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ABSTRACT 

 

This study forms the second part of a paper on the local damage analysis in a thermo-

plastic 5-harness satin weave composite under uni-axial static tensile load. The 

experimental observations of Part I are confronted with the meso-FE simulations. Part II 

describes the following steps regarding the unit cell meso-FE modeling starting from: 1) 

Construction of the unit cell geometrical model; 2) Estimation of the homogenized elastic 

constants of the unit cell using different boundary conditions; 3) Evaluation of the local 

stress and damage behavior of the unit cell using meso-FE simulations. The aim of the 

numerical analysis is to investigate the dependency of local ply stress and damage 

profiles on the adjacent layers of the laminate. 
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In order to reflect the constraints posed by the surrounding plies, depending on the ply 

placement in the laminate (inside / surface), different unit cell geometrical models with 

suitable boundary conditions were used for the FE analysis. From the numerical 

simulations it is observed that: a) the homogenized elastic constants of the unit cell vary 

considerably depending on the boundary conditions used for the unit cell FE analysis; b) 

intra-yarn stress and damage profiles are sensitive to the unit cell model as well as the 

boundary conditions used for the FE analysis. 

 

Keywords: Textile composites, Finite element analysis (FEA), Damage mechanics, Weft 

yarn damage, Multiscale modeling. 

 

1. Introduction 
 
In order to estimate the homogenized elastic constants of textile composites using unit 

cell meso-FE simulations, a numerical procedure is firmly established [1, 2]. However, 

the meso-FE procedure still needs to be improved for analysis of the local stress and 

damage behavior of the composite using the unit cell FE simulations [3, 4]. The majority 

of the published numerical work regarding the analysis of local structural behavior in the 

textile composite is based on the single unit cell FE simulation with 3D PBCs (Periodic 

Boundary Conditions). The underlying principle in the application of 3D PBCs is that the 

unit cell is chosen from the middle of the laminate [5-8], which represents the entire 

stress/strain fields in the composite. 
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However, recent publications [9-11] on the meso-FE analysis of the unit cell have 

emphasized the effect of free surface and free edges on local stress behavior. Moreover, 

the influence of internal yarn shifting on the local stress behavior of the unit cell has been 

highlighted. In order to investigate the effect of local fabric geometries on the damage 

behaviour, Le Page et al.[12] developed two dimensional plane strain FE models of 

woven composite with in-phase, out-of-phase and staggered nested unit cell models. The 

above mentioned work concluded that the strain energy release rate associated with the 

crack formation is influenced significantly by the crack location. In addition, the 

formation of a crack is associated with the local bending deformation, and the energy 

release rate increases with the degree of bending. According to Adams et al.[13], the 

modelling approaches assume idealized textile architecture and generally consider a 

single unit cell. Due to the randomness of textile architecture produced using 

conventional processing techniques, the experimental data obtained has shown limited 

use for verifying the accuracy of these numerical models. 

 

In the above context, Part I of this paper described the experimental observations of the 

sequence of damage events in different layers of the 5-harness satin weave carbon-PPS 

laminate, which are influenced by the local fabric geometries. Weft yarn transverse 

damage is initiated in the inner layers of the laminate, followed by damage on the surface 

layers. The sequence of damage events in different layers implies that the damage 

initiation may have been influenced by the local constraints imposed by the surrounding 

plies. In Part II of this paper, the above experimental observation is verified using the unit 
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cell as well as laminate level 3D meso-FE simulations. The work presented here is 

conducted in the view of obtaining extensive knowledge on the mechanics of the local 

structural behaviour of a satin weave composite. 

