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Abstract

Bathyal cold seeps are isolated extreme deep-sea environments characterized by low species diversity while biomass can be high. The

Håkon Mosby mud volcano (Barents Sea, 1,280 m) is a rather stable chemosynthetic driven habitat characterized by prominent

surfacebacterialmatswithhigh sulfideconcentrationsand lowoxygen levels.Here, thenematodeHalomonhysterahermesi thrives in

high abundances (11,000 individuals 10 cm�2). Halomonhystera hermesi is a member of the intertidal Halomonhystera disjuncta

species complex that includes five cryptic species (GD1-5). GD1-5’s common habitat is characterized by strong environmental

fluctuations. Here, we compared the transcriptomes of H. hermesi and GD1, H. hermesi’s closest relative. Genes encoding proteins

involved in oxidative phosphorylation are more strongly expressed in H. hermesi than in GD1, and many genes were only observed in

H.hermesiwhilebeingcompletelyabsent inGD1.Bothobservationscould inpartbeattributedtohighsulfideconcentrationsand low

oxygen levels. Additionally, fatty acid elongation was also prominent in H. hermesi confirming the importance of highly unsaturated

fatty acids in this species. Significant higher amounts of transcription factors and genes involved in signaling receptor activity were

observed in GD1 (many of which were completely absent in H. hermesi), allowing fast signaling and transcriptional reprogramming

which can mediate survival in dynamic intertidal environments. GC content was approximately 8% higher in H. hermesi coding

unigenes resulting indifferential codonusagebetweenbothspeciesandahigherproportionofaminoacidswithGC-richcodons inH.

hermesi. In general our results showed that most pathways were active in both environments and that only three genes are under

natural selection. This indicates that also plasticity should be taken in consideration in the evolutionary history of Halomonhystera

species. Such plasticity, as well as possible preadaptation to low oxygen and high sulfide levels might have played an important role in

the establishment of a cold-seep Halomonhystera population.
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Introduction

One of the most important goals in evolutionary biology is to

comprehend how and why living organisms diversify (Pfennig

et al. 2010). Dispersal allows organisms to colonize new suit-

able habitats and found new populations. Speciation in the

new habitat has its origin in the establishment of reproductive

barriers between source and founder population (Coyne and

Orr 2004). While gene flow between populations is often

considered as a homogenizing evolutionary force that can

prevent conspecific populations from diverging (Walsh and

Mena 2013), ecological selection can also initiate speciation

in the presence of gene flow (Seehausen et al. 2014).
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Therefore, restriction of gene flow and ecological differentia-

tion between habitats are two drivers which can mediate

speciation, thereby, paving the way for adaptive evolution

of newly founded populations (Mayr 1963).

Adaptive evolution is the process in which natural selection

will select for advantageous alleles that provide a higher

fitness to the organism thereby causing changes in allele fre-

quencies in a population. Adaptive evolution is influenced

by mutation rate, recombination, genetic drift, selection,

etc. (reviewed in Olson-Manning et al. 2012) each of which

cause genetic patterns that are traceable in sequence data. In

addition, individuals will respond to changes in their environ-

ment by remodeling their transcriptome, allowing individuals

to quickly respond to environmental conditions. This is

referred to as phenotypic plasticity where one genotype can

produce multiple phenotypes. While some studies define

phenotypic plasticity as nonheritable (Ellner et al. 2011),

gene expression can also be regulated by epigenetic modifi-

cations which are heritable (Surani et al. 1993; Cubas et al.

1999; Chong and Whitelaw 2004; Bird 2007; Goldberg et al.

2007). In the case of cryptic species, that is, morphologically

identical but genetically distinct species, the degree of plastic-

ity in morphological traits is limited, despite the fact that they

can be found in quite distinct habitats (Vrijenhoek 2009).

Understanding the biology of cryptic species in different envi-

ronments requires information on genetic adaptive traits and

the degree of plasticity in other traits than morphology

(Gittenberger and Gittenberger 2011).

Cryptic diversity is common in marine environments, which

may be attributed to the use of chemical cues for mate rec-

ognition (Stanhope et al. 1992; Palumbi 1994; Lonsdale et al.

1998). The existence of cryptic species has been described in

different orders of marine nematodes (Derycke et al. 2005,

2007, 2010), usually the most abundant and diverse Metazoa

in marine benthic communities (Heip et al. 1985; Lambshead

and Boucher 2003). In this work, we focus on the genus

Halomonhystera Andrássy (2006) belonging to the order of

the Monhysterida which is currently situated outside the five

clades (I–V) proposed by Blaxter (2011) and placed in clade 5c

based on the numerical system of van Megen et al. (2009).

The genus has a widespread geographical distribution and has

been identified from deep-sea environments (Van Gaever

et al. 2006; Portnova et al. 2010) and intertidal regions

(Trotter and Webster 1983; Vranken, Herman, et al. 1988;

Mokievsky et al. 2005; Derycke et al. 2007). Nuclear and mi-

tochondrial sequence data led to the discovery of five cryptic

Halomonhystera disjuncta species (GD1-5) with only limited

morphometric differences in the Western Scheldt estuary

(Derycke et al. 2007; Fonseca et al. 2008). Halomonhystera

was also reported as the dominant nematode genus in the

sulfide-rich bacterial mats of the Nyegga pockmark (Nordic

Norwegian margin, 730 m) (Portnova et al. 2010) and the

Håkon Mosby mud volcano (HMMV, 1,280 m, Barent Sea

slope) (Van Gaever et al. 2006). However, a recent study

revealed subtle morphological and clear genetic differences

between the HMMV and intertidal Halomonhystera species

(Van Campenhout et al. 2013): uncorrected p-distances be-

tween HMMV and GD1 ranged between 19.1% and 25.2%

for the cytochrome oxidase c subunit I gene part, whereas

uncorrected p-distances of the nuclear 18S gene ranged be-

tween 2.4% and 2.9% and the nuclear ITS-D2D3 concate-

nated genes showed a divergence of 9.5% (Van Campenhout

et al. 2013). The HMMV Halomonhystera has consequently

been described as a new species, Halomonhystera hermesi

(Tchesunov et al. 2015). Phylogenetic analysis revealed a

close relationship between H. hermesi and both GD1 and

GD4 (Van Campenhout et al. 2013). For Halomonhystera, a

deep-sea invasion from intertidal regions has been hypothe-

sized followed by adaptive evolution as a result of absence of

gene flow between both environments (Van Campenhout

et al. 2013) and strong selective forces in the deep-sea habitat.

GD1 is hypothesized to share the most recent ancestor with

H. hermesi as it appears to be more resistant to bathyal seep

conditions compared with GD2-3 (Van Campenhout et al.

2014). In addition, previous studies have revealed a high tol-

erance of H. disjuncta to low food- and high heavy metal

concentrations (Vranken et al. 1985, 1989; Vranken, Tire,

et al. 1988). These studies clearly highlight that in addition

to the genetic differences between GD1 and H. hermesi, the

intertidal species also have the plasticity to survive deep-sea

conditions. Halomonhystera hermesi thrives at the HMMV, a

cold, stable chemosynthetically based deep-sea environment

(Van Gaever et al. 2006). The microbial mats, the habitat of

H. hermesi, are characterized by limited oxygen penetration

(~1 mm) and high sulfide concentrations (up to 4 mM) (de

Beer et al. 2006; Van Gaever et al. 2006). Even though epi-

sodic events such as extensive methane venting and mud

flows occur, the upflow velocity in the bacterial mats is limited

to 0.3–1.0 m yr-1 (de Beer et al. 2006). In contrast, GD1

thrives on decaying algae in the Western Scheldt, an ephem-

eral habitat with daily fluctuations in temperature, light, salin-

ity, and frequent inundation due to tidal activity. We,

therefore, consider the HMMV habitat to be more stable com-

pared with the intertidal habitat of GD1.

