss of vegetation and animal life. If a fire is de-

tected on time, suppression units are able to reach the fire in its initial stages
which is important to avoid huge losses. Moreover suppression costs will be
considerably reduced. Wireless sensor networks can be effectively used for
this purpose [31]. These networks consist of a number of devices that can
sense their environment and communicate wirelessly. Consider such a wire-
less sensor network consisting of sensors measuring temperature. Since there
could be sensors that are defective, one should not blindly draw conclusions
based on the measurements of the sensors. We will tackle this as follows. Sen-
sors located near to each other should measure similar temperatures. Hence
if such a couple of sensors displays significantly different temperatures, we
can assume there must be something wrong with at least one of these sen-
sors. We will use FASP to determine whether there are sensors which are
not working optimally and if so, within what range we can assume the real
temperature to be.

Suppose we have n sensors. By assuming an appropriate linear rescaling,
we can see temperature as a value in [0, 1] ∩ Q. Although we might not
be able to derive an exact temperature, we will try to find a subinterval of
[0, 1]∩Q in which we could assume the temperature to be. More specifically,
for each sensor i ∈ {1, . . . , n}, we denote the lower bound on the exact
temperature as the variable ti. The temperature measured by sensor i is a
fixed value t′i ∈ [0, 1] ∩ Q. If ei is the variable representing the error on the
measured temperature then the actual temperature must be in the interval
[ti = t′i−ei, t′i+ei]. In our setting, the fixed value t′i corresponds to a constant
t′i in our FASP program and ei is a variable for which we will infer a value,
i.e. the measured temperature is considered given, and we learn a value for
the measurement error that is potentially caused by a sensor that is not
functioning as it should.

The sensor network defines a weighted graph G as follows. The vertices
are the sensors and there is an edge with weight wij ∈ [0, 1]∩Q between the
vertices corresponding to sensor i and sensor j, indicating how near these
sensors are to each other. The fixed value wij ∈ [0, 1] ∩ Q is such that
we can reasonably assume, based on the locations of sensors i and j that
the difference of the exact temperature between these locations should be
less than wij. So the degree to which we can assume that there is something
wrong with sensors i and/or j is equal to the degree to which d(t′i, t

′
j) = |t′i−t′j|

is greater or equal to wij.

14

We can now write the following program P for given (fixed) values t′i, wij ∈
[0, 1] ∩Q and variables ti, ei (i, j ∈ {1, . . . , n}).

r1 : ¬ti ⊕ t′i ← not ei
r2 : 1− t′i ⊕ ti ← not ei
r3 : ti ← not¬ti
r4 : ¬ti ← not ti
r5 : ei ⊕ ej ← d(t′i, t

′
j)⊗ 1− wij

Rules r1 and r2 are obtained as follows. We want to model that the lower
bound on the actual temperature ti and the measured temperature t′i are
similar to the degree that we do not know that there is something wrong
with sensor i. Hence we want to model the formula (ti ↔ t′i)← not ei, where
t′i is the constant representing the measured temperature in the program.
The attentive reader has likely noticed that this “rule” does not adhere to
the syntax of (strict) disjunctive FASP. However it can be easily rewritten
as the two syntactically correct FASP rules r1 and r2. Indeed, notice that
in Lukasiewicz logic we have ti ↔ t′i = min(∼ ti ⊕ t′i, 1− t′i ⊕ ti). Hence
for a fuzzy interpretation I such that I(¬ti) = I(∼ ti) = 1 − I(ti), we have
that I models (ti ↔ t′i) ← not ei iff [min(¬ti ⊕ t′i, 1− t′i ⊕ ti)]I ≥ [not ei]I iff
[¬ti⊕t′i]I ≥ [not ei]I and [1− t′i⊕ti]I ≥ [not ei]I and hence iff I models r1, r2,
r3 and r4 where rules r3 and r4 are needed to obtain that I(ti) + I(¬ti) = 1.
Recall that, contrary to Lukasiewicz logic, this is not automatically valid in
FASP.

Rule r5 is justified by that fact that for a fuzzy interpretation I it holds
that [d(t′i, t

′
j) ⊗ 1− wij]I = max(d(t′i, t

′
j) − wij, 0). If d(t′i, t

′
j) ≤ wij and no

other rules imply I(e1) > 0 or I(e2) > 0, then for an answer set I we obtain
[ei ⊕ ej]I = 0, i.e. there is nothing wrong with the sensors. Otherwise, if
d(t′i, t

′
j) > wij, then [ei ⊕ ej]I ≥ d(t′i, t

′
j) − wij, i.e. there is something wrong

with the sensors at least to the degree to which d(t′i, t
′
j) is greater or equal to

wij.
One can easily show that the solutions to the sensor network problem

correspond to the answer sets of this program.
Consider as a concrete example a network with three sensors as depicted

in Figure 1. Suppose we have the measurements t′1 = 0.4, t′2 = 0.9 and
t′3 = 0.5 and we have w1,2 = w1,3 = w2,3 = 0.2, i.e. all the sensors are fairly
far apart from each other.

15

t′2 = 0.9 t′3 = 0.5

t′1 = 0.4

0.2

0.2

0.2

Figure 1: Example of a sensor network

The three rules of type r5 are the following:

e1 ⊕ e2 ← 0.3
e2 ⊕ e3 ← 0.2
e1 ⊕ e3 ← 0

These rules impose lower bounds on ei ⊕ ej and by computing reducts P I

w.r.t. fuzzy interpretations I meeting these conditions and verifying that I
is a minimal fuzzy model of P I , we obtain for instance the following answer
set I.

I(e1) = 0.3, I(e2) = 0, I(e3) = 0.2, I(t1) = 0.1, I(t2) = 0.9, I(t3) = 0.3,

I(¬t1) = 0.9, I(¬t2) = 0.1, I(¬t3) = 0.7

In particular, in this example, P I is the program containing the following
rules.

¬t1 ⊕ 0.4 ← 0.7 0.6⊕ t1 ← 0.7
¬t2 ⊕ 0.9 ← 1 0.1⊕ t2 ← 1
¬t3 ⊕ 0.5 ← 0.8 0.5⊕ t3 ← 0.8

t1 ← 0.1 ¬t1 ← 0.9
t2 ← 0.9 ¬t2 ← 0.1
t3 ← 0.3 ¬t3 ← 0.7

e1 ⊕ e2 ← 0.3 e1 ⊕ e3 ← 0
e2 ⊕ e3 ← 0.2

One can easily check that I is indeed a minimal fuzzy model of P I .
Another answer set J is defined as follows.

J(e1) = 0, J(e2) = 0.3, J(e3) = 0, J(t1) = 0.4, J(t2) = 0.6, J(t3) = 0.5,

16

J(¬t1) = 0.6, J(¬t2) = 0.4, J(¬t3) = 0.5

Notice that there are several answer sets, each corresponding to a possible
explanation.

3.2. Transitive closure

A proximity relation on a universe X is a mapping R : X×X → [0, 1]∩Q
that is reflexive (R(x, x) = 1 for each x ∈ X) and symmetric (R(x, y) =
R(y, x) for all x, y ∈ X). A proximity relation R is not necessarily transitive
(R(x, y)?R(y, z) ≤ R(x, z) for all x, y, z ∈ X where x?y = max(x+y−1, 0)
denotes the semantics for the Lukasiewicz conjunction). A strict simple FASP
program can be used to find the transitive closure of R. This is the minimal
mapping R̂ : X ×X → [0, 1] ∩Q that is reflexive, symmetric and transitive
such that R(x, y) ≤ R̂(x, y) for all (x, y) ∈ X ×X. Finding such “transitive
approximations” is useful in many artificial intelligence areas, e.g. in fuzzy
clustering [32] and analogue problems need to be solved in fuzzy spatial
reasoning [33].

The corresponding FASP program simply consists of the rules

R̂(x, z)← R̂(x, y)⊗ R̂(y, z)

for all x, y, z ∈ X and facts of the form

R̂(x, y)← R(x, y),

where R(x, y) is the symbol representing the fixed value R(x, y).

3.3. ATM location selection problem

The FASP program presented below is based on the ATM location selec-
tion problem for which a corresponding FASP program is given and discussed
in [35]. Here, the problem is slightly modified and the resulting program is
more concise. This problem is often referred to as the k-center problem and
it is shown to be NP-hard [34].

Suppose we want to place k ATM machines {a1, . . . , ak} on roads con-
necting m towns such that the distance between each town and the clos-
est ATM machine is less than a particular distance. Schematically, this
can be seen as an undirected weighted graph G = (Towns,Edges) where
Towns = {t1, . . . , tm} is the set of towns and etitj is an edge if there is a road
connecting towns ti and tj. Note that etitj ∈ Edges iff etjti ∈ Edges. A weight

17

is given to an edge etitj in function of the distance between towns ti and tj.
To obtain a weight that is an element in [0, 1]∩Q, one can use a normalized
distance d : Towns × Towns → [0, 1] ∩ Q, e.g. the actual distance between
two towns divided by the sum of all distances between all possible pairs of
towns2. Suppose such a normalized distance function d is given, then we can
define a normalized nearness function n = 1 − d. By using the Lukasiewicz
conjunction we can perform summations of degrees of nearness. Indeed, sup-
pose n1 = 1 − d1 ∈ [0, 1] ∩ Q and n2 = 1 − d2 ∈ [0, 1] ∩ Q, then for a fuzzy
interpretation I we have

[n1 ⊗ n2]I = max(n1 + n2 − 1, 0)
= max(1− d1 + 1− d2 − 1, 0)
= max(1− (d1 + d2), 0)
= 1−min(d1 + d2, 1)

= 1− [d1 ⊕ d2]I

where n1, n2, d1, d2 are the symbols representing the values n1, n2, d1, d2 ∈
[0, 1] ∩Q.

We can now specify a program whose answer sets correspond to those
configurations of ATMs such that the distance from each town to the nearest
ATM is at most a particular degree d′ ∈ [0, 1] ∩Q.

The first part of the program consists of the facts that define the graph.
Specifically, we have a set of rules denoting which towns are connected by a
single road and how near they are to each other:

edge(etitj)← n(ti, tj)

for each edge etitj ∈ Edges. Secondly, for each edge one can (arbitrarily)
designate one of the towns to be the starting point and the other one to
be the ending point. This choice has no influence on the outcome of the
program:

start(ti, etitj) ← 1
end(tj, etitj) ← 1

for each edge etitj ∈ Edges.
The second part of the program consists of rules generating eligible so-

lutions. For each a ∈ {a1, . . . , ak} and each edge e ∈ Edges we add the

2If two cities are not connected directly, the distance of the shortest path is taken.

18

following rules

r1 : loc(a, e) ← loc(a, e)⊕ loc(a, e)
r2 : loc(a, e) ← ⊗{not loc(a, e′) | e′ ∈ Edges, e′ 6= e}
r3 : locnearend(a, e) ← (edge(e)⊕ not locnearstart(a, e))⊗ loc(a, e)
r4 : locnearstart(a, e) ← (edge(e)⊕ not locnearend(a, e))⊗ loc(a, e)

Rule r1 is used to ensure that the truth degree of loc(a, e) is in {0, 1},
i.e. an ATM a is located on an edge e or not. Indeed, a fuzzy interpreta-
tion I models this rule if and only if min(2I(loc(a, e)), 1) ≤ I(loc(a, e)), i.e.
I(loc(a, e)) ≤ 0 or I(loc(a, e)) ≥ 1. By using negation-as-failure, rule r2 then
generates all possible configurations (cfr. Example 2). If an ATM a is located
on an edge e, then rules r3 and r4 determine how near to the start and the
end of e it is located. Indeed, in terms of distances we want to model the
following. Suppose e is the edge between ti and tj on which an ATM a is
located, then it should hold that

d(ti, a) + d(a, tj) = d(ti, tj).

Hence in terms of nearness we want

1− n(ti, a) + 1− n(a, tj) = 1− n(ti, tj)

or
n(ti, a) + n(a, tj)− 1 = n(ti, tj).

Thus for a fuzzy interpretation I we want

I(locnearend(a, e)) + I(locnearstart(a, e))− 1 = I(edge(e)).

This can be modelled by rules r3 and r4 since, assuming that loc(a, e) has
truth value 1, a fuzzy interpretation I models r3 if

I(locnearend(a, e)) ≥ min(I(edge(e)) + 1− I(locnearstart(a, e)), 1).

Analogously for rule r4 we obtain

I(locnearstart(a, e)) ≥ min(I(edge(e)) + 1− I(locnearend(a, e)), 1).

Hence for an answer set I we obtain by the minimality condition that

I(locnearend(a, e)) + I(locnearstart(a, e))− 1 = I(edge(e)).

19

Note that if min(I(edge(e)) + 1 − I(locnearstart(a, e)), 1) = 1, then by
rule r3 we would have I(locnearend(a, e)) = 1 and hence by rule r4 that
I(locnearstart(a, e)) = I(edge(e)) and we obtain the same result.

