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Abstract

ARIMA models are often used to model the evolution in time of eco-

nomic issues. We demonstrate that an ARIMA model is also valuable in

the environmental field, where the evolution of climate change is causing

many concerns. Can we confirm the global warming by mathematical

prediction theories?
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1 Introduction

In Belgium temperature has been recorded since 1850. To model the evolution

of this temperature as part of the climate change, we have used data from

the environmental report Flanders (MIRA) [7]. As a measure of the change of

temperature we used the variable y, where

y = mean yearly temperature−mean temperature during the period 1850-1899.

This is plotted in Figure 1 together with the 10 year moving average. In Fig-

ures 2 and 3 the same measure is presented for European and worldwide data

respectively, during the same time period [7]. Our aim is to forecast the evolu-

tion of temperature based on these time series.

In real-life research and practice, data patterns are hidden and individual

observations are subject to errors. But to make reliable forecasts, we need a

mathematical model of the process. Time series are characterized by the depen-

dence of their data. As the independence of the data is one of the assumptions

of regression analysis where time is the independent variable, this method is

inappropriate to model the trend of a time series. To analyze dependence data,

Box & Jenkins [3] [4] developed ARIMA models for time series; these are well

described in [6] and [2].
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Figure 1: Difference data and 10 year moving average of Belgian temperatures.

2 The ARIMA model

2.1 Definitions

The acronym ARIMA stands for Auto-Regressive Integrated Moving Average.

Algebraically the ARIMA model can be defined by

yt = µ+ b1 yt−1 + . . .+ bp yt−p + ǫt − a1 ǫt−1 + . . .− aq ǫt−q (1)

at time t = 1, . . . , n, where ǫt−j (j = 0, 1, . . . , q) are the lagged forecast errors.

The p+ q+1 unknown parameters µ, b1, . . . bp and a1, . . . aq are determined by

minimizing the squared residuals. In the first part of the righthand side of (1)

the dependent variable yt is predicted, based on its values at earlier time periods.

This is the autoregressive (AR) part of the equation (1). In the second part,

the dependent variable y also depends on the values of the residuals at earlier

time periods, which may regarded as prior random shocks. This is the moving

average (MA) part of the equation. It is the task of the researcher analyzing a

given time series, to find the relevant parameters of the ARIMA(p, d, q) model

with
p the number of autoregressive terms

d the number of nonseasonal differences

q the number of lagged forecast errors in the prediction equation.
Two goals must be met, namely to find the most effective model and to restrict

the number of parameters. The residuals should also fulfil the conditions of

independence and normality.
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Figure 2: Difference data and 10 year moving average of European temperatures.

2.2 Stationary time series

An important condition for ARIMA models and possibly their weak point is

that the time series should be stationary (i.e. the mean and variance should be

constant as a function of time) before the analysis can be carried out. Otherwise,

past effects would accumulate and the values of successive yt’s would move

towards infinity, that is, the series would not be stationary. The observations

with ARIMA models should be filtered first by differencing the observations d

times, using ∆dyt instead of yt as the time series to obtain stationary data, with

∆yt = yt − yt−1. (2)

A time series which needs to be differenced to be made stationary is said to be

an integrated version of a stationary series. To analyze the stationary character

of the time series we have used the Box-Pierce test with the summed squares of

the sample correlations as the test statistic [4]. The p-value of this test should

be compared with the significance level α. When the p-value is too small, the

null hypothesis that states that the time series is stationary, will be rejected.

2.3 Identification and evaluation of the Model

To identify the appropriate ARIMA model for a time series, one begins by

identifying the order of differencing needed to obtain a stationary series and

to remove the major seasonality. If one stops after the first differencing and

predicts that the differenced series is constant, one has merely fitted a random
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Figure 3: Difference data and 10 year moving average of global temperatures.

walk or random trend model. However, the best random walk or random trend

model may still have autocorrelated errors, suggesting that additional factors of

some kind are needed in the prediction equation.

In addition to the standard autoregressive and moving average parameters,

the ARIMA model (1) may also include a constant µ. The interpretation of

such a (statistically significant) constant depends on the model that is fitted:

• if there are no autoregressive parameters in the model, then the expected

value of the constant is the mean of the series,

• if there are autoregressive parameters in the series, then the constant

represents the intercept,

• if the series is differenced, then the constant represents the mean or inter-

cept of the differenced series.

To evaluate the parameter estimates, a t-test is performed. If not significant,

the respective parameter can in most cases be dropped from the model without

substantially affecting the overall fit of the model.

A good model should produce statistically independent residuals that con-

tain only noise and no systematic components. To ensure this one can plot the

residuals and inspect them for any systematic trends.

To compare models the AIC (Akaike information criterion) [1] is used as a

measure of goodness of fit. The test statistic (3)

AIC = 2 k + n [ln(2π RSS/n) + 1] (3)
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is used, with k the number of parameters in the model, n the number of obser-

vations and RSS the residual sum of squares. A model with a lower AIC value

is preferred as it better explains the data with a minimum of free parameters.