The detailed knowledge on the biology and phylogenetic

relationships of these two species, together with their occur-

rence in well characterized and distinct habitats render them

an excellent system to study the molecular mechanisms allow-

ing species to thrive in different habitats. To this end, we com-

pared the transcriptome between the intertidal (GD1) and

deep-sea nematode (H. hermesi) related species. Evaluation

of gene expression will contribute to our understanding of

which pathways are important in both species with respect

to their environment. Additionally, pinpointing genes that are

under natural selection will contribute to our understanding of

adaptive evolution of both species. Moreover, its intertidal oc-

currence subjects GD1 to strong physical, chemical, and bio-

logical gradients indicating that it can rapidly adjust to
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environmental changes. Organisms in fluctuating environ-

ments must constantly sense and adapt to environmental

changes and must be able to quickly respond to these changes.

This may be achieved by transcriptional regulation (Kussell and

Leibler 2005). In contrast, stable environments generally favor

specialist species adapted to that specific niche (Miner 2005). In

view of the clear differences in (a)biotic conditions in both

habitats, we expected to find substantial differences in the

molecular pathways activated in both habitats. More specifi-

cally, we expected to find one/more genes expressed and more

active pathways in the intertidal than in the deep-sea habitat,

and two/an overrepresentation of pathways involved in tran-

scription and environmental information processing in the in-

tertidal GD1 species.

Materials and Methods

Sample Collection

Deep-sea sediment samples were collected, using a TV-guided

multicorer, from the active methane seeping Håkon Mosby

mud volcano (HMMV; situated west of the Barents Sea

(72.1�N 14.73�E) at an average water depth of 1,280 m)

during the Maria S. Merian cruise 2010 (MSM 16/2). Core

samples were immediately sliced from 0 to 10 cm (with a

1-cm interval), instantly frozen in liquid nitrogen on board

and stored at �80 �C.

Intertidal monospecific GD1 nematodes reared in the lab

were transferred to rehydrated (salinity of 25 practical salinity

unit [psu]) defaunated macroalgae (Fucus vesiculosis) and al-

lowed to grow for approximately 4 weeks in three litter bags

(mesh size 200 mm) at 8 �C and a salinity of 25 psu. Following

this period, litter bags were positioned in the Paulina salt

marsh (Western Scheldt, The Netherlands, at 51� 20.90N, 3�

43.50E) allowing nematodes to acclimatize to the environment

for 72 h before retrieval. Macroalgae were washed over two

stacked sieves (top sieve: 1 mm, bottom sieve: 32mm) with

sieved (32mm) seawater and fauna was retained on the 32mm

sieve. Meiofauna from the sieve was then collected with sterile

artificial seawater (25 psu) and replicate samples were imme-

diately frozen in liquid nitrogen and stored at �80 �C.

Nematode Retrieval and RNA Isolation

The frozen first deep-sea sediment slice (0–1 cm) of three

locations (Station MSM16-2_802-1, 72� 0.170N 14� 43.880E;

Station MSM16-2_829-1, 72� 0.160 N, 14� 43.940 E; Station

MSM16-2_831-1, 72� 0.140 N 14� 43.940 E) and all intertidal

samples were washed separately over a 32mm-mesh sieve.

Halomonhystera nematodes were extracted by density gradi-

ent centrifugation at 4 �C and 3,000 � g, using Ludox (a

colloidal silica polymer; specific gravity 1.18) as a flotation

medium (Heip et al. 1985). b-mercaptoethanol, in a final con-

centration of 0.143 M, was added to avoid RNA breakdown.

Nematodes were captured on a 32mm sieve after

centrifugation and washed again with a sterile formamide-

b-mercaptoethanol (0.143 M) solution and finally retained

in the same solution. Replicate samples of both deep-sea

and intertidal samples contained approximately 1,500–2,000

nematodes. To minimize the effect of different life stages,

only adult H. hermesi and GD1 nematodes of each replicate

were morphologically identified and randomly and manually

picked out using a binocular microscope in a 4 �C climate

room. Samples from GD1 or H. hermesi were pooled, prior

to RNA extraction, into 50 ml RLT buffer (RNeasy Mini kit,

Qiagen Inc., Düsseldorf, Germany) to which we added

b-mercaptoethanol in a final concentration of 0.143 M.

Each sample (deep sea and intertidal) contained approxi-

mately 5,000 nematodes and such pooling of replicates was

a necessary practical consideration to obtain sufficient RNA.

The cuticle and cell membranes of nematodes and

cells were disrupted by vortexing with beads (1 min at

5,000 rpm). Total RNA was extracted using the RNeasy

Mini kit (Qiagen Inc., Düsseldorf, Germany) according to

the manufacturer’s instructions. Genomic DNA was removed

by on-column digest with DNase I. RNA was quantified by

measuring the optical density (OD) at 260 nm using a

NanoDrop spectrophotometer (2000 UV-Vis, Thermo Fisher

Scientific, Inc.). RNA purity was assessed at an absorbance

ratio of OD260/280 and OD260/230. RNA integrity was analyzed

on a 1% agarose gel stained with ethidium bromide.

cDNA Library Construction, Illumina Sequencing, and
Quality Filtering

Samples were sent to Bio S&T Inc. (Canada) to perform cDNA

synthesis and normalization allowing us to sequence low ex-

pressed genes. Briefly, the cDNA library was constructed with

about 8 mg of total RNA using a modified Clonetech SMART

cDNA Library Construction kit using oligo(dT) primers. Double

stranded cDNAs were obtained by primer extension and

purified. To increase the ability to sequence low expressed

transcripts, cDNAs were normalized, reamplified, and purified

(Bio S&T, Canada). Further library construction and sequenc-

ing were performed by Genomics Core, UZ Leuven, Belgium.

Briefly, the cDNA was sheared using the Covaris M220 ma-

chine with a maximum fragment length of 800 bp and a frag-

ment size peak around 450–500 bp. cDNA libraries were end

repaired, and NEXTflex adaptors from BIOO Scientific were

ligated using the SPRIworks robot (Beckman) followed by an

AMPure bead purification to remove adaptor dimers. Libraries

were amplified using a 12 cycle polymerase chain reaction

step with NEXTflex primer mix. An additional AMPure bead

purification was performed. The resulting cDNA libraries were

pooled and paired-end sequenced on a single Illumina MiSeq

2*250 bp lane. Because of a low read diversity within deep-

sea reads (troubling for the nucleotide incorporation imaging

software), this cDNA library was mixed in with other samples
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and sequenced on the same Illumina MiSeq 2*250 bp

machine. Data from both runs were pooled.

Low quality read ends (<Q20) were trimmed with FastX

0.0.13 (http://hannonlab.cshl.edu/fastx_toolkit, last accessed

November 1, 2015). MiSeq adapters were trimmed only at

the end (at least 10 bp overlap and 90% match) with cutadapt

1.0 (Martin 2011). Using FastX 0.0.13 and ShortRead 1.14.4

(Morgan et al. 2009), short reads (length<50bp), poly A-reads

(more than 90% of the bases equal A), ambiguous reads (con-

taining N), low quality reads (more than 50% of the bases

<Q25), and artifact reads (all but three bases in the read

equal one base type) were removed in succession. Using

bowtie 2.0.0-beta5 (Langmead et al. 2009), reads that align

to PhiX (an adapter-ligated library used as a control for Illumina

sequencing runs) or human hg19 were identified and re-

moved. Because of quality drop for all reverse reads after

150 bp, these reads were all cut after 150 bp. Finally, cDNA

primers were removed using the CLC Genomics Workbench

6.0.3 trim sequences tool. The raw sequencing reads were

deposited at the Short Read Archive of the National Center

for Biotechnology Information (NCBI) under bioproject

SRP050898 containing biosamples SRS748702 (Run

SRR1657929) and SRS748703 (Run SRR1657930).