The following rules define the maximal nearness and hence the shortest
distance to an ATM for a town t ∈ Towns. In particular, r7 and r8 define
the shortest distance to an ATM if the town is not the start or end point of
an edge that contains an ATM.

r5 : ATMnear(t) ← start(t, e)⊗ locnearstart(a, e)⊗ loc(a, e)
r6 : ATMnear(t) ← end(t, e)⊗ locnearend(a, e)⊗ loc(a, e)
r7 : ATMnear(t) ← edge(e)⊗ ATMnear(t′)⊗ start(t, e)⊗ end(t′, e)
r8 : ATMnear(t) ← edge(e)⊗ ATMnear(t′)⊗ end(t, e)⊗ start(t′, e)

for each t, t′ ∈ Towns, e ∈ Edges and a ∈ {a1, . . . , ak}.
Finally constraints are needed to indicate the minimal nearness n′ = 1−d′

allowed in a valid configuration of ATMs.

r9 : 0← not ATMnear(t)⊗ n′

for each t ∈ Towns. Indeed, a fuzzy interpretation I models r9 if

I(ATMnear(t)) ≥ n′.

The explanations above show that each answer set has the properties the
solutions of the original search problem must have. On the other hand, we
also have that each solution, seen as a fuzzy interpretation I, corresponds to
an answer set. It has to be checked that I is a minimal fuzzy model of P I .
Rules rI1 and rI2 in P I are modelled by I since these rules generate all possible
placements of the ATMs on the roads and I corresponds to one particular
configuration of ATMs. Rules rI3 and rI4 are also modelled since these rules
compute the exact location on the edge of each ATM. An explanation similar
as above ensures that I is minimal such that these rules are modelled. Rules
rI5 − rI8 compute the shortest distance to an ATM for each town, hence these
rules must be modelled in a minimal way by I. Since I corresponds to a
configuration such that for each town the distance to the closest ATM is less
then d′ = 1− n′, rule rI9 is also modelled.

Consider as a concrete example the following setting. Suppose there are
two ATMs a1 and a2 and three towns t1, t2 and t3 such that n(t1, t2) = 0.8,
n(t1, t3) = 0.3 and n(t2, t3) = 0.1. Suppose we are interested in placing these

20

ATMs such that the minimal nearness n′ is equal to 0.3. One of the answer
sets is given in Figure 2. ATM a1 is placed in t3 and hence a1 is near t1 with
degree 0.3 and near t3 with degree 1. ATM a2 is placed on the road between
t2 and t3 with nearness degree 0.8 to t2 and nearness degree 0.3 to t3. Indeed
the answer set I corresponding to this setting is a minimal model of P I .

t2 t3=a1

t1

a2

Figure 2: Configuration of ATMs

Another possible solution (Figure 3) would be to place a1 in town t3 and
a2 on the road connecting towns t1 and t2, for instance such that a2 is near
t1 and near t2 with degree 0.9.

t2 t3=a1

t1

a2

Figure 3: Configuration of ATMs

Note that we can also impose different degrees of nearness for different
towns.

3.4. Fuzzy graph coloring problem

Using FASP, a continuous variant of the graph coloring problem can eas-
ily be defined. Recall that the classical graph coloring problem consists of
coloring the nodes of a graph using a finite number of colors such that two
nodes which are connected by an edge have a different color.

Now assume a weighted graph is given, specified by rules

edge(a, b)← c

with c ∈ [0, 1] ∩ Q and where edge(a, b) represents the weight of the edge
between nodes a and b. The problem consists of assigning grey values to
each node in the graph such that the difference between the grey values is

21

at least as large as the corresponding edge weight. Besides the above facts,
we also need a generating part: in each answer set we want to have that a
node is black to the degree that is not white (cfr. Example 2). Hence for
each node a we add the rules.

r1 : black(a) ← not white(a)
r2 : white(a) ← not black(a)

We also need a connective that denotes how similar the color of two nodes is.
An obvious choice would be↔. Moreover note that for a fuzzy interpretation
I we have [α↔ β]I = 1− |[α]I − [β]I |. By the definitions of the Lukasiewicz
connectives, we have that α↔ β = (∼ α⊕ β)⊗ (∼ β ⊕ α). By rules r1 and
r2 we have that for each answer set I it must hold that I(white(a)) = I(∼
black(a)) for each node a. Hence we can write the following rules for each
pair of nodes a and b

r3 : sim(a, b) ← (white(a)⊕ black(b))⊗ (white(b)⊕ black(a))

Finally, we need constraints to filter out the unwanted assignments:

r4 : 0← edge(a, b)⊗ sim(a, b)

for each pair of nodes a and b. Indeed, for a fuzzy interpretation I we have
that I models r4 iff I(edge(a, b)) + I(sim(a, b)) − 1 ≤ 0 iff I(edge(a, b)) ≤
1− I(sim(a, b)).

Consider as example the graph consisting of four nodes a, b, c and d with
edge weights as depicted in Figure 4. Edges with weight 0 have been omitted.
One possible colouring, as shown in the picture, is an answer set I such that

I(black(a)) = 0 I(black(b)) = 0.1 I(black(c)) = 0.5 I(black(d)) = 0.8
I(white(a)) = 1 I(white(b)) = 0.9 I(white(c)) = 0.5 I(white(d)) = 0.2

b c d

a

0.1
0.5

0.8

0.4 0.3

Figure 4: Fuzzy graph coloring

22

4. Complexity of FASP

In the remainder of the paper, we will study the complexity of the decision
problems discussed in the introduction for regular and strict FASP. Note that
these decision problems are generalizations of the ones for ASP for which
the complexity is given in Table 1. In what follows we will often use the
lemmas and remarks presented in this section. The proofs of all lemmas and
propositions can be found in the appendix.

Using the fact that I(a)+I(¬a) ≤ 1 iff [0← a⊗¬a]I = 1, we will show in
Lemma 1 that a regular FASP program can be rewritten as a regular FASP
program without strong negation.

Lemma 1. Let P be a regular FASP program. There exists a regular FASP
program P ′ without strong negation such that a fuzzy interpretation I ∈
F(LP) is an answer set of P iff there exists an answer set I ′ ∈ F(LP ′) of P ′

such that for each atom a ∈ BP we have I(a) = I ′(a) and I(¬a) = I ′(a′) for
some a′ ∈ BP ′.

Lemma 2. Let P be a regular FASP program such that P = P ′ ∪ C where
C is a set of constraints in P and I ∈ F(LP). It holds that I is an answer
set of P iff I is an answer set of P ′ and a fuzzy model of C.

Remark 2. Recall that a regular simple FASP program, i.e. a regular def-
inite FASP program with exactly one atom in the head of each rule and
no strong negation, has a unique answer set. Hence the complexity of the
set-membership problem and the set-entailment problem are equal and the
complexity of the existence problem is “constant” for regular simple FASP.
Moreover, note that by Lemmas 1 and 2, it follows that if the answer set of
a certain type of regular simple FASP programs can be determined in polyno-
mial time, then the complexity of the decision problems for the corresponding
types of regular definite FASP is polynomial as well. Indeed, each regular
definite FASP program P can be rewritten as P ′ ∪ C where P ′ is a regular
simple FASP program and C is a set of constraints such that I is a answer
set of P iff I is an answer set of P ′ and a fuzzy model of C. To check if P
has an answer set, we have to compute the answer set of P ′ and check if it
is a fuzzy model of C.

Without loss of generality, we may assume that in each rule of a gen-
eral FASP program, the body has exactly two arguments. Indeed, from the
lemmas below it follows that a program can be rewritten as a program with

23

only rules of the form α← f(a, b) with a and b (negation-as-failure) literals
and/or constants, f(a, b) equal to either a ⊗ b, a ⊕ b, max(a, b) or min(a, b)
and α an arbitrary head. The idea is to substitute expressions in the body
by adding new rules with fresh atoms in the head of these rules. This can
be done since an answer set is a minimal fuzzy model of the program (see
e.g. [35] for a proof) and the functions representing the connectives allowed
in the bodies of rules are increasing.

For a function g : C → D, we will denote by g|B the restriction of g to
the domain B ⊆ C, i.e. the function g|B : B → D : x 7→ g(x).

Lemma 3. Let P = P1 ∪ {r} be a regular FASP program where

r : β ← f(l1, . . . , ln)

with li (negation-as-failure) literals and/or constants, β an arbitrary head and
f(l1, . . . , ln) denotes either ⊗n

i=1li, ⊕n
i=1li, max(l1, . . . , ln) or min(l1, . . . , ln).

For a fuzzy interpretation I ∈ F(LP), it holds that I is an answer set of
P iff there exists a fuzzy interpretation I ′ ∈ F(LP ′) such that I ′|LP = I and
I ′ is an answer set of P ′ where P ′ = P1∪P2 and P2 is the program consisting
of the rules

b1 ← f(l1, l2)
b2 ← f(b1, l3)

...
bn−2 ← f(bn−3, ln−1)
β ← f(bn−2, ln)

with b1, . . . , bn−2 atoms which are not used in P .

Lemma 4. Let P = P1 ∪ {r} be a regular FASP program where

r : β ← f(α1, . . . , αn)

with αi formulas built from (negation-as-failure) literals and/or constants,
⊗, ⊕, max, min and β an arbitrary head and f(α1, . . . , αn) denotes either
⊗n

i=1αi, ⊕n
i=1αi, max(α1, . . . , αn) or min(α1, . . . , αn).

For a fuzzy interpretation I ∈ F(LP), it holds that I is an answer set of
P iff there exists a fuzzy interpretation I ′ ∈ F(LP ′) such that I ′|LP = I and
I ′ is an answer set of P ′ where P ′ = P1∪P2 and P2 is the program consisting

24

of the rules
a1 ← α1

a2 ← α2
...

an ← αn

β ← f(a1, . . . , an)

with a1, . . . , an atoms which are not used in P .

Combining Lemmas 3 and 4, one can prove the following proposition; a
FASP program can be rewritten as a set of rules with only two (negation-as-
failure) literals or constants in the body such that the answer sets remain
the same.

Proposition 1. Let P be a regular FASP program. P can be reduced (in time
polynomial in the size of the program) to a regular FASP program P ′ such
that LP ⊆ LP ′ and each rule in P ′ has at most two arguments in the body
and I is an answer set of P iff there exists a fuzzy interpretation I ′ ∈ F(LP ′)
such that I ′|LP = I and I ′ is an answer set of P ′.

5. Complexity of strict FASP

In this section we will study the complexity for strict disjunctive FASP,
i.e. regular FASP programs with rules of the form

a1 ⊕ . . .⊕ an ← b1 ⊗ . . .⊗ bm ⊗ not c1 ⊗ . . .⊗ not ck

with ai, bj, ck literals and/or constants c with c ∈ [0, 1] ∩Q.
We will first show that set-membership for strict disjunctive FASP is

NP-complete. We will do this by showing NP-membership in Proposition 2
and by showing in Proposition 3 that it is already NP-hard for a subclass
of strict disjunctive FASP; strict normal FASP. We will use these results
to derive complexity results for the remaining decision problems for strict
disjunctive FASP and strict normal FASP. We will then use these results
to show that set-membership remains NP-complete in strict normal (and
disjunctive) FASP even if constraints and strong negation are not allowed.

Proposition 2. Set-membership for strict disjunctive FASP is in NP.

25

Next, we show that the set-membership problem is also NP-hard by show-
ing a reduction from 3SAT, which is NP-complete [36], to (a subclass of) strict
disjunctive FASP. Recall that instances of the 3SAT problem are Boolean ex-
pressions written in conjunctive normal form with 3 variables in each clause:

(a11 ∨ a12 ∨ a13) ∧ (a21 ∨ a22 ∨ a23) ∧ . . . ∧ (an1 ∨ an2 ∨ an3),

where each aij is an atom or a negated atom, i.e. a literal. The problem
consists of deciding whether there exists a propositional interpretation that
makes the Boolean expression true.

Proposition 3. Set-membership for strict normal FASP is NP-hard.

The following corollary follows directly from Propositions 2 and 3.

Corollary 1. 1. Set-membership for strict normal FASP is NP-complete.

2. Set-membership for strict disjunctive FASP is NP-complete.

The proofs of Propositions 2 and 3 do not exploit the fact that we want
to find an answer set I such that I(l) ≥ λl for a particular λl. Hence these
proofs can also be used to show NP-completeness for the existence problem.

Proposition 4. 1. Existence for strict normal FASP is NP-complete.

2. Existence for strict disjunctive FASP is NP-complete.

Finally, by the proofs of Propositions 2 and 3 and the results in Proposi-
tion 4 we can show the following proposition.

Proposition 5. 1. Set-entailment for strict normal FASP is coNP-com-
plete.

2. Set-entailment for strict disjunctive FASP is coNP-complete.

We will now show that set-membership remains NP-complete for strict
normal and disjunctive FASP even if strong negation and constraints are
not allowed. This result is based on Proposition 6 which uses a lemma that
enables us to simulate constraints in a regular FASP program. Note that
this lemma is valid for more general FASP programs and not only for strict
disjunctive FASP programs.