 

2. Estimation of the homogenized elastic constants 
 

2.1. Construction of the unit cell FE model 
 

In order to begin with the homogenization of elastic constants and the simulation of the 

local structural behavior on the meso scale, the textile reinforcement under consideration 

should be accurately constructed and translated to the FE software. The micro-CT 

technique is employed to investigate the variability of the internal yarn dimensions in a 

processed composite. To quantify the variation of the internal yarn dimensions in 

multiple composite samples at the same time, three laminates were taped together each 

with the dimensions of 5.24.104.10 ×× mm and this stack was used for the micro-CT 

analysis. The size of the composite samples used for the micro-CT is determined 

according to the optimum dimensions of the unit cell. The output micro-CT images were 

reconstructed and used for the measurement of the textile parameters.  

 

The textile information required for the construction of unit cell geometry such as the 

spacing, width and thickness of the yarns are measured at 20 different locations in both 

the warp and weft directions of the micro-CT images. The averaged values are shown in 

Table 1. Using the data from Table 1, the unit cell geometric model of the 5 - harness 
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satin weave reinforcement is generated using the ‘WiseTex’ software [14, 15]. Later, the 

‘WiseTex’ generated textile reinforcement is transferred into FE mesh and filled with the 

matrix using the ‘MeshTex’ software [5]. Finally, the ‘MeshTex’ output in the form of 

nodal and elemental information is transferred to the ABAQUS software. 

 

2.2. Homogenization of the elastic constants 
 
In order to start the unit cell FE analysis, the micro-mechanical (UD) material properties 

of the carbon-PPS representing the homogenized material properties of the impregnated 

yarn are derived from the individual elastic properties of the carbon fibre and PPS matrix 

(Table 2) using the analytical Chamis [16] homogenization formulas. The intra-yarn 

volume fraction ( ) used for the calculation of the homogenized material properties 

(Table 3) is 70% (constant through out the yarn sections), which is obtained from the 

‘WiseTex’ software. The analytical homogenized elastic constants of the impregnated 

yarn are compared with the CCA [17] and show good correlation. The calculated 

homogenized micro-mechanical material properties are assigned to the yarn cross 

sections in their local co-ordinate system to account for the yarn crimp in the FE model. 

Moreover, perfect bonding is assumed at the interface between the yarns and matrix of 

the unit cell: i.e. the yarn and the matrix share common node at the interface, which has 

been justified by Gerlach et al. [18]. 

fφ

 

The effective elastic constants of the textile composite on the scale of a single unit cell 

are calculated using the numerical meso-mechanical homogenization procedure. Initially, 

the elastic constants of the composite on the meso scale are estimated by applying the 
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Dirichlet boundary conditions to the unit cell. The procedure involved in the estimation 

of elastic constants using the Dirichlet boundary conditions is explained in [19, 20]. In 

order to calculate the homogenized elastic constants of the unit cell, FE analysis is started 

by solving 6 independent unit load cases (3 normal  and 3 shear  

strains), thereby calculating the  parts of the [  stiffness matrix. By inverting 

the  stiffness matrix, the compliance components of the unit cell were obtained. 

From this, nine homogenized elastic constants of the unit cell are computed (Table 4). 

zyx εεε ,,

]ABD

yzxzxy γγγ ,,

][AD

][AD

 

The other procedure used for the evaluation of the homogenized elastic constants of the 

unit cell is periodic boundary conditions (PBCs) [5, 21-23] along with the volume 

averaging technique. By applying the 3D PBC, the above mentioned six independent unit 

load cases are solved. Later, by the application of the volume averaging technique [1, 5, 

24], the homogenized elastic constants of the unit cell are estimated (Table 4). Finally, 

the elastic constants computed using different boundary conditions are compared to the 

analytical (method of inclusions [25]) and with the experimental elastic constants (Table 

4). 

 

The difference in the estimated values of the homogenized elastic constants between the 

periodic and Dirichlet boundary conditions has been explained by Terada et al. [2]. In 

correlation with the observations of the current work, the homogenized elastic properties 

estimated using Dirichlet boundary conditions have higher predicted values than those of 

the periodic boundary conditions. From the elastic constants computed with different 
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procedures, it is evident that the periodic boundary conditions along with the volume 

averaging technique predict better results compared to the experimental results. 