De Novo Assembly and BLAST

De novo assembly was conducted using the CLC Genomics

Workbench 6.0.3 de novo assembly tool according to the

manufacturer’s preset features. Contigs shorter than 200 bp

were removed. To remove redundant transcripts and retain a

set of contigs each representing a putatively unique isoform

(unigenes), the open-source program CD-HIT-EST (Li and

Godzik 2006) was used to cluster contigs at a 95% sequence

identity. The largest contig of each cluster was retained in the

data set. The coding sequences (CDS) were predicted using

the open reading frame (ORF)-predictor server (Min et al.

2005) with a 200 bp CDS cutoff.

BLAST + (Camacho et al. 2009) was used to subject the

remaining unigenes to a similarity search against NCBI’s nonre-

dundant (nr) database (standard genetic code) using the

BLASTx algorithm (Altschul et al. 1990), with a cutoff e-value

of� 10�3 and a maximum of 20 BLAST hits. The top BLASTx

hit was used to assign taxonomy to each unigene using a

custom perl script (Get_classification.pl, Supplementary

Material online). Unigenes classified as Nematoda were

selected for further analysis.

Functional Annotation (KEGG) and Pathway
Reconstruction

Prediction of pathways expressed in both data sets was

done by using known metabolic and signaling pathways

previously found in Eukaryotes and nematodes using the

Kyoto Encyclopedia of Genes and Genomes (KEGG) auto-

mated Annotation Server (KAAS) (Moriya et al. 2007).

Unigenes were submitted to KAAS with the preset

Eukaryotes. Caenorhabditis briggsae, Brugia malayi, Loa

loa, and Trichinella spiralis were added as additional se-

quence templates; the option “basis of single-best hit”

was selected. KAAS annotates transcripts with KEGG

orthology (KO) identifiers representing an orthologous

group of genes linked to an object in the KEGG pathways

and BRITE hierarchy (Mao et al. 2005; Moriya et al. 2007).

Unigenes from both transcriptomes with the same KO

identifier, that is, functional annotation, were considered

to be shared between both species.

The KO identifiers were mapped against KEGG path-

ways to reconstruct pathways (http://www.genome.jp/

kegg/mapper.html, last accessed April 30, 2015). KEGG

pathways involved in human diseases were not taken into

further consideration. KO identifiers were additionally

mapped against BRITE hierarchical classifications of pro-

tein families.

To extract pathways that are over- and underrepresented in

the deep-sea and intertidal habitats, respectively, KEGG path-

ways and protein families of unique unigenes from each tran-

scriptome were determined separately using the Cytoscape

(Shannon et al. 2003) plugin BINGO (Maere et al. 2005)

with both transcriptomes combined as a reference set.

P values were false-discovery rate (FDR)-corrected.

Functional Gene Ontology Annotation

To retrieve Gene Ontology (GO) terms describing biological

processes, molecular functions, and cellular components

(Ashburner et al. 2000), the publicly available BLAST2GO-plat-

form (Conesa et al. 2005) was used. Annotations were con-

ducted for unigenes with default parameters (e-value� 10�6,

Annotation cutoff �55, and a GO weight of 5). BLAST2GO

was also used to retrieve InterPro (conserved patterns in se-

quences) annotations and merged with GO terms for a wide

functional range cover in annotation.

Because some unigenes without KO annotation displayed a

GO annotation, the following step was taken to increase the

amount of previously defined shared unigenes (based on KO

identifier). Unigenes without KO identifier but with a GO an-

notation and a CDS of at least 200 bp from one transcriptome

were aligned against both the shared unigenes and unigenes

without KEGG annotation of the other transcriptome using

the PROmer pipeline of the MUMmer 3.0 software (Kurtz

et al. 2004) with default parameters. Unigenes with an in-

frame PROmer hit, minimum similarity of 75% and an align-

ment length of minimum 300 bp were additionally considered

as shared. Determining overrepresented GO-terms in unique

unigenes was performed as described before. Similarly, we

used BINGO to determine whether each complete GO data

set was enriched in level 2 GO terms compared with both data

sets combined.
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Positive Selection, Amino Acid Composition,
and Codon Usage

Orthologs present in both transcriptomes were determined by

selecting unigenes with a CDS of minimal 200 bp which were

then aligned and compared using the PROmer pipeline with

default parameters. We only retained in-frame PROmer hits

(similarity � 75% and an alignment length of 300 bp) that

matched the same KO identifier. The full length CDS of fil-

tered ortologous gene pairs were then aligned using ClustalW

(Thompson et al. 1994), with default parameters, provided in

the Molecular Evolutionary Genetics Analysis version 6.0

(MEGA6) software package (Tamura et al. 2013) and uncor-

rected p-distances were calculated.

Positive selection was tested using the ratios of the rates of

nonsynonymous substitutions per nonsynonymous sites (Ka)

to the number of synonymous substitutions per synonymous

site (Ks) using KaKs_Calculator 2.0 (Wang et al. 2010) with

the g-MYN model. This model incorporates previously unad-

dressed dynamic features of evolving DNA sequences in tran-

sition/transversion rate, nucleotide frequency, and unequal

transitional substitution. The model further accounts for

DNA sequences unequal substitution rates among different

sites (Wang et al. 2009).

The alignment of orthologous gene pairs was also used to

analyze GC content, amino acid (AA) composition, and codon

usage. Amino acid frequencies were determined by summing

the occurrence of each AA per translated CDS (tCDS) and

dividing it through the total amount of AA present for each

tCDS. Codon frequencies per AA were obtained by summing

the occurrence of each single codon per tCDS and dividing it

through the respective AA count of the tCDS. GC content, AA

composition, and codon frequencies per gene were deter-

mined using a custom perl script (AA_counter.pl and

Codon_counter.pl, Supplementary Material online) and aver-

aged over all unigenes. To investigate whether significant dif-

ferences were present between deep-sea and intertidal

transcriptomes, mean values of both H. hermesi and GD1

corresponding orthologous unigenes were subtracted. The

H. hermesi and GD1 data sets were then pooled and randomly

permuted into two equal groups after which GC content, AA-

and codon frequencies were calculated and subtracted from

each other. This was repeated 100,000 times with custom

R-scripts (GC_permutation.R, AA_permutation.R and

Codon_permutation.R, Supplementary Material online) in R

version 3.0.2 (R Core Team 2013) and the obtained values

were seen as a null distribution for the GC content, codon,

and AA frequencies. The P value is then calculated as the

fraction of how many times the permuted difference is

equal or more extreme than the observed difference and

was FDR-corrected. If the observed difference fell outside

the range of the null distribution, no P values could be calcu-

lated and P values were considered to be <E�6.

Differential Gene Expression between Shared Unigenes

Deep-sea and intertidal contigs with a nematode top-BLAST

hit were selected and used to generate a single new assembly

using the de novo assembly tool in CLC Genomics Workbench

6.0.3. The assembly was treated in the same manner as de-

scribed above (CD-HIT-EST clustering, BLASTx and functional

annotation). Cleaned deep-sea and intertidal reads were

mapped against the full assembly using the RNA-seq tool in

CLC Genomics Workbench 6.0.3. (minimum length fraction =

0.9 and minimum similarity fraction = 0.8). Values for relative

expression were based on mean RPKM (Reads Per Kilo-base of

exon model per Million mapped reads) values. A statistical

analysis on proportions (Kal’s test) was performed and P

values were FDR-corrected. The RNA-seq analysis resulted in

five data sets: 1) uniquely expressed genes in H. hermesi, 2)

uniquely expressed genes in GD1, 3) shared unigenes similarly

expressed in both species, 4) differentially overexpressed uni-

genes in H. hermesi, and 5) differentially overexpressed uni-

genes in GD1. Data set 1 and 2 were not analyzed further as

this was already performed for the complete transcriptome.