26

Lemma 5. Consider a regular FASP program P = P1 ∪ C where P1 is a
regular FASP program and C is a set of constraints of the form 0← α. Let
P ′ = P1 ∪ C ′ ∪ {z ← not y} where z and y are fresh atoms and C ′ = {y ←
α | (0 ← α) ∈ C}. A fuzzy interpretation I ∈ F(LP) is an answer set of
P iff there exists an answer set I ′ ∈ F(LP ′) of P ′ such that I ′|LP = I and

I ′(z) ≥ 1.

Proposition 6. Set-membership for strict normal FASP is NP-hard even if
constraints and strong negation are not allowed.

Finally, we can derive the following corollaries:

Corollary 2. 1. Set-membership for strict normal FASP is NP-complete,
even if constraints and strong negation are not allowed.

2. Set-membership for strict disjunctive FASP is NP-complete, even if
constraints and strong negation are not allowed.

By using a result from [37]3 we can derive that a strict normal FASP pro-
gram without constraints and without strong negation always has an answer
set.

Proposition 7. A strict normal FASP program without constraints and with-
out strong negation always has an answer set.

Proposition 7 combined with results from [38] concerning stratified fuzzy
description logic programs implies that a strict normal FASP program for
which the dependency graph does not contain cycles (see Section 6.1.1 for
the exact definitions) has exactly one answer set.

As the following example shows, the result from Proposition 7 is not
valid for regular FASP programs in which disjunction is allowed in the body
of rules. For these types of FASP programs the existence of an answer set is
not guaranteed, even if constraints and strong negation are not allowed.

Example 3. Consider the following regular normal FASP program P .

p ← p⊕ p (1)
q ← q ⊕ q (2)
p ← not p⊗ q (3)
q ← c (4)

3We would like to thank the reviewer for making us aware of this result.

27

with c > 0.
Suppose P has an answer set I. By the same reasoning as in Section 3.3,

it follows that I(p), I(q) ∈ {0, 1}. If I(p) = 0, then P I is the regular simple
FASP program

p ← p⊕ p
q ← q ⊕ q
p ← q
q ← c

which has as minimal fuzzy model J(p) = J(q) = 1. Thus I 6= J is not an
answer set of P . If I(p) = 1, then P I is the regular simple FASP program

p ← p⊕ p
q ← q ⊕ q
p ← 0
q ← c

which has as minimal fuzzy model J(p) = 0, J(q) = 1. Thus I 6= J is not an
answer set of P .

For the class of strict disjunctive FASP where constraints and strong
negation are not allowed we can only show NP-membership for the exis-
tence problem (follows from the proof of Proposition 2). For set-entailment
we can only show coNP-membership for both strict normal and disjunctive
FASP where constraints and strong negation are not allowed (see the proof
of Proposition 5).

Finally, we will discuss the complexity for strict definite FASP. We will
show that the decision problems are in P. To do this, by Remark 2 it is
sufficient to prove that the unique answer set of a strict simple FASP program
can be determined in polynomial time. In particular, we will show that for
such programs, the unique answer set can be found in polynomial time using
linear programming, which is known to be in P. Moreover, the complexity
remains the same if maximum is allowed in the body of rules. Indeed, rules of
the form a← b⊗c are modelled by a fuzzy interpretation I iff I(b)+I(c)−1 ≤
I(a). Rules of the form d← max(e, f) are modelled by a fuzzy interpretation
I iff I(e) ≤ I(d) and I(e) ≤ I(f). Hence such a program can be efficiently
translated to a linear program.

Example 4. Consider the following program P .

a ← b⊗ 1
2

b ← max(c, 1
3
)

28

The corresponding linear program contains the following constraints.

a′ ≥ b′ − 1
2

b′ ≥ c′

b′ ≥ 1
3

1 ≥ a′, b′, c′

a′, b′, c′ ≥ 0

and the function to be minimized is f(a′, b′, c′) = a′ + b′ + c′. The solution
a′ = 0, b′ = 1

3
, c′ = 0 given by the linear program then corresponds to the

answer set I of P : I(a) = a′, I(b) = b′ and I(c) = c′.

Proposition 8. The unique answer set of a regular simple FASP program
with only conjunction and maximum in the body of the rules can be found in
polynomial time.

Corollary 3. The complexity of the decision problems for strict simple and
strict definite FASP is polynomial.

6. Complexity of regular FASP

In this section, we will investigate the complexity of the decision prob-
lems for regular FASP. From the complexity results for fuzzy equilibrium
logic, which is a proper generalization of regular FASP [23], we can derive
that existence and set-membership for regular FASP are in ΣP

2 and that set-
entailment is in ΠP

2 . By reducing the decision problems for disjunctive ASP to
regular FASP (see Proposition 9), one can also derive resp. ΣP

2 -hardness and
ΠP

2 -hardness. Hence for regular FASP without any restrictions, we obtain
ΣP

2 -completeness for existence and set-membership and ΠP
2 -completeness for

set-entailment (see Proposition 10).

Proposition 9. Let P be a disjunctive ASP program and let I ∈ P(LP).
Define the regular FASP program P ′ as follows:

P ′ = {a1 ⊕ . . .⊕ an ← b1 ⊗ . . .⊗ bm ⊗ not c1 ⊗ . . .⊗ not ck |

(a1 ∨ . . . ∨ an ← b1 ∧ . . . ∧ bm ∧ not c1 ∧ . . . ∧ not ck) ∈ P}

∪{a← a⊕ a | a ∈ LP}.

Then I is an answer set of P iff I is an answer set of P ′.

29

We will use Proposition 9 to disjunctive ASP to regular FASP and normal
ASP to regular normal FASP.

Proposition 10. 1. Set-membership and existence for regular FASP are
ΣP

2 -complete. Set-entailment is ΠP
2 -complete.

2. Set-membership and existence for regular normal FASP are NP-hard
and in ΣP

2 . Set-entailment is coNP-hard and in ΠP
2 .

In Section 6.1, we will discuss the complexity for regular simple and defi-
nite FASP programs. We show that characterizing the complexity for regular
simple FASP programs is equivalent to an open problem about integer equa-
tions [39]. However, we can provide a pseudo-polynomial algorithm and show
P-membership for several subclasses of regular definite FASP. We will then
use these results in Section 6.2 to characterize the computational complexity
for regular normal FASP in a more fine grained manner than in Proposition
10.

6.1. Complexity of regular definite FASP programs

In this section we will discuss the complexity results for programs con-
sisting of rules of the form

a← f(b1, . . . bm)

with a, b1, . . . bm literals and/or constants c with c ∈ [0, 1] ∩Q and f a com-
position of ⊗, ⊕, min and max. By Proposition 1, we can restrict ourselves
to programs in which each rule has at most two arguments in the body.

Satisfiability checking in Lukasiewicz logic can be polynomially reduced
to checking the feasibility of a mixed integer program [7]. As will be shown
in Proposition 11, the NP-completeness of the latter decision problem [7] and
the fact that each rule in a regular definite FASP program can be seen as a
formula in Lukasiewicz logic, it follows that the decision problems for regular
simple and thus also regular definite FASP programs are all in NP. Moreover,
since the answer set of a regular simple FASP program is unique, we can also
prove coNP-membership for regular definite FASP programs:

Proposition 11. Set-membership, existence and set-entailment for regular
definite FASP is in NP ∩ coNP.

In general, to find the unique minimal fuzzy model of a regular simple
FASP program P , one could use the immediate consequence operator ΠP (see

30

Section 2.3). The minimal fuzzy model of P then equals the least fixpoint of
ΠP . This least fixpoint can be found by repeatedly applying the immediate
consequence operator starting from the fuzzy interpretation I0 : BP → [0, 1] :
a 7→ 0. Unfortunately, the number of iterations that is needed to arrive at the
least fixpoint can be exponential in the number of bits needed to represent
the rules. Consider for example the program consisting of the following rule,
where n is equal to the “size” of the problem.

a← a⊕
(

1

2n

)
In that case 2n iterations of the immediate consequence operator are needed
to conclude that a should have truth value 1. Indeed, one starts with the
fuzzy interpretation I0 : LP → [0, 1] such that I0(a) = 0. The next applica-
tions give us I1(a) = 1

2n
, I2(a) = 2

2n
, I3(a) = 3

2n
, . . . , I2n(a) = 2n

2n
= 1. Hence

2n iterations are needed. However, the number of iterations of the immediate
consequence operator is polynomial in the size of the largest integer occur-
ring in the program. As the following proposition shows, this will always be
the case, i.e. we can find the unique answer set of any regular simple FASP
program in pseudo-polynomial time.

Proposition 12. The unique answer set of a regular simple FASP program
can be found in pseudo-polynomial time.

Proposition 13. The complexity of the decision problems for regular simple
and regular definite FASP is polynomial if all constants are polynomially
bounded, i.e. all constants c in the program are such that c ∈ {0, 1

k
, . . . , k

k
}

with k polynomial in the size of the program.

For the above program with rule

a← a⊕
(

1

2n

)
we could improve the immediate consequence operator by assigning to a im-
mediately truth value 1. It remains unclear, however, whether a general
method could be found that always finds the answer set in polynomial time.
The connection of this question to a well-known open problem on the feasi-
bility of systems of integer equations suggests that there is not likely to be
a straightforward solution. More precisely, the unique minimal fuzzy model

31

I of a regular simple FASP program P can be found by computing the least
solution of a system of equations over the integers in which each equation
is of the form xi = αi with the variables xi on the left hand side pairwise
distinct, i.e. xi can only occur once as the left hand side of an equation, and
the expressions αi built from variables, integers, addition, multiplication with
positive constants, maximum and minimum. The translation from P to such
a system is done as follows. First, create a set P̂ of Lukasiewicz formulas:

P̂ = {rb → rh | (rh ← rb) ∈ P} ∪ {max(a, 0)→ a | a ∈ BP},

where we add tautologies of the form max(a, 0) → a to ensure that each a
obtains a positive value after translating to a system of equations over the
integers. Next, create a new set P̂1 of Lukasiewicz formulas by replacing
for each atom a in P̂ the set of formulas with the same “head” a, α1 →
a, . . . αn → a by the formula max(α1, . . . , αn)→ a. Finally, define the set P̂2

of Lukasiewicz formulas:

P̂2 = {α↔ β | (α→ β) ∈ P̂1}.

We can now transform the set P̂2 to a set S of equations over the integers.
First, define Ŝ:

Ŝ = {α = β | (α↔ β) ∈ P̂2}
This is justified by the fact that [α↔ β]I = 1 iff [α]I = [β]I . Each constant

in some equation in Ŝ can be assumed to be of the form
(
i
k

)
for a fixed k.

Each such constant
(
i
k

)
is then replaced by i, a⊗ b becomes max(a+ b−k, 0)

and a ⊕ b becomes min(a + b, k). This gives us the set S of equations over
the integers.

There is a positive integer solution J(a), J(b), J(c) for a = max(b+c−k, 0)

iff the fuzzy interpretation I defined by I(a) = J(a)
k
, I(b) = J(b)

k
, I(c) = J(c)

k

is a fuzzy model of a↔ (b⊗ c):

[a↔ (b⊗ c)]I = 1⇔ J(a)

k
=
J(b)

k
⊗ J(c)

k

⇔ J(a)

k
= max

(
J(b)

k
+
J(c)

k
− 1, 0

)
⇔ J(a)

k
= max

(
J(b)

k
+
J(c)

k
− k

k
, 0

)
⇔ J(a) = max(J(b) + J(c)− k, 0)

32

Similarly, one obtains that there is a positive integer solution J(a), J(b), J(c)

for a = min(b+c, k) iff I(a) = J(a)
k
, I(b) = J(b)

k
, I(c) = J(c)

k
models a↔ (b⊕c).

The unique least solution of S then corresponds to the unique minimal model
of P in this sense. In [39], an algorithm is presented for computing least
solutions of such systems of integer equations. Although in practice it turns
out that the algorithm is very efficient, it is still an open problem (e.g. [40])
whether it has polynomial time complexity.

Example 5. As an illustration, consider the regular simple FASP program
consisting of the rules

a ← b⊕ 1
4

b ← min(a, 1
3
)

a ← 1
2

The corresponding set P̂2 is

a ↔ max(b⊕ 1
4
, 1

2
, 0)

b ↔ max(min(a, 1
3
), 0)

We then have that I is the minimal fuzzy model of P iff I is the minimal
fuzzy model of P̂2 iff I ′ is the least solution of

a = max(min(b+ 3, 12), 6, 0)
b = max(min(a, 4), 0)

with I(a) = I′(a)
12

and I(b) = I′(b)
12

.

However, as we will show in the following subsections, for several sub-
classes of regular simple (and definite) FASP programs, we can show P-
membership, even if the constants in the program are not polynomially
bounded. A summary of the complexity results for regular simple FASP
can be found in Table 3 in Section 1.