 

3. Unit cell FE analysis 
 

To start with the meso-FE damage analysis, along with the micro-mechanical elastic 

properties, the strength properties of the carbon-PPS UD (Table 5) are derived from the 

individual strength properties of the carbon fibre and PPS matrix (Table 2) using the 

Chamis analytical strength homogenization formulas [16]. Once the transverse isotropic 

strength properties to the yarns and the isotropic material properties of the matrix are 

assigned, for the damage analysis of the unit cell the following approach is employed.  

 

Initially, the occurrence of damage in the unit cell element is detected using the 

Hoffmann failure criteria [26]. However, this criterion cannot indicate the type of damage 

mode in the yarns, where the architecture of the fibre arrangement plays an important 

role. The modes of the damage are classified into four different types (Table 6) [27]. The 

mode  represents the fibre breaking, L T and Z  modes represent the transverse and shear 

cracking. As shown in Table 6, by calculating the corresponding stress-to-strength ratios 

for the different modes, we consider that the damage mode that is taking place is the one 

whose stress-to-strength ratio has the maximum value. The above mentioned failure 

criteria and the damage model is implemented into the commercial FE software 

ABAQUS using UMAT Fortran routines, which enable us to simulate the damage in the 

unit cell. 
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The results obtained from the FE modeling are compared with the experimental 

observations as follows: 

 

1. Validation of the FE damage initiation strain with the damage initiation strain 

obtained from the experimental acoustic emission technique (Part I). 

2. Finding the FE damage initiation location in the unit cell, which could be verified 

with the microscopically observed damage initiation location on the quasi-static 

tensile tested composite specimen (Part I). 

Finally, the local stress profiles are plotted for various unit cell models to analyze the 

effect of unit cell stacking and the applied boundary conditions. 

 

CASE I: (FE simulation of the damage in the laminate inner layers) 

 

In order to simulate the stress and damage behavior inside the laminate, FE analysis is 

started with a single unit cell by applying 3D PBCs [5, 22], which corresponds to the unit 

cell located in the middle of the laminate. During the loading process, at <0.2%> of the 

applied average tensile strain in the warp direction (Fig. 1 X-direction), the damage 

initiation is detected at the edges of the weft yarn at the yarn crimp location by Hoffmann 

criteria (Figure 1c). Once the Hoffmann criteria detect the damage initiation in the 

element, for the direction of the damage, individual stress to strength ratios are calculated 

using the formulas shown in the Table 6. And the values are listed below for the damaged 

elements. 
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Based on the individual stress to strength ratios shown above, the local transverse damage 

(meso level) in a satin weave weft yarn is a combination of the micro level transverse 

damage mode in combination with the out-of-plane shear damage mode. The predicted 

FE micro level damage modes are in correlation with the theory of Cox [28] on the satin 

weave composite architecture. Cox reported that the asymmetric satin weave fabric 

causes the coupling of bending and stretching, and there is also coupling between 

stretching and in-plane shear under the pure tensile load. In the present case, it is 

observed that the load coupling between stretching and in-plane shear is negligible 

compared to the load coupling between bending and stretching. 

 

From the transverse stress contours (Figure 1a), the maximum stress of 49 MPa is 

observed at the damaged elements of the weft yarn. Moreover, the transverse stress 

profile (Figure 1b) is plotted on the surface elements of the weft and warp yarns between 

the yarn crimp locations as marked in Figure 1a. From the Figure 1b, the variation in 

local transverse stress is divided into three major parts as explained below: 
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• Starting from the centre of the weft yarn at the yarn crimp location, the transverse 

stress value increases from 30 MPa to the maximum value of 49 MPa at the edge 

of the weft yarn. 

• The second phase of the stress profile starts at the edge of the weft yarn, and 

decreases to the minimum value (12 MPa) in the geometrical transition location 

between the crimp region to the flat position of the load carrying warp yarn. 