To increase the validity of the three other RNA-seq data sets,

only unigenes with a KO identifier which was present in both

original nematode transcriptomes and present in only one

RNA-seq data set were retained. Over- and underrepresented

KEGG pathways, protein families, and GO annotations of dif-

ferentially expressed genes were determined as described

above.

Results

Sequencing Results

Illumina MiSeq 2*250 bp cDNA sequencing generated a total

of 3.47 and 2.47 Gb for the deep-sea and intertidal samples

respectively (supplementary table S1, Supplementary Material

online). After quality assessment and data filtering, 4,605,081

and 3,105,224 pair-end reads remained for deep-sea and in-

tertidal samples, respectively, (supplementary table S1,

Supplementary Material online). De novo assembly yielded a

lower amount of deep-sea contigs (57,636) than intertidal

contigs (72,678). In terms of unigenes, 54,767 deep-sea

and 68,537 intertidal unigenes with a respective N50 of

933 and 720 bp were found. The size of the deep-sea

unigenes ranged from 200 to 149,303 bp with a mean

length of 750 whereas the intertidal unigenes ranged

from 200 to 8,783 bp with a mean length of 618 bp (sup-

plementary table S1, Supplementary Material online). It

must be noted that the large unigenes within the deep-

sea assembly are most likely partially assembled prokary-

otic chromosomes. ORF prediction (>200 bp CDS in

length) was very similar for deep-sea (81.45%) and inter-

tidal (83.47%) unigenes.
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BLAST Results and Classification

BLASTx results showed that 33,079 (60.40%) deep-sea and

42,409 (61.89%) intertidal unigenes had at least one BLAST

result with an e-value � 10�3. Surprisingly, a substantial por-

tion of the unigenes did not give a nematode top-blast hit.

Instead, most deep-sea unigenes classified as Bacteria

(61.01%) whereas intertidal unigenes were mostly classified

as Eukaryotes (92.52%) (fig. 1A). Of the intertidal unigenes

that were classified as Eukaryota, only 49.51% could be as-

signed to the Metazoa (fig. 1B). The remaining part (40.31%)

mainly belonged to Viridiplantae. In contrast, the deep-sea

eukaryote unigenes were nearly all assigned to the Metazoa

(93%; fig. 1B). Within the Metazoa, the composition of both

data sets was highly similar: 67.99% deep-sea and 68.15%

intertidal unigenes could be assigned to the Ecdysozoa,

16.02% deep-sea and 18.19% intertidal unigenes were as-

signed to the Chordata, and 8.95% deep-sea and 7.80%

intertidal unigenes were designated as Lophotrochozoa

(fig. 1C). The majority of the Ecdysozoa unigenes were classi-

fied as nematodes: 5,498 (79.95%) unigenes for the deep-sea

and 8,588 (64.96%) for the intertidal data set (fig. 1D).

Overall, 16.62% and 20.28% of the deep-sea and intertidal

unigenes, respectively, were assigned to nematodes.

Nematode Assembly

Based on their nematode top-BLAST hit 5,498 deep-sea

(H. hermesi) and 8,588 intertidal (GD1) unigenes were re-

tained for further analysis. Halomonhysterahermesi unigenes

had a maximum length of 7,235 bp and an average length of

943.07 bp. This was comparable to GD1 unigenes which had

FIG. 1.—Top BLAST classification of HMMV and intertidal unigenes resulting from the de novo transcriptome assembly. Classification was based on the

top-BLAST hit (BLASTx) after removal of redundant and non-ORF contigs. (A) Kingdom classification, (B) Eukaryota classification, (C) Metazoa classification,

and (D) Ecdysozoa classification. Taxonomic groups containing less than1% of the total amount of unigenes were combined with unigenes without a

classification and/or an environmental classification, and plotted under unclassified (A) or others (B–D).
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a maximum length of 8,783 bp and an average length of

837.39 bp (table 1). The amount of unigenes with a CDS

longer than 200 bp was lower for H. hermesi (5,227) than

for GD1 (8,102). GC content of the H. hermesi unigenes

was higher than that of the GD1 unigenes (56.11% vs.

48.71%, respectively).

Functional Annotation of the Full Transcriptomes

Using the KAAS, 2,985 H. hermesi unigenes (54.29%)

were assigned to 1,648 KO identifiers, whereas 4,548

GD1 unigenes (52.96%) were assigned to 2,166 KO iden-

tifiers. Both transcriptomes shared 1,246 KO identifiers

corresponding to 2,499 H. hermesi- and 3,244 GD1 uni-

genes. In addition, 402 KO identifiers were uniquely found

in H. hermesi (corresponding to 487 unigenes), and 920

KO identifiers were uniquely found in GD1 (corresponding

to 1,304 unigenes). These genes are further addressed as

uniquely expressed unigenes. The KO identifiers were

mapped to 245 shared pathways, and to three and ten

unique pathways for H. hermesi and GD1, respectively (full

data set in supplementary table S2, Supplementary

Material online). However, only 1–3 unigenes were

mapped to these unique pathways. The same three path-

ways were most represented in deep-sea and intertidal

nematodes: “protein processing in endoplasmic reticu-

lum,” “endocytosis,” and “spliceosome” (table 2). Of all

shared pathways, 40 had a higher amount of unigenes

mapped for H. hermesi than for GD1 (supplementary

table S2, Supplementary Material online). “Oxidative

phosphorylation” was the pathway with the highest dif-

ferences in mapped proteins, that is, eight additional

H. hermesi unigenes were mapped against this pathway

compared with GD1. A higher amount of GD1 unigenes

were mapped to 156 pathways compared with H. her-

mesi. The highest amount of additional GD1 unigenes

(i.e., 23) mapped against the Neuroactive ligand-receptor

interaction pathway. Equal amounts of GD1 and H. her-

mesi unigenes were mapped against 49 pathways (supple-

mentary table S2, Supplementary Material online). At the

level of protein families (full data in supplementary table

S3, Supplementary Material online), “enzymes” was by far

the most abundant category for both species (table 2).

Over/Underrepresentation of KEGG Pathways and Protein
Families in Uniquely Annotated H. hermesi- and GD1
Unigenes

Unigenes that were uniquely found in H. hermesi or GD1 were

considered to be characteristic of the deep-sea and intertidal

environment, respectively, and were used to investigate path-

ways that were over/underrepresented in a particular habitat.

Six KEGG pathways: “oxidative phosphorylation,” “ubiqui-

none” and “other terpenoid-quinone biosynthesis,”

“benzoate degradation,” “terpenoid backbone biosynthe-

sis,” “biosynthesis of ansamycins” and “fatty acid elonga-

tion” were significantly overrepresented in H. hermesi

unique unigenes (P values < 0.05), all belonging to the me-

tabolism category (fig. 2A). The unique unigenes were most

enriched in the oxidative phosphorylation (P = 2.92E�3) be-

longing to the overrepresented energy metabolism class (P =

4.01E�3; fig. 2A). A closer inspection of our data revealed that

the observed overrepresentation was due to NADH dehydro-

genase (ubiquinone) 1 alpha/beta subcomplex subunits, sev-

eral F- andV- type ATPase subunits, and succinate

dehydrogenase, involved in the electron transport chain at

the inner mitochondrial membrane. Three KEGG pathways

were significantly underrepresented: “tight junction,” “circa-

dian entrainment,” and “salivary secretion.” For GD1, over-

and underrepresented pathways in which unique unigenes

were involved belonged to a wider spectrum of molecular

pathways compared with the deep-sea transcriptome (fig.