6.1.1. Directed graphs and cycles

For a regular simple FASP program P we define the dependency graph
G(P) as follows. The vertices are the atoms occurring in the program and
there is a directed edge from a to b if a occurs in the body of a rule with
head b.

33

Example 6. Program P
a ← b
a ← 0.2
c ← a⊗ b
c ← 0.1
b ← 0.6

has the following dependency graph G(P).

a b

c

A path in a directed graph is a sequence of vertices such that from each
vertex there is an edge to the next vertex in the sequence. A cycle is a
path that begins and ends at the same vertex. If there are no cycles in
the dependency graph of a regular simple FASP program, the immediate
consequence operator will only need a polynomial number of steps to compute
the least fixpoint:

Proposition 14. Consider a regular simple FASP program P such that the
dependency graph G(P) has no cycles and the longest path in G(P) has length
m. Then, the immediate consequence operator will only need m iterations to
compute the answer set of P .

Example 7. Reconsider the following FASP program P from Example 6 with
a cycle free dependency graph and longest path of length 3.

a ← b
a ← 0.2
c ← a⊗ b
c ← 0.1
b ← 0.6

We apply the immediate consequence operator ΠP to find the unique answer
set. We start from the fuzzy interpretation I0 : BP → [0, 1] : l 7→ 0. After
one application of ΠP , we obtain the fuzzy interpretation I1 = ΠP (I0) which
is such that I1(a) = 0.2, I1(b) = 0.6 and I1(c) = 0.1. After one more

34

application, we have I2 = ΠP (I1) which is such that I2(a) = 0.6, I2(b) = 0.6
and I2(c) = 0.1. After the 3th application, the least fixpoint I3 = ΠP (I2) of
ΠP has been found: I3(a) = 0.6, I3(b) = 0.6 and I3(c) = 0.2.

6.1.2. Only disjunction in the body

For regular simple FASP programs with only disjunctions in the bodies
of rules, we can always find the answer set in a polynomial number of steps,
even if the dependency graph contains cycles and the constants are not poly-
nomially bounded. In particular, if there is a cycle in the dependency graph
of such a program such that there is a rule c← a⊕ b with a and c elements
of the cycle and where b must have a truth value that is strictly positive, it
follows that the truth values of all atoms in that cycle will saturate to 1.

Proposition 15. Consider a regular simple FASP program P and its unique
answer set I. Suppose P contains the following set of rules

a2 ← a1 ⊕ b1

a3 ← a2 ⊕ b2
...

a1 ← an ⊕ bn

and we have I(bj) > 0 for at least one j ∈ {1, . . . , n}. Then for each i ∈
{1, . . . , n} we have I(ai) = 1.

Remark 3. If we have that I(bi) = 0 for each i ∈ {1, . . . , n}, then we still
have I(a1) = . . . = I(an) = c for some c ∈ [0, 1]. Moreover, if there are no
other rules in P that have an atom ai in the head of a rule, then c = 0.

We can define an equivalence relation on the set of vertices of an arbitrary
directed graph G as follows. Two vertices u and v are equivalent if there
is a cycle in G containing both u and v. The corresponding equivalence
classes Vi lead to subgraphs Gi which are defined as the restrictions of G to
the vertices in Vi and the edges between the vertices in Vi. Each of these
subgraphs Gi is strongly connected, i.e. for each two vertices u and v in
Gi, there is a path from u to v. Moreover, no Gi is a proper subgraph of
another strongly connected subgraph of G. The graphs Gi are called the
strongly connected components of G and can be seen as generalizations of
cycles. Using Proposition 15 we can prove the following proposition.

35

Proposition 16. Consider a regular simple FASP program with only dis-
junctions in the bodies of rules and its unique answer set I. Suppose one of
the rules in the program is of the form a ← b ⊕ d such that I(b) > 0 and a
and d are atoms in the same strongly connected component S in G(P). Then
for all s ∈ S we have I(s) = 1.

Remark 4. Similar as in Remark 3, we obtain that all the atoms in some
strongly connected component must have the same truth value in the answer
set.

Given a regular simple FASP program P with only disjunctions in the
bodies of rules, we can find the answer set in polynomial time as follows.
Using the algorithm of Tarjan [41] the strongly connected components in
G(P) can be identified in polynomial time. Next, for each strongly connected
component S a fresh atom aS is introduced and each atom from S is replaced
by aS. By doing this substitutions it is possible that duplicate rules arise. A
program P ′ is obtained by removing all rules that are already in the program,
i.e. such that each rule occurs only once. Finally a program P ′′ is defined
as follows. In this definition we will use formulas of the form (a > 0) for
which the semantics is defined as I(a > 0) = 1 if I(a) > 0 and I(a > 0) = 0
otherwise.

• Rules of the form a← b⊕ c in P ′ where a, b and c are different atoms
or constants remain unchanged.

• A rule of the form a ← a ⊕ b in P ′ where b 6= a with b an atom or a
constant is replaced by a← (b > 0).

• A rule of the form a← a⊕ a in P ′ is replaced by a← (a′ > 0) with a
fresh atom a′. In all other rules every occurrence of a is replaced by a′.

The new program P ′′ is then a cycle free program. Since the semantics for
formulas (a > 0) is characterized by an increasing function, the immediate
consequence operator can be used to compute the minimal model I ′′ of P ′′

(see [35]) which coincides with the answer set I of P in the sense that for each
a ∈ S we have I(a) = I ′′(aS) . Since the proof of Proposition 14 does not rely
on the fact that the FASP programs adhere to the Lukasiewicz semantics,
we can use a very similar proof to show that the answer set of programs
containing formulas of the form (a > 0) in the body of rules will be found in
polynomial time.

36

Corollary 4. The unique answer set of a regular simple FASP program with
only disjunction in the body of the rules can be found in polynomial time.

Example 8. Consider the following program P

a ← b

a ← a⊕ 1
2n

b ← a⊕ c
c ← b

with n a integer larger than the size of the program.
The program P has exactly one strongly connected component S = {a, b, c}.

The corresponding program P ′ is

aS ← aS
aS ← aS ⊕ 1

2n

aS ← aS ⊕ aS

From P ′ we obtain the corresponding cycle free program P ′′

a′S ← (0 > 0)

a′S ← (1
2n
> 0)

aS ← (a′S > 0)

To obtain the answer set of P , we then apply the immediate consequence
operator to the program P ′′. We start from a fuzzy interpretation I0 : BP ′′ →
[0, 1] : a′ 7→ 0. After one application of ΠP ′′ we obtain I1 = ΠP ′′(I0) which
is defined as follows: I1(a′S) = 1 and I1(aS) = 0. After one more application
we obtain the least fixpoint I2 = ΠP ′′(I1) where I2(a′S) = I2(aS) = 1. This
fixpoint then coincides with the unique answer set I of P : I(a) = I(b) =
I(c) = I2(aS) = 1.

Example 9. Consider the following program P

a ← b⊕ c
b ← a
d ← c
c ← 0.3
c ← d⊕ e
a ← c⊕ e

37

The program P has three strongly connected components S1 = {a, b}, S2 =
{c, d} and S3 = {e}.Hence the corresponding program P ′ is

aS1 ← aS1 ⊕ aS2

aS1 ← aS1

aS2 ← aS2

aS2 ← 0.3
aS2 ← aS2 ⊕ aS3

aS1 ← aS2 ⊕ aS3

From P ′ we obtain the corresponding cycle free program P ′′

aS1 ← (aS2 > 0)
aS1 ← (0 > 0)
aS2 ← (0 > 0)
aS2 ← 0.3
aS2 ← (aS3 > 0)
aS1 ← aS2 ⊕ aS3

To obtain the answer set of P , we apple the immediate consequence operator
to program P ′′. We start from a fuzzy interpretation I0 : BP ′′ → [0, 1] : a′ 7→
0. After one iteration of ΠP ′′ we obtain I1 = ΠP ′′(I0) which is defined as
follows: I1(aS1) = I1(aS3) = 0 and I1(aS2) = 0.3. After one more iteration
we obtain the least fixpoint I2 = ΠP ′′(I1) where I2(aS1) = 1, I2(aS2) = 0.3
and I2(aS3) = 0. This fixpoint then coincides with the unique answer set
I of P : I(a) = I(b) = I2(aS1) = 1, I(c) = I(d) = I2(aS2) = 0.3 and
I(e) = I2(aS3) = 0.

6.2. Complexity of regular normal FASP programs

For normal programs in classical ASP, NP-membership follows straight-
forwardly from the fact that we can guess an answer set and verify that the
guess is stable in polynomial time. In contrast, due to the infinite number of
possible truth values, in FASP not every answer set can be guessed in poly-
nomial time. To address this issue, by analyzing the geometrical structure
of fuzzy equilibrium models, [23] shows that whenever there is an answer
set I such that I(l) ≥ λ for a literal l, there always is an answer set J
such that J(l) ≥ λ and such that for each literal l, J(l) can be encoded
using a polynomial number of bits. This means that we can verify whether
I(l) ≥ λ for a regular normal FASP program by guessing an answer set in

38

polynomial time and verifying that the guess is stable. As a result, several
of the P-membership results for regular definite programs directly translate
to NP-membership results for regular normal programs. The only exception
is the class of regular normal FASP programs with polynomially bounded
constants. Indeed, to check whether I is an answer set of such a program P
it has to be verified that I is an answer set of P I but P I does not necessar-
ily belong to the class of regular normal FASP programs with polynomially
bounded constants. We also obtain the same results for the existence prob-
lem since it is the special case of the membership problem with λ = 0. For
set-entailment we obtain coNP-membership if set-membership is in NP. In-
deed, the complement of the set-entailment problem is “Given a program P ,
a literal l and a value λl, does there exist an answer set I of P such that
I(l) < λl?” By similar results from [23], we know that if such an answer
set exists, that there is always one that can be encoded using a polynomial
number of bits.

Proposition 17. 1. The set-membership and the existence problem for
the class of regular normal FASP programs with only disjunction in the
bodies of rules is in NP. Set-entailment is in coNP.

2. The set-membership and the existence problem for the class of regular
normal FASP programs with cycle free dependency graphs is in NP.
Set-entailment is in coNP.

Moreover, as shown in Proposition 9, we can reduce the decision problems
for normal ASP to regular normal FASP .

Corollary 5. Existence and set-membership for regular normal FASP with
polynomially bounded constants is NP-hard. Set-entailment is coNP-hard.

7. Reduction to bilevel linear programming

In this section, we will show that we can translate strict disjunctive FASP
programs into bilevel linear programs such that there is a one-to-one corre-
spondence between particular solutions of the bilevel linear program and the
answer sets of the FASP program. This implementation into bilevel linear
programming can then be used as a basis to build solvers for FASP.

Bilevel linear programming problems are optimization problems in which
the set of all variables is divided into two disjoint sets X = {x1, . . . , xn} and
Y = {y1, . . . , ym}. An assignment to the variables will be denoted by a vector

39

x = (x1, . . . , xn) for X and by a vector y = (y1, . . . , ym) for Y . Intuitively,
there are two agents, a leader who is responsible for the variables in X and a
follower responsible for the variables in Y . Each vector y has to be chosen by
the follower in function of the choice by the leader x as an optimal solution
of the so-called lower level problem or the follower’s problem. Knowing that
the follower will react in that way, the leader wants to optimize his objective
function in the so-called upper level problem or the leader’s problem.

In a bilevel linear program all objective functions and constraints are
linear. In particular, the type of bilevel linear programming problem in
which we are interested is given by Bard [42]:

x∗ = arg minx c1x + d1y
∗

s.t. A1x +B1y
∗ ≤ b1

y∗ = arg miny c2x + d2y
s.t. A2x +B2y ≤ b2

where c1, c2 ∈ Rn, d1, d2 ∈ Rm, b1 ∈ Rp, b2 ∈ Rq, A1 ∈ Rp×n, B1 ∈ Rp×m,
A2 ∈ Rq×n and B2 ∈ Rq×m.

Now consider a strict disjunctive FASP program P . Without loss of
generality we may assume that this program contains no strong negation.
We will translate P to a bilevel linear program Q such that the solutions of
Q correspond to the answer sets of P . By definition, I is an answer set of P
iff I is an answer set of P I . Informally, a guess I needs to be made first and
then it has to be checked whether this guess corresponds to an answer set of
P . If BP = {a1, . . . , an}, then we will define the vector ã = (ã1, . . . , ãn) and
the vector ã′ = (ã′1, . . . , ã

′
n) where the vector ã represents the truth values of

the atoms in {a1, . . . , an} and the vector ã′ intuitively represents the truth
values of the guesses for the atoms. For each such guess I, represented by
ã′, we want to check if it is a minimal fuzzy model of P I . Note that P I is a
positive FASP program in which each rule is of the form

r : l1 ⊕ . . .⊕ ln ← x1 ⊗ . . .⊗ xm, (1)

with li, xj atoms and/or constants. As in the proof of Proposition 2, a fuzzy
interpretation J ∈ F(LP) is a model of r iff

J(l1) + . . .+ J(ln) ≥ J(x1) + . . .+ J(xm)− (m− 1).