• The third phase in the stress profile is related to the constant transverse stress of 

10 MPa at the flat position of the load carrying warp yarn. In addition, the stress 

profile varies periodically along the unit cell geometry. 

 

CASE II: (FE simulation of the damage on the laminate surface layer) 

 
The current section deals with the numerical simulation of the local stress and damage 

behavior of the unit cell on the traction free surface. In order to understand the variation 

in local damage behavior in the finite surface laminate compared to the infinite laminate, 

the single unit cell FE analysis with 3D PBCs is changed as explained below. 

 

Initially, the surface stress analysis is performed using the single unit cell with in-plane 

PBCs. The top and bottom surfaces of the unit cell (Figure 2a) are free to deform in the 

out-of-plane direction. Under the above specified constraints, at <0.25%> of the applied 

average strain in the warp yarn direction, weft yarn damage is detected at the yarn crimp 

location (Figure 2b). From the local stress analysis, it is observed that the maximum 

tensile stress (80 MPa) occurs at the centre of the weft yarn (Figure 2a). Due to the 

absence of textile reinforcement or supporting boundary conditions in the out-of-plane 
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direction, the flat part of the warp yarn adjacent to the yarn crimp location is slightly 

compressed in the transverse direction (Figure 2c).  

 

Comparison of the experimental (<0.6%>) and numerical (<0.25%>) surface damage 

initiation strains underline the necessity for improvement in the unit cell model used for 

the surface stress analysis. To capture the effect of underlying layers on the surface stress 

profile, it is necessary to create a unit cell stack for the FE analysis. However, producing 

the unit cell stack with the same mesh size as single unit cell is computationally 

expensive. In this regard, comparison of the numerical local strain profiles with different 

mesh densities to the experimentally measured strains by Lomov et al. [29] lead to the 

conclusion that, the effect of mesh size is minimal on the local strain variation. In the 

current work, to study the effect of mesh size on the local stress behavior, Figure 2c 

compares the local transverse stress profiles on the traction free surface with different 

unit cell mesh densities. The unit cell model with a coarse mesh has 8400 elements, and 

the fine mesh has 53200 elements. From the local stress curves (Figure 2c), it is evident 

that the maximum and minimum stress locations are the same. Further, there is a 

difference of approximately 10MPa stress between the fine and coarse mesh at the yarn 

crimp location. 

 

In the process of improving the unit cell FE analysis, eight unit cells are stacked such that 

all the yarn crimp locations are in the same phase (Figure 3a). In-plane PBCs are applied 

to the edges of the unit cell, while the top and bottom surfaces are free to deform. With 

the aforementioned loading conditions, at <0.44%> of the global tensile strain in the warp 
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yarn direction, transverse damage is detected at the weft yarn centre in the surface layer 

of the unit cell (Figure 3b). In addition, the transverse stress of 75 MPa is observed in the 

damaged elements (Figure 3a). 

 

3. Results and discussion 
 

In this section, comparison between the experimental (Part I) and numerical damage 

analysis is presented. This section is later extended to the analysis of unit cell local stress 

behavior at different locations of the laminate. The experimental AE (Acoustic Emission) 

technique predicts the weft yarn damage in the laminate inner layers around <0.1-0.2%> 

of the global tensile strain in the warp yarn direction. Simulation of the single unit cell 

with 3D PBCs predicts the weft yarn damage around <0.2%> of the global tensile strain, 

which proves to be a good correlation with the experimental results considering the fact 

that the computational model did not consider the thermal stress in the composite. In a 

sense, the damage initiation strain obtained from the FE simulations is a deterministic 

maximum value, which is within the limits of the experimental prediction. Moreover, the 

damage initiation location obtained from the FE simulation at the edge of the weft yarn 

(Case-I) shows a good correlation with the observed microscopic damage locations.  