2B). The most significant overrepresented pathway in GD1

uniquely annotated unigenes belonged to the neuroactive

Table 1

Summary of BLAST Results, Assembly Statistics, ORF Prediction, and Annotation of Unigenes with a Nematode Top BLAST Hit of Two Targeted

Locations and Species: HMMV (deep sea, Halomonhystera hermesi) and Western Scheldt (intertidal, GD1)

Stage Deep Sea Intertidal Total

BLAST result Unigenes with at least one BLAST result 33,079 42,409 75,429

Nematode assembly Contigs with nematode top BLAST hit (unigenes) 5,498 8,588 14,086

N50 length (bp) 1,378 1,169

Max length (bp) 7,253 8,783

Average length (bp) 943.07 837.39

Average coverage per base 14.07 20.43

GC content unigenes (%) 56.11% 48.71%

ORF prediction Unigenes with predicted ORF (CDS � 200bp) 5,227 8,102 13,329

KEGG annotation Unigenes assigned to KO identifier 2,985 4,548 7,533

Unique KO identifiers 1,648 1,246 2,894

Go annotation Mapped to GO terms 5,014 7,822 12,836

Unigenes annotated with GO terms 3,657 5,636 9,293
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ligand-receptor interaction pathway (p = 2.24E�7; fig. 2B) and

was mostly the result of G-protein coupled receptors in the

GD1 transcriptome which were not expressed in H. hermesi.

Six other overrepresented pathways were “tropane,” “piper-

idine and pyridine alkaloid biosynthesis,” “signaling pathways

regulating pluripotency of stem cells, ribosome,” “sulfur relay

system,” “ubiquitin mediated proteolysis,” and “mismatch

repair.” Many more pathways were underrepresented in

GD1 compared with underrepresented H. hermesi pathways

(supplementary table S4, Supplementary Material online). The

top 3 were “fatty acid metabolism” (P = 1.07E�4), “tight

junctions” (P = 3.54E�4), and “fatty acid biosynthesis” (P =

7.01E�4).

Only protein families involved in genetic information pro-

cessing were significantly (P = 4.42E�5) overrepresented in H.

hermesi unique genes as a result of overrepresented unique

unigenes involved in “transcription factors,” “proteasome,”

“t-RNA biogenesis,” and “ribosome biogenesis” (fig. 3A),

Table 2

Top 20 Selected KEGG Metabolic Pathways of Putative Proteins Mapped Using KEGG Database

Full transcriptome Unique unigenes RNAseq unigenes

H. hermesi GD1 H. hermesi GD1 OE in H. hermesi OE in GD1 EE

KEGG pathways Protein processing in endoplasmic reticulum 52 60 11 19 9 10 0

Endocytosis 46 60 10 24 4 2 1

Spliceosome 44 54 9 19 5 2 0

Oxidative phosphorylation 43 35 17 9 6 3 1

Rap1 signaling pathway 41 52 7 18 6 1 0

Purine metabolism 38 53 8 23 2 0 1

Focal adhesion 38 41 7 10 3 1 0

MAPK signaling pathway 37 45 11 19 4 3 0

Carbon metabolism 37 39 8 10 9 2 3

Lysosome 37 37 5 5 1 1 1

Regulation of actin cytoskeleton 36 46 5 15 5 2 1

PI3K-Akt signaling pathway 35 50 5 20 3 4 1

cAMP signaling pathway 35 43 3 11 4 2 0

Oxytocin signaling pathway 34 38 4 8 3 2 0

RNA transport 33 42 10 19 0 2 1

Ras signaling pathway 32 42 9 19 0 3 1

AMPK signaling pathway 32 33 7 8 3 4 0

cGMP—PKG signaling pathway 31 35 3 7 2 4 0

Insulin signaling pathway 29 41 5 17 8 1 0

Adrenergic signaling in cardiomyocytes 28 26 3 1 3 3 0

Protein families Enzymes 708 901 161 354 59 44 14

Exosome 160 188 22 50 12 21 9

Transporters 123 144 22 43 7 6 0

Protein kinases 111 139 19 47 10 12 3

Chromosome 105 157 27 79 3 10 3

Spliceosome 93 118 21 46 12 6 0

Peptidases 91 111 20 40 8 6 1

Protein phosphatases and associated proteins 75 95 17 37 4 4 0

Mitochondrial biogenesis 65 77 21 33 8 4 1

Ubiquitin system 65 102 22 59 3 2 0

Ribosome biogenesis 59 78 16 35 11 10 0

Transcription machinery 57 74 10 27 2 5 2

Chaperones and folding catalysts 51 54 12 15 7 10 0

Ion channels 49 61 14 26 2 0 1

Transcription factors 43 71 17 45 1 1 0

Cytoskeleton proteins 43 52 8 17 3 3 2

DNA repair and recombination proteins 36 52 12 28 2 3 1

Transfer RNA biogenesis 34 46 11 23 1 3 1

Proteasome 33 30 10 7 3 7 0

Cell adhesion molecules and their ligands 32 48 7 23 1 2 0

NOTE.—Data of the full nematode transcriptome, the unique unigenes, equally(EE)-, and overexpressed (OE) RNAseq unigenes for Halomonhystera hermesi and GD1 is
represented.
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whereas exosome involved proteins were underrepresented.

The two most overrepresented protein families in GD1 unique

unigenes were G-protein-coupled receptors (P = 5.26E�16)

and transcription factors (P = 3.32E�9; fig. 3B). Except for

the overrepresentation of prenyltransferases, all other overrep-

resented protein families are involved in genetic information

processing (P = 3.43E�11).

GO Classification of the Full Transcriptomes

GO terms were assigned to 3,657 (72.94%) H. hermesi and

5,636 (72.05%) GD1 unigenes which could be classified into

three categories: cellular component, molecular function, and

biological process (fig. 4). The BINGO analysis of each GO data

sets separate compared with both data sets combined did not

reveal any overrepresented level 2 GO-terms. As such, GO

annotation were highly similar between intertidal and deep-

sea samples and reflected very well annotation patterns

observed in the nematode Caenorhabditis elegans (depicted

from geneontology.org). GO-annotation yielded 6,108 H. her-

mesi- and 9,591 GD1 GO cellular component annotations,

5,086 H. hermesi and 7,417 GD1 molecular function annota-

tions, and 15,981 H. hermesi and 23,692 GD1 GO annota-

tions for biological process. Within the cellular component

category 32.95% and 32.69% of GD1 and H. hermesi uni-

genes were assigned to “Cell,” followed by “Organelle”

(22.48% and 21.45%), “Membrane” (19.78% and

20.95%) and “Macromolecular Complex” (13.43% and

12.45%) (fig. 4). GO term assignment of H. hermesi- and

GD1 unigenes, respectively, within the molecular function

category, was dominated by “Binding” (40.59% and

40.61%) and “Catalytic activity” (35.40% and 33.39%)

(fig. 4). “Receptor activity” and “nucleic acid binding tran-

scription factor activity” were significantly overrepresented

in GD1 unique unigenes (P values = 3.18E�5 and 1.80E�6,

respectively). Finally, within the biological process category

12 GO-terms captured more than 90% of the assignments

FIG. 2.—Visualization of overrepresented KEGG pathways in unique H. hermesi (A) and GD1 (B) unigenes. Each hexagon represents either a KEGG

pathway or higher order category according to BRITE hierarchy. White hexagons are not significant categories while colored ones represent the FDR P values.
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of which “Single-Organism Process,” “Cellular Process,” and

“Metabolic Process” were the three largest classes for both

transcriptomes (fig. 4).