3 Analyzing the data

We used the 10 year moving average described in Section 1. The computations

were carried out by means of the software Time Series Modelling v4.30 [8]. We

used the Box-Pierce test to investigate whether the series is stationary. For all

data one differentiation was needed to make the time series stationary, so d = 1.

Tables 1, 2 and 3 contain several measures to evaluate the ARIMA model

(restricted to 3 parameters) for different p and q values based on Belgian, Eu-

ropean and global data respectively. The AIC value (3), the p-value of the

Box-Pierce test and the significance levels of the different parameters of the

model (with and without constant) for the null hypothesis H0 : parameter=0,

are given.
p 0 0 1 1 2 2

q no µ with µ no µ with µ no µ with µ

152 153 150 151

0 0.401 0.126 0.438 0.169

0.13(b1)
0.06(µ)

0.229(b1)

0.19(b1)

0.168(b2)

0.094(µ)

0.29(b1)

0.271(b2)

153 153 151 152 149

1 0.388 0.128 0.415 0.140 0.260

0.14(a1)
0.053(µ)

0.241(a1)

0.178(b1)

0.397(a1)

0.158(µ)

0.110(b1)

0.306(a1)

0.274(b1)

0.072(b2)

0.162(a1)

153 154 151

2 0.305 0.119 0.301

0.181(a1)

0.103(a2)

0.095(µ)

0.252(a1)

0.180(a2)

0.822(b1)

0.396(a1)

0.103(a2)

Table 1. Identification and evaluation parameters of the ARIMA model for

Belgian temperature changes (restricted to three parameters).
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p 0 0 1 1 2 2

q no µ with µ no µ with µ no µ with µ

226 227 227 228

0 0.761 0.804 0.643 0.623

0.594(b1)
0.066(µ)

0.777(b1)

0.624(b1)

0.001(b2)

0.115(µ)

0.78(b1)

0.003(b2)

227 229 229 226 227

1 0.786 0.847 0.887 0.767 0.513

0.589(a1)
0.060(µ)

0.772(a1)

0.000(b1)

0.000(a1)

0.051(µ)

0.000(b1)

0.000(a1)

0.178(b1)

0.002(b2)

0.081(a1)

231 231 229

2 0.507 0.480 0.439

0.403(a1)

0.001(a2)

0.117(µ)

0.501(a1)

0.002(a2)

0.160(b1)

0.098(a1)

0.001(a2)

Table 2. Identification and evaluation parameters of the ARIMA model for

European temperature changes (restricted to three parameters).

p 0 0 1 1 2 2

q no µ with µ no µ with µ no µ with µ

417 418 414 415

0 0.300 0.464 0.290 0.488

0.000(b1)
0.078(µ)

0.000(b1)

0.000(b1)

0.732(b2)

0.073(µ)

0.000(b1)

0.969(b2)

411 414 417 418 413

1 0.607 0.645 0.234 0.362 0.238

0.000(a1)
0.004(µ)

0.000(a1)

0(b1)

0.419(a1)

0.362(µ)

0.011(b1)

0.659(a1)

0(b1)

0.162(b2)

0.045(a1)

413 416 419

2 0.603 0.648 0.327

0.000(a1)

0.008(a2)

0.008(µ)

0.000(a1)

0.024(a2)

0(b1)

0.003(a1)

0.006(a2)

Table 3. Identification and evaluation parameters of the ARIMA model for

global temperature changes (restricted to three parameters).

Based on Table 1 and Table 3, one can see that the ARIMA(1, 1, 0) method

with constant is appropriate to predict the temperature evolution in Belgium
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and worldwide. Hence

∆ybt = 0.01387 + 0.11145 yt−1 + ǫt (4)

is a suitable model for Belgium, while

∆ywt = 0.00223 + 0.58293 yt−1 + ǫt (5)

is suitable worldwide. Based on Table 2, the ARIMA(1, 1, 1) method without

constant seems to be more appropriate to predict the temperature evolution in

Europe, so that

∆yet = 0.95734 yt−1 + 0.88786 ǫt−1 + ǫt. (6)

The predicted values over 40 years for the three geographical regions are plotted

in Figures 4, 5 and 6 together with the confidence interval in which the future

value will lie with a probability of 95%.

Figure 4: Predicted evolution of Belgian temperatures over 40 years with 95%

confidence intervals.

4 Conclusions

By means of ARIMAmodels it is possible to predict the evolution of temperature

based on collected data of the past 150 years. Based on the model that fits best,
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Figure 5: Predicted evolution of European temperatures over 40 years with 95%

confidence intervals.

the temperature will still slightly rise from that of the reference period 1850-

1899 (more pronounced for Europe and Belgium). Of course, as we advance

in time, the uncertainty about the predictions grows, so these results must be

treated as tentative.
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Figure 6: Predicted evolution of worldwide temperatures over 40 years with

95% confidence intervals.
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