 

On the traction free surface, the single unit cell with in-plane PBCs and the 8 unit cell in-

phase stack predict the weft yarn damage at around <0.25%> and <0.44%> of the global 

tensile strain respectively. Comparison of the numerical damage initiation strain with the 

microscopically observed damage initiation strain on the surface (around <0.6%>) proves 
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that the FE simulations predict the early damage initiation strain. In correlation with the 

experimental damage location, the numerical simulations predict the damage at the centre 

of the weft yarn. Based on the comparison of the experimental and numerical results, it is 

evident that without the presence of internal yarn shifting (nesting), by in-phase stacking 

of the yarn crimp locations, the maximum out-of-plane deformation in the surface layers 

is reached earlier than in the experimental counterpart (with the internal yarn nesting) and 

hence causes the early damage initiation [4, 30]. 

 

In addition to the local damage analysis, the unit cell local stress analysis provides insight 

into the active stress components and their variations depending on the lamina position in 

the laminate. The major local stress components observed in the weft yarn at the yarn 

crimp location are the in-plane transverse stress ( 22σ ), the out-of-plane normal stress 

( 33σ ) and the out-of-plane shear stress ( 23σ ) components for the applied global tensile 

strain in the warp yarn direction. The local weft yarn stress values at the yarn crimp 

location for the single unit cell as well as the laminate are listed in Table 7. Comparison 

of the stress components inside the laminate (Case I) with the surface weft yarn stresses 

(CASE II) shows that the restriction of the yarn crimp inside the laminate causes a higher 

out-of-plane shear ( 23σ ) as well as out-of-plane normal stress ( 33σ ) compared to the 

surface layers. The stress pattern observed above is in correlation with the research output 

of Lee et al.[31] on the local strain behavior of a plain weave composite. The authors 

reported that the tension/in-plane shear and tension/bending coupling effects at the yarn 

crimp inside the laminate are restricted by the surrounding plies. In contrast, the 
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unrestricted yarn crimp on the surface layers of the laminate caused weft yarn damage 

due to the maximum transverse and shear stress. 

 

Apart from the local stress and damage analysis, studying the deformation behavior of the 

unit cell under the external load provides knowledge on the effect of stacking and the 

applied boundary conditions for the unit cell FE analysis. The literature [27, 32, 33] has 

shown that the tensile load applied to the unit cell causes the straightening of the yarn in 

the loading direction (warp). This straightening effect imposes the out-of-plane 

deformation on the perpendicular weft yarn. When the weft yarn deformation reaches its 

maximum value, damage will occur on the surface of the weft yarn. Based on the above 

statement, the out-of-plane deformation is plotted on the surface of the unit cell in the 

positive z-direction between two yarn crimp locations (dotted line in Figure 1a) at the 

moment of damage initiation. Considering the absolute difference from maximum to 

minimum deformation, as expected, the out-of-plane deformation is restricted with 3D 

PBCs (Figure 4a) causing an almost flat deformation starting from one yarn crimp to the 

other (peak points in the curves represent the yarn crossover position). In contrast, the 

single unit cell with in-plane PBC predicts a large difference in the out-of-plane 

deformation (Figure 4b) between the yarn crimp and the flat yarn position. Moreover, the 

absolute difference in the out-of-plane deformation value for the 8 unit cell stack (Figure 

4c) at <0.44%> of the global strain is approximately twice the value of the infinite 

laminate at <0.2%>. The aforementioned statement shows that, by increasing the number 

of unit cells in the stack, the out-of-plane deformation at the yarn crimp of the finite 

surface unit cell stack approaches the infinite laminate deformation [9]. 
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4. Conclusions 
 

Part I of this paper introduced an experimental procedure for analyzing the damage 

initiation and the history of the damage in a 5-harness satin weave composite. The 

experimental procedure provided the qualitative as well as quantitative knowledge about 

the damage. In order to understand the stress behavior and the mechanics of damage, the 

current paper deals with the satin weave unit cell computational model. Numerical 

simulations provided insight into the mesoscopic damage locations and the stress 

behavior. Comparison of the experimental and simulation results lead to the following 

conclusions: 