Overrepresentation of GO Terms in Unique Unigenes

The addition of selected PROmer hits resulted into 2,492

H. hermesi- and 4,752 GD1 unique unigenes.

Halomonhysterahermesi unique unigenes only showed over-

represented GO terms from the molecular function category

(P values in table 3) related to “enzyme inhibitor- and pepti-

dase regulator activity” (supplementary fig. S1,

Supplementary Material online). Much more overrepresented

GO terms in GD1 unique unigenes were found (supplemen-

tary table S5, Supplementary Material online). Several GO

terms involved in transcription, for example, transcription

factor complex (cellular component, supplementary fig. S2,

Supplementary Material online), sequence-specific DNA bind-

ing (molecular function, supplementary fig. S3,

Supplementary Material online), and regulation of transcrip-

tion (biological process, supplementary fig. S4, Supplementary

Material online), were overrepresented in GD1 (P values in

table 3). Moreover, overrepresented GO terms dealing with

signaling pathways, for example, receptor- and kinase activity

were prominent in both the molecular function and biological

process category for GD1.

Positive Selection, Amino Acid Composition, and
Codon Usage

Filtering PROmer hits based on similarity (�75%) and

alignment length (�300 bp) resulted into 1,053 hits with

the same functional annotation in both data sets. GC con-

tent of H. hermesi unigenes (58.97%) was significantly

FIG. 3.—Overrepresented protein families (BRITE mapping) in unique H. hermesi (A) and GD1 (B) unigenes. Parent-child relations are represented by

arrows between hexagons. Hexagons’ colors represent FDR P values from white, being not significant, to red, being highly significant.
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higher (P < E�6) compared with corresponding GD1 se-

quences (50.96%). Genetic divergence (uncorrected

p-distances) between orthologous pairs ranged from

8.3% to 40.1%. Mean values of Ka, Ks and Ka/Ks ratio

(fig. 5A) were 0.125, 3.266 and 0.0453, respectively. Of

the orthologous pairs only three had a Ka/Ks � 1 which

were mapped to three different KEGG pathways:

“proteasome (20S proteasome subunit beta 3),”

“Spliceosome (splicing factor U2AF 65 kDa subunit),”

and “tight junctions (Myosin heavy chain).”

In both transcriptomes, GC rich codons were more fre-

quently used, but this was especially true for the deep-sea

transcriptome (fig. 5B). All codon differences were significant

(supplementary table S6, Supplementary Material online). The

relative frequency of amino acids (AAs) with GC-rich codons

(Alanine, and Arginine) was significantly higher (both P values

= 0.00105) in H. hermesi (fig. 5B). In contrast, GD1 had sig-

nificantly higher relative frequency of AAs with AU-rich

codons (fig. 5C) such as Isoleucine (P = 0.00105), Lysine (P

= 0.00672), and Asparagine (P < E-6). In addition, GD1 had

higher frequencies of Threonine (P = 0.01467), while relative

frequencies of Valine (P = 0.00544), Histidine (P = 0.0117),

and Leucine (P = 0.0129) were higher in H. hermesi. Summary

statistics of the null distribution and P values can be found in

supplementary table S7, Supplementary Material online.

Differential Expression of Shared Genes between
Intertidal and Deep-Sea Nematodes

The de novo assembly, based on H. hermesi- and GD1 uni-

genes collectively, resulted in 3,345 unigenes with a CDS

larger 200 bp. We identified 740 and 1,693 unigenes exclusive

to H. hermesi and GD1, respectively, and 1,014 unigenes ex-

pressed in both species of which 845 were significantly differ-

entially expressed (Kal’s Z-test). After applying the KO filtering

on the 1,014 unigenes, we retained 142 and 118 unigenes

that were differentially overexpressed in H. hermesi and GD1,

respectively, whereas 90 were equally expressed.

We further focus on those genes that are involved in KEGG

pathways and protein families that were shown to be over/

underrepresented, allowing us to now compare gene expres-

sion levels of shared genes in these categories. Seven shared

unigenes that are involved in transcription had a significantly

higher gene expression for GD1 compared with four H.

FIG. 4.—GO annotation (Level 2) based on transcriptomic data of H. hermesi, GD1, and C. elegans. Unigenes were classified into three categories:

cellular components, molecular functions, and biological processes. Caenorhabditis elegans data were inferred from geneontology.org.
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hermesi overexpressed unigenes. Out of nine shared unigenes

involved in oxidative phosphorylation, six revealed to have

higher gene expression levels for H. hermesi (fig. 6). We ob-

served very high gene expression differences for cytochrome c

oxidase subunit I (COX1) between both species. Moreover,

two subunits of the electron transport chain complex III, ubi-

quinol-cytochrome c reductase cytochrome c1 subunit

(CYC1), and ubiquinol-cytochrome c reductase core subunit

2 (QCR2) had significantly higher gene expression values in

H. hermesi.

Discussion

Halomonhystera hermesi and GD1 have a very similar mor-

phology but were considered different species based on their

genetic differentiation at mitochondrial and nuclear loci (Van

Campenhout et al. 2013). The phylogenetic position of

H. hermesi amidst the intertidal species suggests that H. her-

mesi has originated from shallow water relatives followed by

adaptive evolution in the deep sea. However, no typical cold-

seep adaptations such as ecto- and/or endosymbionts or sulfur

crystal were observed (Van Gaever et al. 2006, 2009), which

suggests that adaptations are situated at the molecular level.

Our results revealed that both species use the same molecular

pathways to cope and survive in their distinct environment.

Nevertheless, we found a higher amount of unigenes and

active pathways in GD1, and most shared unigenes were dif-

ferentially expressed between both species. Gene expression

can be influenced by environmental factors (Lobo 2008) and

our results revealed that different pathways were overrepre-

sented in each environment suggesting that these pathways

are of high importance to survive in the respective environ-

ment. The experimental procedure to collect specimens from

either habitat may have added additional differences in gene

expression between both habitats, and we may also have

missed some very low expressed genes due to the normaliza-

tion step. In addition, sex ratio differences between both pop-

ulations might have influenced our results. Nevertheless, we

believe that our approach is the most solid and feasible way

for comparing the transcriptomes of both species in such dif-

ferent habitats.

Transcription and Signaling Receptor Activity Are More
Strongly Expressed in Intertidal Environments

Our data disclosed a higher amount of unigenes, more over-

represented GO terms and a wider spectrum of molecular

Table 3

Significantly Overrepresented GO Terms of Unique H. hermesi and GD1 Unigenes in Comparison to the Whole Transcriptome of Both Species

GO Category Species GO-ID FDR Corrected P Value Description

Cellular component GD1 GO:0005667 1.2165E-2 Transcription factor complex

Molecular function H. hermesi GO:0030414 5.2388E-5 Peptidase inhibitor activity

GO:0004857 8.0869E-5 Enzyme inhibitor activity

GO:0004866 1.1168E-4 Endopeptidase inhibitor activity

GO:0061134 1.3406E-4 Peptidase regulator activity

GO:0061135 1.4138E-4 Endopeptidase regulator activity

GO:0004867 2.5001E-4 Serine-type endopeptidase inhibitor activity

GD1 GO:0004930 1.2256E-15 G-protein coupled receptor activity

GO:0043565 2.0797E-7 Sequence-specific DNA binding

GO:0038023 1.4593E-6 Signaling receptor activity

GO:0004872 3.9906E-6 Receptor activity

GO:0004888 5.1755E-6 Transmembrane signaling receptor activity

GO:0001071 2.2160E-5 Nucleic acid binding transcription factor activity

GO:0003700 2.2160E-5 Sequence-specific DNA binding transcription factor activity

GO:0005272 6.6765E-5 Sodium channel activity

GO:0009022 2.8690E-4 tRNA nucleotidyltransferase activity

GO:0042302 3.0103E-4 Structural constituent of cuticle

GO:0004871 4.5351E-4 Signal transducer activity

GO:0060089 4.5351E-4 Molecular transducer activity

GO:0030971 4.5661E-4 Receptor tyrosine kinase binding

Biological process GD1 GO:0051171 4.4070E-3 Regulation of nitrogen compound metabolic process