Thus for each rule r ∈ P I we have a constraint x1 + . . . + xm − m + 1 ≤
l1 + . . .+ ln.

40

Hence, for each guess ã′, i.e. an interpretation I, we check if there is a
minimal model J of P I such that J(ai) ≤ I(ai) by minimizing all elements in
the vector ã subject to the constraints arising from P I . This is the follower’s
problem. Finally, the guess is chosen such that the differences between J(ai)
and I(ai) are as small as possible. This can be done by minimizing the
function

∑n
i=1(ã′i − ãi). If this sum is equal to 0, we have found an answer

set. If this sum is not equal to 0, there cannot be an answer set.
More structured, we have the following proposition.

Proposition 18. Given a strict disjunctive FASP program P not containing
strong negation such that BP = {a1, . . . , an}. Define the following bilevel
linear program QP .

ã′∗ = arg minã′
∑n

i=1(ã′i − ã∗i)
s.t. 0 ≤ ã′i ≤ 1

ã∗ = arg minã

∑n
i=1 ãi

s.t. ãi ≤ ã′i, 0 ≤ ãi ≤ 1 and
(
∑m

j=1 xj)−m+ 1 ≤
∑n

i=1 li for each rule (1)

in the reduct of P w.r.t. ã′

Then

1. If QP has a solution ã∗ = (ã1, . . . , ãn), ã′∗ = (ã′1, . . . , ã
′
n) such that

the objective function of the upper level problem is evaluated to 0, then
I : BP → [0, 1] : ai 7→ ãi is an answer set of P .

2. If I is an answer set of P , then ã∗ = (ã1, . . . , ãn), ã′∗ = (ã1, . . . , ãn)
where I(ai) = ãi for each i ∈ {1, . . . , n} is a solution of QP such that
the upper level problem is evaluated to 0.

Example 10. Reconsider the strict normal FASP program P from Example
2. The corresponding bilevel linear program is

arg minã′,b̃′ [(ã
′ − ã) + (b̃′ − b̃)]

s.t. 0 ≤ ã′, b̃′ ≤ 1

arg minã,b̃[ã+ b̃]

s.t. 0 ≤ ã, b̃ ≤ 1, ã ≤ ã′, b̃ ≤ b̃′

1− ã′ ≤ b̃, 1− b̃′ ≤ ã

The only assignments to the variables such that the objective function of
the leader is equal to 0 are the ones with ã′ = ã, b̃′ = b̃ and ã′ = 1− b̃′.

41

Remark 5. A similar construction can be used if ASP is combined with
other fuzzy logics, e.g. product logic, but the resulting bilevel program will not
necessarily be linear.

8. Conclusions

In this paper, we presented an overview about the computational com-
plexity of FASP under Lukasiewicz semantics. In particular, when restricting
to disjunctions in the head of rules and conjunctions in the bodies of rules,
i.e. strict disjunctive FASP programs, NP-completeness was shown, which
stands in contrast with the fact that disjunctive ASP is ΣP

2 -complete. This
result even holds when restricting to strict disjunctive FASP without strong
negation and with exactly one literal in the head of each rule. Hence, allowing
disjunctions in the head has no influence on the computational complexity
when the only connective in the body is conjunction. Given that we have
not been able to show NP-membership for regular normal FASP programs
in which both conjunction and disjunction are allowed in the bodies of rules,
it is tempting to speculate that, unlike in the classical case, allowing dis-
junction in the body affects the computational complexity, whereas allowing
it in the head does not. For regular simple FASP programs, we showed a
correspondence to an open problem which indicates that setting the com-
plexity may not be easy. However, we showed membership in P for several
interesting subclasses. Finally, we have proposed an implementation of strict
disjunctive FASP using bilevel linear programming which opens the door to
practical applications.

Some open problems remain:

• Does there exist a polynomial time algorithm to compute the answer
set of a regular simple FASP program?

• Is existence NP-hard for strict disjunctive FASP if constraints and
strong negation are not allowed?

• Is regular normal FASP in NP?

Appendix A. Proofs

Proof of Lemma 1

Lemma. Let P be a regular FASP program. There exists a regular FASP pro-
gram P ′ without strong negation such that a fuzzy interpretation I ∈ F(LP)

42

is an answer set of P iff there exists an answer set I ′ ∈ F(LP ′) of P ′ such
that for each atom a ∈ BP we have I(a) = I ′(a) and I(¬a) = I ′(a′) for some
a′ ∈ BP ′.

Proof. For each atom a in P , introduce a fresh atom a′. The program P ′ is
then obtained by replacing all negated atoms ¬a in P by their corresponding
atom a′ and for each couple of atoms a, a′ adding the constraint 0← a⊗ a′.
The program P ′ then has the required properties since [0 ← a⊗ a′]I = 1 iff
I(a) + I(a′) ≤ 1 for each couple of atoms a, a′.

Proof of Lemma 2

Lemma. Let P be a regular FASP program such that P = P ′ ∪ C where C
is a set of constraints in P and I ∈ F(LP). It holds that I is an answer set
of P iff I is an answer set of P ′ and a fuzzy model of C.

Proof. (⇒) Suppose I is an answer set of P . By assumption, I is a fuzzy
model of C. It remains to be shown that I is an answer set of P ′. I
is a fuzzy model of (P ′)I since it is a fuzzy model of P I . Now suppose
there exists a fuzzy model J of (P ′)I such that J ≤ I. We show that
J = I, from which it then follows that I is a minimal fuzzy model of
(P ′)I and hence an answer set of P ′. Note that J (with J(a) = 0 for
a /∈ LP ′) is a fuzzy model of P I . Indeed, let r be an arbitrary rule in
P I = (P ′ ∪C)I . If rI ∈ (P ′)I , then it is modelled by J by assumption.
If rI : c← αI ∈ CI , then [αI]J ≤ [αI]I ≤ c, hence J |= rI . Thus J ≤ I
is a fuzzy model of P I . Together with the fact that I is a minimal fuzzy
model of P I , this implies that J = I.

(⇐) Suppose that I is an answer set of P ′ and a fuzzy model of C. Then I
is a fuzzy model of P I = (P ′ ∪ C)I as well. Now suppose there exists
a fuzzy model J of P I such that J ≤ I, then it follows that J is a
model of (P ′)I ⊆ P I . Hence, since I is an answer set of P ′ and thus by
definition a minimal fuzzy model of (P ′)I , it follows that J = I

Proof of Lemma 3

Lemma. Let P = P1 ∪ {r} be a regular FASP program where

r : β ← f(l1, . . . , ln)

43

with li (negation-as-failure) literals and/or constants, β an arbitrary head and
f(l1, . . . , ln) denotes either ⊗n

i=1li, ⊕n
i=1li, max(l1, . . . , ln) or min(l1, . . . , ln).

For a fuzzy interpretation I ∈ F(LP), it holds that I is an answer set of
P iff there exists a fuzzy interpretation I ′ ∈ F(LP ′) such that I ′|LP = I and
I ′ is an answer set of P ′ where P ′ = P1∪P2 and P2 is the program consisting
of the rules

b1 ← f(l1, l2)
b2 ← f(b1, l3)

...
bn−2 ← f(bn−3, ln−1)
β ← f(bn−2, ln)

with b1, . . . , bn−2 atoms which are not used in P .

Proof. (⇒) Suppose I is an answer set of P . We expand I to a fuzzy
interpretation I ′ on LP ′ as follows. Define I ′(b1) = [f(l1, l2)]I′ and
I ′(bi) = [f(bi−1, li+1)]I′ for i 6= 1. It is easy to see that I ′ is a fuzzy
model of (P ′)I

′
. Next, we show that I ′ is a minimal fuzzy model of

(P ′)I
′
. Suppose that J ′ ≤ I ′ is a fuzzy model of (P ′)I

′
. One can show

that J = J ′|LP is a fuzzy model of P I , hence it follows that J = I. We
prove by induction on i = 1, . . . , n− 2 that J ′ = I ′:

I ′(b1) = [f(l1, l2)]I′ (definition I ′)

= [f(lI
′

1 , l
I′

2)]I′ (definition reduct)

= [f(lI
′

1 , l
I′

2)]J ′ (J ′|LP = J = I = I ′|LP)

≤ J ′(b1) (J ′ fuzzy model of (P ′)I
′
)

≤ I ′(b1) (J ′ ≤ I ′)

Suppose I ′(bi−1) = J ′(bi−1).

I ′(bi) = [f(bi−1, li+1)]I′ (definition I ′)

= [f(bi−1, l
I′

i+1)]I′ (definition reduct)

= [f(bi−1, l
I′

i+1)]J ′ (induction and J ′|LP = I ′|LP)

≤ J ′(bi) (J ′ fuzzy model of (P ′)I
′
)

≤ I ′(bi) (J ′ ≤ I ′)

44

(⇐) Suppose there is a fuzzy interpretation I ′ ∈ LP ′ such that I ′ is an
answer set of P ′ and I ′|LP = I. We show that I is an answer set of P .

First note that since I ′ is a minimal fuzzy model of (P ′)I
′
, it must

hold that I ′(b1) = [f(l1, l2)]I′ and I ′(bi) = [f(bi−1, li+1)]I′ for i 6= 1. A
straightforward proof then shows that I is a fuzzy model of P I . Now
suppose that there exists a fuzzy model J ≤ I of P I . We show that
there exists J ′ ∈ LP ′ which is a fuzzy model of (P ′)I

′
such that J ′ ≤ I ′

and J ′|LP = J . Since I ′ is a minimal fuzzy model of (P ′)I
′
, it then follows

that J ′ = I ′ and hence J = I. Define J ′ as follows: for l ∈ LP define
J ′(l) = J(l) and J ′(b1) = [f(lI

′
1 , l

I′
2)]J ′ and J ′(bi) = [f(bi−1, l

I′
i+1)]J ′ for

i 6= 1. We prove by induction on i = 1, . . . , n− 2 that J ′ ≤ I ′:

J ′(b1) = [f(lI
′

1 , l
I′

2)]J ′ (definition J ′)

= [f(lI1, l
I
2)]J (I = I ′|LP , J = J ′|LP)

≤ [f(lI1, l
I
2)]I (J ≤ I)

= [f(lI
′

1 , l
I′

2)]I′ (I = I ′|LP)

= I ′(b1)

If J ′(bi−1) ≤ I ′(bi−1), then

J ′(bi) = [f(bi−1, l
I′

i+1)]J ′ (definition J ′)

= f(J ′(bi−1), J ′(lI
′

i+1))

= f(J ′(bi−1), I ′(lI
′

i+1)) (I ′|LP = J ′|LP)

≤ f(I ′(bi−1), I ′(lI
′

i+1)) (induction and f increasing)

= I ′(bi)

It is easy to show that J ′ is a fuzzy model of (P ′)I
′
.

Proof of Lemma 4

Lemma. Let P = P1 ∪ {r} be a regular FASP program where

r : β ← f(α1, . . . , αn)

45

with αi formulas built from (negation-as-failure) literals and/or constants,
⊗, ⊕, max, min and β an arbitrary head and f(α1, . . . , αn) denotes either
⊗n

i=1αi, ⊕n
i=1αi, max(α1, . . . , αn) or min(α1, . . . , αn).

For a fuzzy interpretation I ∈ F(LP), it holds that I is an answer set of
P iff there exists a fuzzy interpretation I ′ ∈ F(LP ′) such that I ′|LP = I and
I ′ is an answer set of P ′ where P ′ = P1∪P2 and P2 is the program consisting
of the rules

a1 ← α1

a2 ← α2
...

an ← αn

β ← f(a1, . . . , an)

with a1, . . . , an atoms which are not used in P .

Proof. (⇒) Suppose that I is an answer set of P . We expand I to a fuzzy
interpretation I ′ ∈ F(LP ′) as follows: I ′(ai) = I ′(αi) = I(αi) for
i ∈ {1, . . . , n}. It is easy to show that I ′ is a fuzzy model of (P ′)I

′
.

Next, we show that I ′ is a minimal fuzzy model of (P ′)I
′
. Suppose there

exists a fuzzy model J ′ ≤ I ′ of (P ′)I
′
. We show that J ′ = I ′. First

remark that J = J ′|LP is a fuzzy model of P I . Since I is a minimal

fuzzy model of P I , it follows that J ′|LP = J = I = I ′|LP . It remains to

be shown that J ′(ai) = I ′(ai) for i ∈ {1, . . . , n}. But this follows easily:

J ′(ai) ≤ I ′(ai) (J ′ ≤ I ′)

= I ′(αi)

= I ′(αI′

i)

= J ′(αI′

i) (J ′|LP = I ′|LP)

≤ J ′(ai) (J ′ fuzzy model of (P ′)I
′
)

(⇐) Suppose that I ′ is a minimal fuzzy model of (P ′)I
′
. We show that

I = I ′|LP is a minimal fuzzy model of P I . Remark that, since I ′ is a

minimal fuzzy model of (P ′)I
′
, it must hold that I ′(ai) = I ′(αi) = I(αi).