 

• The predicted FE damage initiation strain and location for the inner 

layers of the laminate are within the limits of the experimental 

observation. On the other hand, the single unit cell with 2D PBC and 

in-phase stacking of an 8 unit cell laminate predict the early damage 

initiation strain of <0.25%> and <0.44%> on the surface layers, 

compared to the experimental damage initiation of <0.6%>. This early 

damage initiation strain in the FE simulation can be attributed to the 

absence of internal yarn shifting in the computational model. 

 

• The local damage initiation trend obtained from the numerical 

simulations demonstrates that the infinite laminate predicts early 
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damage initiation at the edges of the weft yarn. In contrast, the free 

surface unit cells predict damage in the later stage.  

 

• In correlation with the experimental observations, the different weft 

yarn damage initiation strains at different locations of the laminate 

suggest that the transverse weft yarn damage in a textile composite is a 

sequential process. 

 

• In conclusion, the effect of internal yarn shifting (nesting) on the local 

structural response cannot be neglected and can not be captured by the 

infinite laminate FE analysis. 

 

The essence of the two parts of the current local damage analysis is summarized as 

follows. By observing the experimental microscopic damage phenomena on the scale of 

the laminate at the end of the loading process, formation of cracks in the weft yarn at 

different locations appear to be completely stochastic in nature. However, by segregating 

the entire damage mechanism at different length scales, analyzing the factors contributing 

to the damage on the relevant scale, following the history of the damage and using the 

numerical simulations, the failure mechanism in textile composites can be understood in 

a certain deterministic way. 
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Table 1. Textile parameters obtained from the micro-CT measurements. 

WiseTex input data at fabric level 
Property 5 harness satin weave warp 5 harness satin weave weft 

Yarn 198 tex 
Number of measurements 20 20 

Yarn width (mm) 1.31 ± 0.01 1.32 ± 0.08 
Yarn thickness (mm) 0.162 ± 0.01 0.161 ± 0.06 
Yarn spacing (mm) 1.50 ± 0.04 1.49 ± 0.07 

WiseTex input data at fibre level 
TEX (g/km) 198 

Yarn filament count 3000 
Filament diameter (mm) 0.007 

Carbon fibre density (g/cm3) 1.75 

Table 2. T300 JB carbon fibre, PPS elastic and strength properties. 
T300 JB carbon fibre PPS (PolyPhenelyene Sulphide) 

Elastic properties [5, 34] 

Longitudinal modulus , GPa 11E 231 
Modulus of elasticity , 

GPa 
E

3.8 

Transverse modulus , GPa 22E 28 Shear modulus , GPa G 1.38 
In-plane shear modulus , GPa 12G 24 Poisson’s ratio ν  0.37 

Transverse shear modulus , GPa 23G 10.7   
In-plane Poisson’s ratio 12ν  0.26   

Transverse Poisson’s ratio 23ν  0.39   
Strength properties 

Tensile strength, MPa 4210 Tensile strength, MPa 90 
Compressive strength, MPa 2616 Compressive strength, MPa 148 

Shear strength, MPa -NA- Shear strength, MPa   63 
 
Note: T300 JB carbon material strength properties are taken from TORAYCA technical datasheet No: 
 CFA-002. 
 PPS material properties are taken from TECHTRON & RYTRON PPS data sheet. 

Table 3. Homogenized elastic properties of the carbon-PPS impregnated yarn. 

7.0=fφ  11E , 
[GPa] 

,22E  
[GPa] 

12G , 
[GPa] 

23G , 
[GPa] 12ν  23ν  

Chamis micro 
mechanical 

homogenization 
162.60 13.70 6.50 5.07 0.29 0.35 

CCA[17]  
Concentric  
Cylindrical 
Assemblage 

162.20 15.0 6.20 - 0.28 0.40 
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Table 4. Computed homogenized elastic constants of the carbon-PPS  

satin weave unit cell. 