GO:0019219 4.4070E-3 Regulation of nucleobase-containing compound metabolic process

GO:0008033 1.0951E-2 tRNA processing

GO:1903506 1.0951E-2 Regulation of nucleic acid-templated transcription

GO:0006355 1.0951E-2 Regulation of transcription, DNA-templated

GO:2001141 1.0951E-2 Regulation of RNA biosynthetic process

GO:0043628 1.0951E-2 ncRNA 30-end processing

GO:0007186 1.4586E-2 G-protein coupled receptor signaling pathway
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FIG. 5.—Alignment of H. hermesi and GD1 orthologous pairs were used to determine (A) Ka, Ks and Ka/Ks ratio, (B) amino acid frequencies, and

(C) codon frequencies. Significant difference between amino acid frequencies are indicated with an asterisk. All codon frequency differences were always

significantly different between both species.
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overrepresented pathways in GD1. Transcription factors were

clearly more overrepresented in GD1: 71 transcription factors,

based on BRITE protein families, and 20 basal transcription

factors, based on KEGG pathways, were found in GD1

whereas 43 transcription factors (protein families) and 11

basal transcription factors were detected in H. hermesi.

Moreover, of the shared genes most unigenes involved in

transcription had higher gene expression values for GD1 com-

pared with H. hermesi. This suggests that the activation and

expression of transcription factors is much more prominent in

species that inhabit fluctuating environments. Intertidal

mudflats, the preferred habitat for GD1, are highly dynamic

systems that are characterized by rapid changes in environ-

mental variables (de Brouwer et al. 2006). Organisms in fluc-

tuating environments must constantly adapt their behavior to

survive (Kussell and Leibler 2005) and can perform faster tran-

scriptional reprogramming (New et al. 2014). The ability to

rapidly respond to changing environmental features further

relies on sensing these changes (Lopez-Maury et al. 2008).

Other prominent overrepresented GO terms in GD1 nema-

todes were the G protein-coupled receptors (GPCRs).

Moreover, more than three times more GPCRs were identified

in GD1 compared with H. hermesi. The high amount of GPCRs

further resulted in an enrichment of the neuroactive ligand-

receptor interaction class (environmental information process-

ing). GPCRs consist of chemosensory receptors which mediate

most cellular responses to hormones and neurotransmitters

and are able to detect extracellular chemical stimuli converting

them to intracellular responses (Mombaerts 1999). The enrich-

ment in GPCRs is a clear indication of a heightened sensorial

and neural activity of GD1 compared with H. hermesi. This,

and the higher amount of transcription factors and higher

gene expression values of shared genes in GD1 illustrate the

importance of species to swiftly detect and respond environ-

mental changes to be able to live in variable environments.

Oxidative Phosphorylation and Fatty Acid Metabolism Are
More Strongly Expressed in Deep-Sea Environments

Oxidative phosphorylation is the mitochondrial process in

which the energy released by the transfer of electrons over

electron transport carriers is used to establish a proton gradi-

ent which in turn is employed to produce energy under the

form of ATP (Voet et al. 2006). Our results show that this

process is more strongly expressed in H. hermesi and 43

H. hermesi unigenes were mapped against the oxidative

phosphorylation compared with 35 mapped GD1 unigenes.

Interestingly, we have identified a number of overexpressed

genes, part of complex III (electron transport chain) in H. her-

mesi. The HMMV, the habitat of H. hermesi, is a chemosyn-

thetic environment characterized by high hydrogen sulfide

concentrations (Van Gaever et al. 2006). Hydrogen sulfide is

a toxin that is capable of impairing biological processes in

Metazoa. The toxicity of sulfide is mainly a result of inhibition

of aerobic respiration by inhibition of cytochrome c oxidase

(NRC 1979) and thus interfering with cellular respiration

(Somero et al. 1989; Vismann 1991). Interestingly, the most

overexpressed gene in H. hermesi involved in oxidative phos-

phorylation was cytochrome c oxidase c subunit I which might

be a countermeasure to overcome sulfide poisoning. Sulfide

can also be oxidized in the mitochondria and electrons can be

incorporated into the electron transport chain by ubiquinone

or ubiquinol-cytochrome-c oxidoreductase (complex III) (Powell

and Somero 1986; Russell et al. 1989; Völkel and Grieshaber

1996). A higher expression of specific complex III genes might,

therefore, be an important adaptation to sulfidic environ-

ments. However, oxidative phosphorylation is also influenced

by a variety of other abiotic factors such as temperature

(Toffaletti et al. 2003), pressure (Theron et al. 2000), salinity

(Li et al. 2014), and oxygen levels (Mustroph et al. 2010).

Oxygen levels rapidly deplete beneath 1 mm sediment depth

at the HMMV (de Beer et al. 2006) while H. hermesi was

FIG. 6.—Expressed unigenes involved in oxidative phosphorylation for H. hermesi and GD1. Significant differences (P < 0.05) are indicated with

an asterisk. SDHB, succinate dehydrogenase (ubiquinone) iron-sulfur subunit; CYC1, ubiquinol-cytochrome c reductase cytochrome c1 subunit; QCR2,

ubiquinol-cytochrome c reductase core subunit 2; ATPeV1C, V-type H+-transporting ATPase subunit C ; COX1, cytochrome c oxidase subunit 1; NDUFA10,

NADH dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 10 ; ATPeF1A, F-type H+-transporting ATPase subunit alpha; ATPeV1H, V-type

H+-transporting ATPase subunit H; NDUFV1, NADH dehydrogenase (ubiquinone) flavoprotein 1; NDUFB10, NADH dehydrogenase (ubiquinone) 1 beta

subcomplex subunit 10.
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identified up to 10 cm sediment depth. The effect of low

oxygen levels include the induction of fermentation and gly-

colysis (Mustroph et al. 2010), influence mitochondria fusion

(Tondera et al. 2009), mitochondrial biogenesis (Qin et al.

2014), and mitochondrial organelle number and volume

(Gupta 2002), which implies that mitochondria are key players

in the adaptation to low oxygen concentrations. Furthermore,

the AMP-activated protein kinase signaling pathway, which is

rapidly induced by low oxygen levels (Laderoute et al. 2006)

was underrepresented in GD1 suggesting that oxygen levels

are important. In summary, our results indicate that sulfide-

and oxygen concentrations are presumably the most impor-

tant environmental features explaining overrepresentation of

genes involved in oxidative phosphorylation in H. hermesi

unigenes.

The deep-sea species further showed a clear response in

fatty acid elongation compared with GD1. We observed an

overrepresentation of the fatty acid elongation pathway

whereas the fatty acid metabolism was underrepresented in

GD1 both in KEGG and GO annotations. A recent study

revealed that H. hermesi has higher proportions of highly un-

saturated fatty acids (HUFAs, chain length � 20 carbons and

� 3 double bond) due to increased proportions of eicosapen-

taenoic acid (EPA–20:5o3) and the presence of docosahexa-

noic acid (DHA–22:6o3) which was absent in GD1 (Van

Campenhout J and Vanreusel A submitted for publication).