It follows easily that I is a fuzzy model of P I . Now suppose there exists
a fuzzy model J ≤ I of P I . We expand J to a fuzzy interpretation
J ′ ∈ LP ′ as follows: J ′(ai) = J(αI

i). It can be shown that J ′ is a fuzzy

46

model of (P ′)I
′
. Moreover, for each i ∈ {1, . . . , n}, we have that

J ′(ai) = J(αI
i)

≤ I(αI
i) (J ≤ I)

= I(αi)

= I ′(ai)

Hence J ′ ≤ I ′ and since I ′ is a minimal fuzzy model of (P ′)I
′
, it follows

that J ′ = I ′ and thus J = I.

Proof of Proposition 1

Proposition. Let P be a regular FASP program. P can be reduced (in time
polynomial in the size of the program) to a regular FASP program P ′ such
that LP ⊆ LP ′ and each rule in P ′ has at most two arguments in the body
and I is an answer set of P iff there exists a fuzzy interpretation I ′ ∈ F(LP ′)
such that I ′|LP = I and I ′ is an answer set of P ′.

Proof. Suppose there exists a rule r ∈ P with more than 2 arguments. We
show by induction on the number of connectives n, written in prefix nota-
tion, that this rule can be rewritten as a set of rules with in the bodies of
rules maximum two arguments and one connective such that the answer sets
remain the same.

If n = 1, then r is of the form

r : β ← f(l1, . . . , lm).

By Lemma 3 the assertion holds. Now suppose the assertion holds for n < k.
We prove that it also holds for n = k. Rule r is now of the form

r : β ← f(α1, . . . , αn),

where the number of connectives in αi is strictly smaller than k. By Lemma
4, the assertion follows.

47

Proof of Proposition 2

Proposition. Set-membership for strict disjunctive FASP is in NP.

Proof. From the analysis of the geometrical structure underlying fuzzy equi-
librium models which is a proper generalization of regular FASP [23], it
follows that a FASP program P has an answer set I such that I(l) ≥ λl for
some l ∈ LP and λI ∈ [0, 1] ∩ Q iff there is such an answer set that can be
encoded using a polynomial number of bits.

Given a strict disjunctive program P and an answer set I, we show that
we can check in polynomial time that I is an answer set of P . Note that
checking if I(l) ≥ λl for a literal l can be done in constant time. By definition,
we need to check that I is a minimal fuzzy model of P I and that for each
l ∈ LP we have I(l) + I(¬l) ≤ 1. The latter is straightforward. To check
whether I is a minimal fuzzy model of P I , we can use linear programming.
Indeed a rule r : a1 ⊕ . . .⊕ an ← b1 ⊗ . . .⊗ bm from P I is satisfied iff

[b1 ⊗ . . .⊗ bm → a1 ⊕ . . .⊕ an]I = 1
⇔ [(∼ b1)⊕ . . .⊕ (∼ bm)⊕ a1 ⊕ . . .⊕ an]I = 1
⇔ I(∼ b1) + . . .+ I(∼ bm) + I(a1) + . . .+ I(an) ≥ 1
⇔ 1− I(b1) + . . .+ 1− I(bm) + I(a1) + . . .+ I(an) ≥ 1

Hence, to check whether I is a minimal fuzzy model of P I we use the fol-
lowing linear program M . The function to be minimized is the sum

∑
a∈L

PI
a′

where for each literal a ∈ LP we introduce a variable a′ and the constraints
in M are the following. For each literal a ∈ LP I we have 0 ≤ a′ ≤ 1 and for
each rule

r : a1 ⊕ . . .⊕ an ← b1 ⊗ . . .⊗ bm
in P I we have

1 ≤ 1− b′1 + . . .+ 1− b′m + a′1 + . . .+ a′n

or equivalently

1−m ≤ −b′1 − . . .− b′m + a′1 + . . .+ a′n.

If a′ = I(a) for each literal a is a solution of M , then I is a minimal fuzzy
model of P I . Indeed, since I(a) = a′ fulfills the constraints of M , it is a fuzzy
model of P I . Now suppose there exists a fuzzy model J such that J < I.
Since it is a fuzzy model of P I , the assignments a′′ = J(a) for each literal
a satisfy the constraints of M but

∑
a∈L

PI
a′′ <

∑
a∈L

PI
a′, a contradiction.

Hence I is a minimal fuzzy model of P I .

48

Proof of Proposition 3

Proposition. Set-membership for strict normal FASP is NP-hard.

Proof. Consider an arbitrary instance of the 3SAT problem

α = (a11 ∨ a12 ∨ a13) ∧ (a21 ∨ a22 ∨ a23) ∧ . . . ∧ (an1 ∨ an2 ∨ an3)

We translate each clause ai1 ∨ ai2 ∨ ai3 to the rule

0← ¬ai1 ⊗ ¬ai2 ⊗ ¬ai3 (A.1)

and for each literal x in α we add the rules

¬x← notx (A.2)

x← not(¬x) (A.3)

x′ ← x (A.4)

x′ ← ¬x (A.5)

0← not(x′) (A.6)

where x′ is a fresh atom not used in α. We denote the resulting strict normal
FASP program by P .

1. First suppose that I is an answer set of P . By Lemma 2 we know that
I is an answer set of P1 and a fuzzy model of C where P1 is the set of
all rules in P of the form (A.2)-(A.5) and C is the set of all constraints
of the form (A.1) and (A.6).
Since I is a minimal fuzzy model of (P1)I we know that for each literal
x it holds that I(x) = 1− I(¬x) by rules (A.2) and (A.3) and I(x′) =
max(I(x), I(¬x)) by rules (A.4) and (A.5). Since I must be a fuzzy
model of the constraints in C, it follows that 1 − I(x′) = 0 by rule
(A.6). If I(x′) = I(x), then I(x) = 1 and I(¬x) = 0. Otherwise, if
I(x′) = I(¬x), then I(¬x) = 1 and I(x) = 0. Hence, I is a consistent
Boolean interpretation.
Let us define the propositional interpretation G as follows. For each
literal x in α we have G(x) = “true” if I(x) = 1 and G(x) = “false” if
I(x) = 0. We check that this assignment evaluates α to “true”. This
follows easily by (A.1) and the following equations:

[¬ai1 ⊗ ¬ai2 ⊗ ¬ai3 → 0]I = 1
⇔ [0⊕ ∼ (¬ai1 ⊗ ¬ai2 ⊗ ¬ai3)]I = 1
⇔ [0⊕ ∼ (¬ai1)⊕ ∼ (¬ai2)⊕ ∼ (¬ai3)]I = 1
⇔ 0 + 1− I(¬ai1) + 1− I(¬ai2) + 1− I(¬ai3) ≥ 1

49

Since for I it holds that I(x) = 1− I(¬x) for each literal x, we obtain
that

[¬ai1 ⊗ ¬ai2 ⊗ ¬ai3 → 0]I = 1
⇔ I(ai1) + I(ai2) + I(ai3) ≥ 1

Because I is a Boolean interpretation, it must hold that I(aij) = 1 for
at least one literal aij in each clause. Hence, G is an assignment that
evaluates each clause ai1 ∨ ai2 ∨ ai3, and thus the whole expression α,
to “true”.

2. Consider a propositional interpretation G such that each clause ai1 ∨
ai2∨ai3 evaluates to “true”. We define a fuzzy interpretation in F(LP)
by I(x) = 1 if G(x) = “true”, I(x) = 0 if G(x) = “false”, I(x′) =
max(I(x), I(¬x)). Note that I(¬x) = 1−I(x) since G is a propositional
interpretation . We show that I is an answer set of P , or by Lemma 2
that it is a minimal fuzzy model of (P1)I and a fuzzy model of C. It is
clear that I is a fuzzy model of (P1)I . Now suppose there exists a fuzzy
model J of (P1)I such that J < I. Since I is such that I(¬x)+I(x) = 1,
by rules (A.2) and (A.3) in P1 it follows that

J(¬x) ≥ [notx]I = 1− I(x) = I(¬x) ≥ J(¬x)

and
J(x) ≥ [not(¬x)]I = 1− I(¬x) = I(x) ≥ J(x).

Hence we have for each literal x that J(x) = I(x) and J(¬x) = I(¬x).
Since J < I, there must exist a literal x such that J(x′) < I(x′) which
implies by rules (A.4) and (A.5) in P1 that

I(x′) > J(x′) ≥ J(x) = I(x) and I(x′) > J(x′) ≥ J(¬x) = I(¬x).

This is impossible since either I(x) = 1 or I(¬x) = 1 and then I(x′) >
1.
It remains to be shown that I is a fuzzy model of C. Since I(x′) =
max(I(x), I(¬x)) = 1 we have that I models the rule 0 ← not(x′) for
each literal x. As before, we obtain

[0← ¬(ai1)⊗ ¬(ai2)⊗ ¬(ai3)]I = 1
⇔ I(ai1) + I(ai2) + I(ai3) ≥ 1

Since each clause ai1∨ ai2∨ ai3 is satisfied by G, we know that for least
one aij it must hold that I(aij) = 1. Hence I(ai1) + I(ai2) + I(ai3) ≥ 1.

50

Proof of Proposition 5

Proposition. 1. Set-entailment for strict normal FASP is coNP-complete.

2. Set-entailment for strict disjunctive FASP is coNP-complete.

Proof. To show coNP-membership for set-entailment in strict normal (dis-
junctive) FASP, we show that the complementary decision problem, i.e.
“Given a strict normal (disjunctive) FASP program P , a literal l ∈ LP and
a value λl ∈ [0, 1] ∩Q; is there an answer set I of P such that I(l) < λl?” is
in NP by a straightforward adaption of the proof of Proposition 2.

To show coNP-hardness, we reduce the NP-hard problem “existence” to
the complement of the set-entailment problem. Consider a strict normal
(disjunctive) FASP program P . Define P ′ = P ∪ {a ← a} with a a fresh
atom. We show that P has an answer set iff it is not the case that all answer
sets I ′ of P ′ are such that I ′(a) ≥ 0.5. First suppose that P has an answer
set I. Then there exists an answer set I ′ of P ′ with I ′(a) < 0.5. Indeed,
define I ′(a) = 0 and I ′(x) = I(x) otherwise. Next, suppose that there exists
an answer set I ′ of P ′ such that I ′(a) < 0.5. Then I = I ′|LP is an answer set
of P .

Proof of Lemma 5

Lemma. Consider a regular FASP program P = P1∪C where P1 is a regular
FASP program and C is a set of constraints of the form 0 ← α. Let P ′ =
P1∪C ′∪{z ← not y} where z and y are fresh atoms and C ′ = {y ← α | (0←
α) ∈ C}. A fuzzy interpretation I ∈ F(LP) is an answer set of P iff there
exists an answer set I ′ ∈ F(LP ′) of P ′ such that I ′|LP = I and I ′(z) ≥ 1.

Proof. (⇒) Suppose that I ∈ F(LP) is an answer set of P . Define I ′ ∈
F(LP ′) as I ′(a) = I(a) if a ∈ LP , I ′(z) = 1 and I ′(y) = 0. We show
that I ′ is an answer set of P ′.
First, we prove that I ′ is a fuzzy model of P ′ and thus of (P ′)I

′
. Clearly,

I ′ is a fuzzy model of P1 and it models the rule z ← not y. If y ← α
is a rule in C ′, then by assumption we have that I = I ′|LP models the

rule 0← α. Thus [0← α]I′ = 1 and [α]I′ = 0 = I ′(y). Hence I ′ models
y ← α.
Next, we show that I ′ is a minimal fuzzy model of (P ′)I

′
. Suppose

there exists a fuzzy model J ′ ∈ F(LP ′) of (P ′)I
′

such that J ′ ≤ I ′. We

51

show that J = J ′|LP is a fuzzy model of P I . Clearly, J is a fuzzy model

of (P1)I . Since J ′ ≤ I ′ we have that J ′(y) ≤ I ′(y) = 0, thus given a
rule r : 0 ← α in C we have that for the corresponding rule y ← α in
C ′ it holds that 0 = J ′(y) ≥ [αI]J , with αI the reduct of the expression
α w.r.t. I. Hence [rI]J = 1. Because I is a minimal fuzzy model of P I ,
it follows that I = J . As mentioned before, we have J ′(y) = I ′(y) and
since [z ← [not y]I′]J ′ = 1, we also have J ′(z) ≥ 1 − I ′(y) = I ′(z) ≥
J ′(z). Hence I ′ = J ′, which shows that I ′ is a minimal fuzzy model of
(P ′)I

′
.