 
PBC and 
Volume 

averaging 

Dirichlet 
BC’s and 
Surface 

reactions 

Method of 
Inclusions 

(Analytical) 
Experiment 

11E , GPa 56.49 59.5 61.7 57 1 ±
22E , GPa 56.41 59.5 61.7 -NA- 
33E , GPa 10.53 10.55 10.56 -NA- 

12ν  0.08 0.057 0.053 0.05 ± 0.02 
13ν  0.41 0.41 0.44 -NA- 
23ν  0.41 0.41 0.44 -NA- 

12G  MPa 4280 4305 4297 4175[35] 
13G , MPa 3048 3286 3375 -NA- 
23G , MPa 3045 3286 3375 -NA- 

 

Table 5. Homogenized strength properties of the carbon-PPS impregnated 
yarn. 

 

Mechanical property 
Carbon-PPS 

impregnated yarn 
( fφ =0.7) 

Tensile strength, MPa 
80

80

2947

=

=

=

t
Z

t
T

t
L

F

F

F
 

Compressive strength, MPa 
130

130

1832

=

=

=

c
Z

c
T

c
L

F

F

F
 

Shear strength, MPa 
56

56

56

=

=

=

s
LT

s
ZL

s
TZ

F

F

F
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Table 6. The characteristics of anisotropic damage model for fiber bundle and 
isotropic damage model for matrix[27]. 
 

 
 

Table 7. Local stress distribution on the weft yarn cross sections at the damage 
initiation strain. 

 

 

In-plane 
transverse stress, 

MPa 
(edge/ centre of 

the yarn) 

Normal out-of-plane 
stress, MPa 

(edge/ centre of the 
yarn) 

Out-of-plane shear 
stress, MPa 

(edge/ centre of the 
yarn) 

CASE I (Inside the 
laminate) 49/31 14/14 22/2 

CASE II-Single unit 
cell-2D pbc (on the 

surface) 
49/78  Negligible 16/7 

CASE II-8 unit cell 
stack (on the surface) 62/75 Negligible 4/18 

CASE II-8 unit cell 
stack (inside the 

laminate) 
55/60 8/12 15/15 
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a) 

 
b) 

 
 

X 

Z 

Y 

 

S22 Max 49.24 MPa 
7.4 mm 

0.32mm 

7.4 mm 

 

<0.2%> <0.2%> 

1 2 1
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c) 

X

Z

Y 

Hoffmann criteria

 

Figure 1. Single unit cell with infinite laminate boundary conditions : a) transverse 
stress distribution on the weft yarn; b) transverse stress profile between 
two yarn crimp; c) transverse damage on the weft yarn at the yarn crimp 
location <0.2%>. 
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a) 

 
b) 
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c) 

 
 

2 

1 1 

 <0.25%> <0.25%> 

 

Figure 2. Single unit cell stress and damage profiles with in-plane PBC: a) 
Transverse stress distribution on the weft yarn; b) Transverse damage on 
the weft yarn at the yarn crimp location c) Transverse stress profiles 
between two yarn crimps with different mesh size. 
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a) 

 
b) 

 

X 

Z 

Y 

S22 Max 75MPa

 

Z

X
Y

Figure 3. 8 unit cell stack FE analysis : a) Transverse stress distribution on the weft 
yarn; b) Transverse damage locations on the weft yarn at the yarn crimp 
location <0.44%> with the 8 unit cell in-phase stack, in-plane PBC. 
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a) 

 
b) 
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c) 

 

Figure 4. Out-of-plane deformation of the unit cells:  a) single unit cell with 3D 
PBC (<0.2%>); b) single  unit cell with 2D PBC (<0.25%>); c) 8 unit 
cell stack with 2D PBC (<0.44%>). 
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