These HUFAs are believed to be essential in maintaining mem-

brane fluidity under pressure (Yano et al. 1997) and docosa-

hexaenoic acid (DHA–C22:6o3) was hypothesized to be the

key to homeoviscous adaptations to depth and temperature

changes in vertically migrating planktonic copepods (Pond

et al. 2014). Given the absence of these HUFAs in the food

source of H. hermesi (Van Gaever et al. 2009), the nematode

has most likely the ability to synthesize these HUFAs. EPA, and

DHA can be assimilated into triglyceride forms and stored until

they are required for incorporation in the membrane, beta-

oxidation, signalizing activity, etc. (Williams and Burdge 2006;

Reisner 2012). Our results at the molecular level now confirm

that these HUFAs are indeed important to deep-sea adaptation.

GC Content, Amino Acid Composition, and Codon
Usage Differs between Deep-Sea and Intertidal Species

Our results revealed that the genetic divergence (uncorrected

p-distances) between orthologous pairs ranged from 8.3% to

40.1%. This observation further confirms the identity of both

species and is influenced by the significant higher GC content

in H. hermesi than in GD1 orthologous pairs. To date, many

hypothesis such as directional mutation pressure (Sueoka

1988), metabolism (Martin 1995), CDS length (Oliver and

Marin 1996), nitrogen fixation, genome size (Musto et al.

2006), DNA polymerase III subunit alpha (Zhao et al. 2007),

and environmental pressure (Foerstner et al. 2005) have

been postulated to explain varying GC contents. The GC

content of both Halomonhystera species is correlated with

codon usage bias, especially at the third codon position and

with amino acid content, a pattern that has been frequently

observed (Bernardi 1985; Wilquet and Van de Casteele 1999;

Basak et al. 2004; Foerstner et al. 2005). Furthermore, nucle-

otide bias can have a dramatic effect on the amino acid com-

position of encoded proteins (Lobry 1997; Singer and Hickey

2000) and it is currently believed that amino acid composition

is more correlated to GC-content of the genome than to en-

vironment (Moura et al. 2013). In addition, arginine and ala-

nine have been postulated as the “most piezophilic amino

acids,” playing a role in adaptation to the piezophilic lifestyle

in organisms (Di Giulio 2005; Jun et al. 2011; Pradel et al.

2013). One possible reason is the cost of ATP synthesis im-

posed on H. hermesi by low oxygen levels, low temperatures,

and high sulfide concentrations. Whatever the driving force

behind the GC content differences might be, it is clear that the

different environments indirectly result in different codon

usage with relatively small differences in amino acid

abundances.

Few Gene Were Under Selection whereas Many Genes
Were Uniquely Expressed

Adaptation depends on the natural selection of individuals

with higher fitness thereby increasing their chance to produce

more viable offspring (Darwin 1859). We could detect three

genes that are subjected to positive selection. The 20S protea-

some subunit beta 3 is part of the large 20S proteasome (28

subunits) the barrel shaped cylindrical core of the 26S protea-

some, which degrades ubiquitinated proteins in an ATP-

dependent process (Voet et al. 2006). This subunit has no

catalytic activity (Jung et al. 2009) and its exact role in deep-

sea adaptation remains unknown. The Splicing factor U2AF

65 kDA subunit is part of the U2 auxiliary factor important in

mRNA splicing by recognizing the polypyrimidine tract at the

30-end of introns (Wahl et al. 2009). U2AF65 preferentially

binds on uridine-rich sites with frequent interruptions by cyti-

dine residues but variation in the tract sequences and length

affects the efficiency of splice site recognition (Singh et al.

1995). Halomonhysterahermesi has a higher GC content

which might constrain the presence of uridine rich tracts

in mRNA impairing the U2AF65 binding efficiency. Positive

selection on U2AF65 might, therefore, be an indirect result

of environmental factors acting on GC content and can be

essential to better recognize splice sites. In addition, mecha-

nisms such as alternative splicing are known to be a response

to external stimuli and play an important role in gene function

diversification and regulation (Stamm 2002; Ramani et al.

2011) but knowledge on its true role in adaptation remains

scant.

The “myosin heavy chain” is involved in tight junctions and

its amino acid composition can adaptively alter its pressure

sensitivity (Morita 2008, 2010). Tight junctions,
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underrepresented in GD1, establish physiological barriers that

regulate the movement of ions, small solutes, and fluid be-

tween tissue compartments (Gonzalez-Mariscal et al. 2003).

Both osmotic pressure and hydrostatic pressure are known to

affect tight junctions (Tokuda et al. 2009; Gunzel and Yu

2013), suggesting that pressure and salinity may be important

drivers for the adaptive changes in both species. In contrast to

the low number of genes detected to be under positive selec-

tion, we observed a high rate of synonymous substitutions for

those genes that were identified in both species. This high-

lights that new mutations which give rise to amino acid

changes are removed from the populations by purifying selec-

tion, and that these genes are under high functional con-

straint. However, the molecular basis of adaptation is not

only restricted to CDS but also includes noncoding regulatory

sequences, for example, promoters (Lopez-Maury et al. 2008)

and enhancers (Kamachi et al. 2009). Functionally important

nontranslated sequences have been hypothesized to also be

subject to positive and purifying selection (Andolfatto 2005).

We currently lack information on these regulatory sequences

and further research is required.

The low amount of genes under selection can be the result

of several possibilities. First, increase in synonymous substitu-

tion rates may obscure detection of genes under positive

selection (Erixon and Oxelman 2008). Second, it has been

suggested that also synonymous sites are subject of nonneu-

tral evolution (Chamary et al. 2006), but our analysis did not

accounted for this. Third, we lack any information on adaptive

evolution of uniquely expressed genes which might be under

selection. Fourth, under the hypothesis that H. hermesi has an

intertidal ancestor, this ancestor might have been preadapted

to certain deep-sea conditions. Intertidal sediments, as well as

decaying macroalgae, show similar environmental character-

istics as a cold-seep environment such as hypoxic/anoxic con-

ditions and high sulfide concentration as well as low

temperatures in the winter and temporary high salinity levels

are not out of the ordinary. As such, several genes might have

been preadapted allowing synonymous mutations to

accumulate.

Finally, many genes were uniquely expressed in both spe-

cies. However, caution is required for the correct interpreta-

tion of our results as we here compared two species (without

genomic data available) from two different environments and

sampled only a single point in time. As such, it remains to be

investigated whether the uniquely expressed genes are the

result of adaptive evolution of, for example, regulatory se-

quences, or are in fact the result of environmental signals

acting at the level of gene expression regulation at the time

of sampling. Our results, combined with the tolerance of GD1

for bathyal cold-seep conditions (Van Campenhout et al.

2014), do suggest that plasticity should be taken into account.

It remains to be determined to what extent plasticity or pread-

aptation of intertidal nematodes played a role in adaptive

evolution of cold-seep nematodes.

Conclusion

In our study, the transcriptomes of two phylogenetically

closely related marine nematode species from contrasting en-

vironments (deep sea and intertidal) have been compared. We

revealed that most pathways are shared between both habi-

tats, but several pathways and genes were differentially ex-

pressed in different habitats. Oxidative phosphorylation and

fatty acid metabolism/elongation appeared to be of higher

importance in the deep sea. In addition, we observed a

higher GC content in H. hermesi resulting in higher amino

acid frequencies with GC-rich codons affecting codon usage

between H. hermesi and GD1 orthologous. Meanwhile the

dynamic feature of GD1’s habitat was reflected in higher

amounts of transcription factors, more strongly expressed sig-

naling receptor activity, and a higher amount of active path-

ways and genes. Many genes were uniquely expressed in one

species and only few genes show a signal that natural selec-

tion has been involved in their evolution. This indicates that

Halomonhystera species might be preadapted to specific

environmental conditions such as low oxygen levels and

high sulfide concentrations.

Supplementary Material

Supplementary material is available at Genome Biology and

Evolution online (http://www.gbe.oxfordjournals.org/).
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