(⇐) Suppose that I ′ ∈ F(LP ′) is an answer set of P ′ such that I ′(z) = 1.
We show that I = I ′|LP is an answer set of P . By Lemma 2 it is sufficient
to show that I is an answer set of P1 and a fuzzy model of C.
First, we show that I is a fuzzy model of C. Since I ′ is a minimal
fuzzy model of (P ′)I

′
, it must hold that I ′(z) = 1 − I ′(y) and thus

that I ′(y) = 0. Given a rule r : 0 ← α in C we have that for the
corresponding rule y ← α in C ′ it holds that 0 = I ′(y) ≥ [α]I′ , and
thus [r]I = 1.
Next, note that I is a fuzzy model of (P1)I since I ′ is a fuzzy model of
(P1)I

′
. Now suppose there exists a fuzzy model J ∈ F(LP1) of (P1)I

such that J ≤ I. Define J ′ ∈ F(LP ′) as follows: J ′(a) = J(a) if a ∈ LP ,
J ′(y) = 0 and J ′(z) = 1. We show that J ′ is a fuzzy model of (P ′)I

′
. By

assumption, J ′ is a fuzzy model of (P1)I
′
. For the rule r : z ← not y in

P ′ we have J ′(z) = 1 = I ′(z) ≥ [not y]I′ , hence J ′ models rI
′
. Finally,

given a rule r : y ← α in C ′ we have for the corresponding rule 0← α
in C that J ′(y) = 0 ≥ [αI′]J ′ . Hence J ′ models rI

′
. Since J ′ ≤ I ′ and

I ′ is a minimal fuzzy model of (P ′)I
′

it follows that J ′ = I ′ and thus
J = I.

Proof of Proposition 6

Proposition. Set-membership for strict normal FASP is NP-hard, even if
constraints and strong negation are not allowed.

Proof. Consider an arbitrary instance of the 3SAT problem

α = (a11 ∨ a12 ∨ a13) ∧ (a21 ∨ a22 ∨ a23) ∧ . . . ∧ (an1 ∨ an2 ∨ an3)

52

As shown in the proof of Proposition 3, α is satisfied by an assigment G iff the
propositional interpretation I, with I(x) = 1 if G(x) = “true” and I(x) = 0
if G(x) = “false” is an answer set of P with P the program obtained in the
proof of Proposition 3.

By Lemma 1 it follows that P can be rewritten to a strict normal FASP
program P ′ without strong negation and in which the head contains exactly
one atom or the constant 0 such that there is a one-on-one correspondence
between the answer sets. By Lemma 5, it follows that we can define a strict
normal FASP program P ′′ without constraints and without strong negation
such that the answer sets of P ′ correspond to the answer sets of P ′′ for which
a certain atom has at least truth value 1.

Proof of Corollary 2

Corollary. 1. Set-membership for strict normal FASP is NP-complete,
even if constraints and strong negation are not allowed.

2. Set-membership for strict disjunctive FASP is NP-complete, even if
constraints and strong negation are not allowed.

Proof. Follows by the reduction in the proof of Proposition 6 and by Propo-
sition 2.

Proof of Proposition 7

Proposition. A strict normal FASP program without constraints and with-
out strong negation always has an answer set.

Proof. From Theorem 3.1 in [37] it follows that such a strict normal FASP
program has at least one answer set.

Proof of Proposition 8

Proposition. The unique answer set of a regular simple FASP program with
only conjunction and maximum in the body of the rules can be found in
polynomial time.

Proof. Consider a regular simple FASP program P with only rules of the
form a ← b ⊗ c and d ← max(e, f). The answer set P can be found by
solving the following linear program LP . The function to be minimized is

53

f(a′1, . . . a
′
n) =

∑n
i=1 a

′
i with BP = {a1, . . . , an} and a′i is the corresponding

variable for ai and for each rule a← b⊗ c we add the constraints

a′ ≥ b′ + c′ − 1

1 ≥ a′, b′, c′ ≥ 0

and for each rule d← max(e, f), we add the constraints

d′ ≥ e′

d′ ≥ f ′

1 ≥ d′, e′, f ′ ≥ 0.

Suppose that I : BP → [0, 1] is the answer set of P , i.e. I is the unique
minimal fuzzy model of P . We show that if LP has a solution J ′ : {a′1, . . . , a′n}
→ R, that J : BP → [0, 1] : ai 7→ J ′(a′i) is a minimal fuzzy model of P . Since
P has a unique minimal fuzzy model, we then obtain J = I and J ′ is the
unique solution of LP . Clearly, since J ′ satisfies the constraints in LP we
obtain that J is a fuzzy model of P . Suppose J is not a minimal fuzzy model
of P , i.e. there exists a fuzzy model M : BP → [0, 1] of P such that M < J ,
then M ′ : {a′1, . . . , a′n} → R : a′i 7→ M(ai) satisfies the constraints of LP and
it holds that

∑n
i=1 M

′(a′i) <
∑n

i=1 J
′(a′i), a contradiction.

Proof of Corollary 3

Corollary. The complexity of the decision problems for strict simple and
strict definite FASP is polynomial.

Proof. Follows from Remark 2 and Proposition 8.

Proof of Proposition 9

Proposition. Let P be a disjunctive ASP program and let I ∈ P(LP). De-
fine the regular FASP program P ′ as follows:

P ′ = {a1 ⊕ . . .⊕ an ← b1 ⊗ . . .⊗ bm ⊗ not c1 ⊗ . . .⊗ not ck |

(a1 ∨ . . . ∨ an ← b1 ∧ . . . ∧ bm ∧ not c1 ∧ . . . ∧ not ck) ∈ P}
∪{a← a⊕ a | a ∈ LP}.

Then I is an answer set of P iff I is an answer set of P ′.

54

Proof. First note that I ∈ F(LP) models a rule of the form a ← a ⊕ a iff
min(2I(a), 1) ≤ I(a). This is only possible if I(a) = 0 or I(a) = 1. The
proposition then follows from the fact that the Lukasiewicz connectives re-
stricted to values in {0, 1} agree with the corresponding classical connectives,
and the semantics of ASP and FASP coincide in such a case.

Proof of Proposition 10

Proposition. 1. Set-membership and existence for regular FASP are ΣP
2 -

complete. Set-entailment is ΠP
2 -complete.

2. Set-membership and existence for regular normal FASP are NP-hard
and in ΣP

2 . Set-entailment is coNP-hard and in ΠP
2 .

Proof. Since fuzzy equilibrium logic is a proper generalization of FASP, we
can use its complexity results [23] to obtain ΣP

2 -membership for set-member-
ship and existence and ΠP

2 -membership for set-entailment. This result holds
for regular FASP as well as for regular normal FASP. The hardness results
are obtained by reducing the decision problems for normal resp. disjunctive
ASP (see Table 1) to regular normal resp. regular FASP which is possible
due to Proposition 9.

Proof of Proposition 11

Proposition. Set-membership, existence and set-entailment for regular def-
inite FASP is in NP ∩ coNP.

Proof. Each regular simple FASP program can be seen as a set of formulas
in Lukasiewicz logic. Checking if such a set of formulas has a minimal fuzzy
model can be polynomially reduced to checking the feasibility of a mixed
integer program which is an NP-complete problem. Since the answer set
is unique we obtain NP ∩ coNP for regular simple FASP for all decision
problems. By Lemmas 1 and 2, it follows that it can be checked whether a
fuzzy interpretation is an answer set of a regular definite FASP program by
checking if it is the unique answer set of a particular regular simple FASP
program and checking if a set of constraints is satisfied, hence we obtain the
same results for regular definite FASP.

55

Proof of Proposition 12

Proposition. The unique answer set of a regular simple FASP program can
be found in pseudo-polynomial time.

Proof. Suppose m is the largest integer occurring in the program and n is
equal to the size of the program. Then all constants c in the program are such
that c ∈ T = {0, 1

k
, . . . , k

k
} with k polynomial in m. After each application

of ΠP , either the least fixpoint is found and the procedure terminates or the
truth value of at least one atom is increased to a new value in T ; hence there
are at most n · k such iterations and the number of iterations is polynomial
in m and n.

Proof of Proposition 13

Proposition. The complexity of the decision problems for regular simple
and regular definite FASP is polynomial if all constants are polynomially
bounded, i.e. all constants c in the program are such that c ∈ {0, 1

k
, . . . , k

k
}

with k polynomial in the size of the program.

Proof. Follows from the proof of Proposition 12.

Proof of Proposition 14

Proposition. Consider a regular simple FASP program P such that the de-
pendency graph G(P) has no cycles and the longest path in G(P) has length
m. Then, the immediate consequence operator will only need m iterations to
compute the answer set of P .

Proof. Start with the fuzzy interpretation I0 that maps all atoms to 0. Define
A0 as the set of all constants in P . Define A1 as the set of all atoms a that
only depend on constants: each rule with head a ∈ A1 is of the form a← c.
After one application of ΠP , each a ∈ A1 is given a truth value

I1(a) = sup{[rb]I0 | (a← rb) ∈ P} = sup{c | (a← c) ∈ P}.

In further applications of ΠP , the truth value of a ∈ A1 will not increase
since it only depends on constants.

56

Next, define A2 as the set of all atoms a /∈ A1 such that for each rule
a← f(b, d) in P , we have that b, d ∈ A0 ∪A1. After two applications of ΠP ,
each a ∈ A2 is assigned a truth value

I2(a) = sup{[rb]I1 | (a← rb) ∈ P} = sup{[f(b, d)]I1 | (a← f(b, d)) ∈ P}.

In further applications of ΠP , the truth value of a ∈ A2 will not increase
since it only depends on atoms for which we already know the truth value
will not increase anymore.

Continuing this procedure, after k iterations of ΠP , we get fixed truth
values for all atoms a ∈ Ak: atoms a /∈ ∪k−1

i=1Ai such that for each rule
a← f(b, d) in P we have that b, d ∈ ∪k−1

i=0Ai. Another application of ΠP will
give fixed values for the atoms in Ak+1. Since there are no cycles, we have
that Ak = ∅ for k > m. Hence, after m iterations, the least fixpoint of ΠP

has been found.

Proposition 15

Proposition. Consider a regular simple FASP program P and its unique
answer set I. Suppose P contains the following set of rules

a2 ← a1 ⊕ b1

a3 ← a2 ⊕ b2
...

a1 ← an ⊕ bn

and we have I(bj) > 0 for at least one j ∈ {1, . . . , n}. Then for each i ∈
{1, . . . , n} we have I(ai) = 1.

Proof. If for all i ∈ {1, . . . , n} we have I(ai) + I(bi) ≤ 1 and thus [ai⊕ bi]I =
I(ai) + I(bi), then we have I(a1) < I(a1) a contradiction. Indeed,

I(a1) ≤ I(a1) + I(b1) ≤ I(a2) ≤ I(a2) + I(b2) ≤ . . . ≤ I(aj) < I(aj) + I(bj)

≤ I(aj+1) ≤ . . . ≤ I(an) + I(bn) ≤ I(a1).

Thus, there has to be some k ∈ {1, . . . , n} such that I(ak) + I(bk) > 1,
but then I(ak+1) = 1 (or I(a1) = 1 if k = n). This implies that I(ai) = 1 for
each i ∈ {1, . . . , n}.

57

Proof of Proposition 16

Proposition. Consider a regular simple FASP program with only disjunc-
tions in the bodies of rules and its unique answer set I. Suppose one of the
rules in the program is of the form a ← b ⊕ d such that I(b) > 0 and a and
d are atoms in the same strongly connected component S in G(P). Then for
all s ∈ S we have I(s) = 1.

Proof. Suppose S = {a1, . . . , an} with a = a1 and d = a2. By the definition
of a strongly connected component there must be path from a1 to a2 and so
on until we reach an. Similary, one can also find a path from an to a1. If
we consider all corresponding rules in P , we have a cycle consisting of the
elements in S that contains a with a← b⊕ d and I(b) > 0. By Proposition
15, we can conclude that I(ai) = 1 for all i ∈ {1, . . . , n}.

Proof of Corollary 4

Corollary. The unique answer set of a regular simple FASP program with
only disjunction in the body of the rules can be found in polynomial time.

Proof. Consider a regular simple FASP program P with only disjunctions
in the bodies of rules. We can find the answer set I in polynomial time as
follows. Using the algorithm of Tarjan [41] the strongly connected compo-
nents in G(P) can be identified in polynomial time. Next, for each strongly
connected component S we introduce a fresh atom aS. This is followed by
defining a cycle free program P ′ that is obtained from P by replacing each
atom from S by aS and this for each strongly connected component S. More-
over, superfluous rules are removed in the sense that no rule appears more
than once in P ′. From P ′, we then obtain a program P ′′ as follows.

• Rules of the form a ← b ⊕ c where a, b and c are different atoms or
constants remain unchanged.

• A rule of the form a← a⊕ b where b 6= a with b an atom or a constant
is replaced by a← (b > 0).

• A rule of the form a← a⊕ a is replaced by a← (a′ > 0) with a fresh
atom a′. In all other rules every occurrence of a is replaced by a′.

58

Note that these are the only possible types of rules in P ′. The semantics for
formulas of the form (a > 0) are defined by increasing functions and hence
the immediate consequence operator can be used to compute the minimal
model of P ′′, see [35] for details. Since Proposition 14 does not exploit the
fact that we have FASP programs under Lukasiewicz semantics, we can use
the same proof to show that if formulas (a > 0) are allowed in the bodies of
rules that the immediate consequence operator will only need a polynomial
number of steps to compute the minimal model I ′′ of P ′′. Finally we put
I(a) = I ′′(aS) for each a ∈ S. By Remark 4 and Proposition 16 it follows
that I is the answer set of P .

Proof of Proposition 17

Proposition. 1. The set-membership and the existence problem for the
class of regular normal FASP programs with only disjunction in the
bodies of rules is in NP. Set-entailment is in coNP.

2. The set-membership and the existence problem for the class of regular
normal FASP programs with cycle free dependency graphs is in NP.
Set-entailment is in coNP.

Proof. Let us first show that set-membership and existence are in NP. Sup-
pose P is a regular normal FASP program in one of the subclasses subscribed
in the statement of the proposition. From the analysis of the geometrical
structure underlying fuzzy equilibrium models which is a proper generaliza-
tion of regular FASP [23], it follows that a FASP program P has an answer
set I such that I(l) ≥ λl for some l ∈ LP and λI ∈ [0, 1] ∩Q iff there is such
an answer set that can be encoded using a polynomial number of bits. So
we can guess such an answer set I in polynomial time. The reduct P I then
belongs to the corresponding subclass of regular definite FASP programs.
For set-membership and existence (special case with λl = 0) it then remains
to be verified that I is an answer set of P I . But this follows easy from the
fact that the answer set of P I can be determined in polynomial time. To
show that set-entailment is in coNP, we need to show that the complement
of the decision problem “Given a FASP program P , a literal l and a value
λl, does there exist an answer set I of P such that I(l) < λl?” is in NP. By a
similar result from [23], it follows that such an answer set, if it exists, can be
guessed in polynomial time. The reduct then belongs to the corresponding

59

subclass of regular definite FASP programs for which the unique answer set
can be determined in polynomial time.

Proof of Corollary 5

Corollary. Existence and set-membership for regular normal FASP with
polynomially bounded constants is NP-hard. Set-entailment is coNP -hard.

Proof. By Proposition 9, it follows that a normal ASP program can be re-
duced to a regular normal FASP program with polynomially bounded con-
stants. Since set-membership and existence for normal ASP are NP-complete
(Table 1), it then follows that these decision problems are NP-hard for reg-
ular normal FASP with polynomially bounded constants. The fact that set-
entailment is coNP-hard follows from the coNP-completeness for normal ASP
(Table 1).

Proof of Proposition 18

Proposition. Given a strict disjunctive FASP program P not containing
strong negation such that BP = {a1, . . . , an}. Define the following bilevel
linear program QP .

ã′∗ = arg minã′
∑n

i=1(ã′i − ã∗i)
s.t. 0 ≤ ã′i ≤ 1

ã∗ = arg minã

∑n
i=1 ãi

s.t. ãi ≤ ã′i, 0 ≤ ãi ≤ 1 and
(
∑m

j=1 xj)−m+ 1 ≤
∑n

i=1 li for each rule (1)

in the reduct of P w.r.t. ã′

Then

1. If QP has a solution ã∗ = (ã1, . . . , ãn), ã′∗ = (ã′1, . . . , ã
′
n) such that

the objective function of the upper level problem is evaluated to 0, then
I : BP → [0, 1] : ai 7→ ãi is an answer set of P .

2. If I is an answer set of P , then ã∗ = (ã1, . . . , ãn), ã′∗ = (ã1, . . . , ãn)
where I(ai) = ãi for each i ∈ {1, . . . , n} is a solution of QP such that
the upper level problem is evaluated to 0.

60

Proof. 1. Suppose QP has a solution ã∗ = (ã1, . . . , ãn), ã′∗ = (ã′1, . . . , ã
′
n)

such that the objective function of the upper level problem is evaluated
to 0. We show that I : BP → [0, 1] : ai 7→ ãi is a minimal fuzzy model
of P I . First note that if

∑n
i=1(ã′i − ãi) = 0 it must hold that ã′i = ãi

for all i ∈ {1, . . . , n} since we have the constraints ãi ≤ ã′i. By the
constraints in the lower level problem it then follows that I is a fuzzy
model of P I . Now suppose there exists a fuzzy model J of P I such that
J < I. Then ã∗ = (ã1, . . . , ãn), â′∗ = (â′1, . . . , â

′
n) where J(ai) = â′i is a

solution of QP with
∑n

i=1(â′i − ãi) <
∑n

i=1(ã′i − ãi), a contradiction.

2. Suppose I is an answer set of P . We need to show that ã∗ = (ã1, . . . , ãn),
ã′∗ = (ã1, . . . , ãn) is a solution of QP . As in the proof of Proposition
8, we can show that if the leader makes a choice ã′∗ = (a′1, . . . , a

′
n)

which can be seen as a fuzzy interpretation I ′(ai) = a′i of P , that
ã∗ = (a∗1, . . . , a

∗
n) where J(ai) = a∗i is a minimal fuzzy model of P I′ are

the possible optimal solutions of the lower level problem. Since ã∗ = ã′∗

and the fact that if the leader makes the choice ã′∗ = (ã1, . . . , ãn), that
ã∗ = (ã1, . . . , ãn) is an optimal solution of the lower level problem, we
have found a solution of QP .

References

[1] C. Baral, Knowledge Representation, Reasoning and Declarative Prob-
lem Solving, Cambridge University Press, 2003.

[2] T. Eiter, G. Gottlob, Complexity results for disjunctive logic program-
ming and application to nonmonotonic logics, in: Proceedings of the
International Logic Programming Symposium, 1993, pp. 266–278.

[3] J. Janssen, S. Schockaert, D. Vermeir, M. De Cock, A core language for
fuzzy answer set programming, International Journal of Approximate
Reasoning 53 (2012) 660–692.

[4] D. Van Nieuwenborgh, M. De Cock, D. Vermeir, An introduction to
fuzzy answer set programming, Annals of Mathematics and Artificial
Intelligence 50 (3-4) (2007) 363–388.

[5] P. Hájek, Metamathematics of Fuzzy Logic, Trends in Logic, 1998.

61

[6] R. McNaughton, A theorem about infinite-valued sentential logic, The
Journal of Symbolic Logic 16 (1) (1951) 1–13.

[7] R. Hähnle, Proof theory of many-valued logic - linear optimization - logic
design: connections and interactions, Soft Computing 1 (1997) 107–119.

[8] C. Damásio, L. Pereira, Antitonic logic programs, in: Proceedings of the
6th International Conference on Logic Programming and Nonmonotonic
Reasoning, 2001, pp. 379–392.

[9] Y. Loyer, U. Straccia, Epistemic foundation of stable model semantics,
Theory and Practice of Logic Programming 6 (4) (2006) 355–393.

[10] T. Lukasiewicz, U. Straccia, Tightly integrated fuzzy description logic
programs under the answer set semantics for the semantic web, in: Pro-
ceedings of the 1st International Conference on Web Reasoning and Rule
Systems, 2007, pp. 289–298.

[11] N. Madrid, M. Ojeda-Aciego, Measuring inconsistency in fuzzy answer
set semantics, IEEE Transactions on Fuzzy Systems 19 (4) (2011) 605–
622.

[12] U. Straccia, Query answering in normal logic programs under uncer-
tainty, in: Symbolic and Quantitative Approaches to Reasoning with
Uncertainty, 2005, pp. 687–700.

[13] U. Straccia, Annotated answer set programming, in: Proceedings of the
11th International Conference on Information Processing and Manage-
ment of Uncertainty in Knowledge-Based Systems, 2006, pp. 1212–1219.

[14] U. Straccia, Query answering under the any-world assumption for nor-
mal logic programs, in: Proceedings of the 10th International Confer-
ence on Principles of Knowledge Representation and Reasoning, 2006,
pp. 329–339.

[15] D. Dubois, H. Prade, Possibility theory, probability theory and multiple-
valued logics: a clarification, Annals of Mathematics and Artificial In-
telligence 32 (1-4) (2001) 35–66.

[16] K. Bauters, S. Schockaert, M. De Cock, D. Vermeir, Possibilistic answer
set programming revisited, in: Proceedings of the 26th Conference on
Uncertainty in Artificial Intelligence, 2010, pp. 48–55.

62

[17] C. Baral, M. Gelfond, J. Rushton, Probabilistic reasoning in computer
science, in: Logic Programming and Nonmonotonic Reasoning, 7th In-
ternational Conference, 2004, pp. 21–33.

[18] A. Dekhtyar, V. Subrahmanian, Hybrid probabilistic programs, in: Pro-
ceedings of the 14th International Conference on Logic Programming,
1997, pp. 391–405.

[19] D. Mundici, Satisfiability in many-valued sentential logic is NP-
complete, Theoretical Computer Science 52 (5) (1987) 145–153.

[20] T. Lukasiewicz, Many-valued disjunctive logic programs with probabilis-
tic semantics, in: Proceedings of the 5th International Conference on
Logic Programming and Nonmonotonic Reasoning, 1999, pp. 277–289.

[21] F. Bobillo, F. Bou, U. Straccia, On the failure of the finite model prop-
erty in some fuzzy description logics, Fuzzy Sets and Systems 172 (23)
(2011) 1–12.

[22] M. Cerami, U. Straccia, On the (un)decidability of fuzzy description
logics under lukasiewicz t-norm, Information Sciences 227 (2013) 1–21.

[23] S. Schockaert, J. Janssen, D. Vermeir, Fuzzy equilibrium logic: Declara-
tive problem solving in continuous domains, ACM Transactions on Com-
putational Logic 13 (4) (2012) 111–155.

[24] J. Bard, J. Falk, An explicit solution to the multi-level programming
problem, Computers and Operations Research 9 (1982) 77–100.

[25] W. Candler, R. Townsley, A linear two-level programming problem,
Computers and Operations Research 9 (1982) 59–76.

[26] C. Shi, J. Lu, G. Zhang, H. Zhou, An extended branch and bound algo-
rithm for linear bilevel programming, Applied Mathematics and Com-
putation 180 (2) (2006) 529–537.

[27] J. Bard, J. Moore, A branch and bound algorithm for the bilevel pro-
gramming problem, SIAM Journal on Scientific and Statistical Compu-
tation 11 (1990) 281–292.

63

[28] M. Gelfond, V. Lifschitz, The stable model semantics for logic program-
ming, in: Proceedings of the Fifth International Conference and Sym-
posium on Logic Programming, 1988, pp. 1070–1080.

[29] J. Janssen, S. Schockaert, D. Vermeir, M. De Cock, General fuzzy answer
set programs, in: Proceedings of the International Workshop on Fuzzy
Logic and Applications, 2009, pp. 353–359.

[30] U. Straccia, M. Ojeda-Aciego, C. V. Damásio, On fixed-points of multi-
valued functions on complete lattices and their application to generalized
logic programs, SIAM Journal on Computing 8 (5) (2009) 1881–1911.

[31] L. Yu, N. Wang, X. Meng, Real-time forest fire detection with wire-
less sensor networks, in: Proceedings of the Wireless Communication
Networking and Mobile Computing International Conference, 2005, pp.
1214–1217.

[32] J. Castro, E. Trillas, J. Zurita, Non-monotonic fuzzy reasoning, Fuzzy
Sets and Systems 94 (1998) 217–225.

[33] S. Schockaert, M. De Cock, E. Kerre, Spatial reasoning in a fuzzy region
connection calculus, Artificial Intelligence 173 (2009) 258–298.

[34] N. Megiddo, T. A., New results on the complexity of p-center problems,
SIAM Journal on Computing 12 (4) (1983) 751–758.

[35] J. Janssen, Foundations of fuzzy answer set programming, Ph.D. thesis,
Ghent University and Vrije Universiteit Brussel (2011).

[36] S. Cook, The complexity of theorem-proving procedures, in: Proceedings
of the 3rd Annual ACM Symposium on the Theory of Computing, 1971,
pp. 151–158.

[37] N. Madrid, M. Ojeda-Aciego, On the existence and unicity of stable
models in normal residuated logic programs, International Journal of
Computer Mathematics 89 (3) (2012) 310–324.

[38] T. Lukasiewicz, Fuzzy description logic programs under the answer set
semantics for the semantic web, Fundamenta Informaticae 82 (3) (2008)
289–310.

64

[39] T. Gawlitza, H. Seidle, Precise fixpoint computation through strategy
iteration, in: Proceedings of the 16th European Conference on Program-
ming, 2007, pp. 300–315.

[40] H. Bjorklund, S. Sandberg, S. Vorobyov, Complexity of model checking
by iterative improvement: the pseudo-boolean framework, in: Proceed-
ings of the 5th Andrei Ershov Memorial Conference “Perspectives of
System Informatics”, 2003, pp. 381–394.

[41] R. Tarjan, Depth-first search and linear graph algorithms, SIAM Journal
on Computing 1 (2) (1972) 146–160.

[42] J. Bard, Practical Bilevel Optimization: Algorithms and Applications,
Kluwer Academic Publishers: USA, 1998.

65

