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Abstract

New properties of intersections and coincidences of transient concentration curves
were discovered and are presented analytically using the classical consecutive mech-
anism A — B — (' as an example. We identify six different special points, and
analyze and classify the 6 possible (out of 612 combinations) patterns of concentra-
tion peak and intersection times and values that distinguish the parameter subdo-
mains and sometimes can eliminate the mechanism. This developed theory is tested
on examples (multi-step radioactive decay, isomerization reaction). The mathemat-
ical analysis relies on a combination of elementary and symbolic techniques, special
functions and numerical approximations.
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1 Introduction

Among the innumerable processes which take place in chemistry and chemical
engineering, there are some whose features have as yet been woefully neglected.
The goal of the present paper is to distinguish and describe one family of such
features, i.e., intersection and coincidences of dependencies which exhibit an
unexpected elegance, both physical-chemical and mathematical. Most of the
results will be obtained analytically, computer calculations will be used only
to solve certain transcendental equations and be mentioned as such.

Consecutive reactions: what was known before

Consecutive reactions are one of the best-known basic mechanisms in chemical
kinetics. The simplest example of such sequential reactions is A — B — C.
Many important chemical processes are described via this scheme of reactions.

The simplest kinetic model is presented as follows:
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where C'4, Cp, C¢ are the concentrations of the substances A, B, C respec-
tively, and k; and ko ([1/s]) are the rate constants of the first and second
reaction, respectively. The temperature dependency of these rate constants is
to be of Arrhenius-type,

Ea;
ki = k@o exp (— Rg’j) s (4)

where k; o is a pre-exponential factor [1/s|, E4; the activation energy [kJ/mol],
R universal gas constant [kJ /mol K], T" is absolute temperature [K].

The solution of this simple system equations can be found in many popu-
lar textbooks (Hlavacek et al., 2007) 37b, (Froment and Bischoff, 1990), on
physical chemistry and chemical kinetics, even on Wikipedia. If Cc g = 0, the
results are well known: when ky # ko

Ca(t) = Caexp(—kit), (5)
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+Cpo(1 — exp(—kat)) (7)
so that
Ca(t) + Cp(t) + Ce(t) = Cap + Chy, t>0. (8)

Otherwise, when k; = ko the system has a different type of solution due to
the coincidence of both exponential decays. By direct solution or using the
Laplace domain (see Appendix C), it is seen that

Ca(t) = Caexp(—kit), (9)
Cp(t) = (Capokit + Cpo) exp(—kit), (10)
Ce(t) = Cap [l = (14 kit) exp(—kit)] + Cpo(l — exp(—kit)). (11)

From here on we assume also Cpy = 0. Such formulas can be found e.g. in
(Eremin, 1976) and (Bairamov, 2003) p. 49, who presented this solution for

Ci(t).

Obviously the concentration Cg(t) is characterized by a maximum over time,
which is a fingerprint of the consecutive scheme A — B — C' contrary to the
parallel scheme A — B, A — C. For the latter mechanism, the kinetic model
is presented as follows:

dCx

W - —(kl + k2>CA, (12>
dC
gfzmmj (13)
dC
dTC = koCla. (14)

The solution of the equations (12)—(14) is

Ca(t) = Capexp(—(k1 + ko)t), (15)



Cift) = Cat (1 = exp(—(ky + k)L (16)
Colt) = Cap (1 = exp(—(ky + k). (17)

Obviously, in this scheme there is no maximum of any of the concentrations:
C4 only decreases, C'g and C¢ only increase.

The time of the peak of Cz(t) for the consecutive scheme is also presented in
the references: from

—ky exp(—kit) + ko exp(—kot)

CL(t) = C ok =0 18
B( ) A,0M1 kjg _ kl ( )
one solves
In (;?)
tB,max = 72 (19)

ky — ko

That this satisfies the physicality requirement ¢pax > 0 follows from the
elementary considerations outlined in Appendix A. The maximum value of
Cp is then given by

ks
ks

ki —k _
CB(tB,max) = C’A,O (lﬁ) ! 2 = C(A,Opp/(1 p)7 (2())

where we introduce the dimensionless ratio of rate constants p = kq/k;. See
Fig. 1 for the trend of this peak value as a function of p.

When ky = ks, relying or (9)—(11) and equating the time derivative of Cg(t)
to zero, the maximum of Cz(t) occurs at the time

1 1

B = — = —. 21
B, kL ks (21)

and there is a remarkable relationship, which is not widely known:

Cp(tBmax) = CA,OG_I- (22)

Studying this consecutive mechanism, we found it independently, but later
discovered that it was already mentioned in (Kubasov, 2004). We propose to
call this case ki = ko the Fuler point E.



To our present knowledge, eqns (1)—(22) comprise all theoretical results ob-
tained for this consecutive scheme. Presently we shall reveal and explain some,
to our knowledge as yet unknown, properties of this very simple scheme.

2 New results on the maximum of Cp
2.1 Concentration patterns and comparison of rate constants

Calculating the concentration of A at tpmax from (5) or (9), Ca(tpmax) =
Caop"P~1) when p # 1, Cqpe~! otherwise. Consequently,

(C(tBmax)/Ca0) = (CaltBmax)/Cao)’ (23)

This is clearly illustrated by the pattern shown on the figures: if k; = ko (as
mentioned) the concentrations are equal (Fig. 7); if k; < ko then the concen-
tration of A exceeds that of B (Fig. 9); if k1 > ko then the concentration of B
exceeds that of A (Fig. 4). Looking at experimental dependencies with these
patterns, and assuming the presented consecutive mechanism, we immediately
obtain an indication of the comparison between k; and k.

2.2 Observability of the Euler point

The question arises whether and if so, when the Euler point is observed, and,
more generally, when a given value p of ks /k; can be obtained through varia-
tion of the temperature T. We assume the Arrhenius dependency of the rate
coefficients (4). Solving in these terms ko = pky for T, we find formally that

1 Eqq—Eap

T, = o DALT 242 24
r Rln(p]ﬁ’o/kg’o) ( )

This expression must be positive to represent a physical value of absolute
temperature; rewriting the denominator as the difference (In(pk1o) — Inksp)
and again relying on Appendix A, positivity occurs precisely when either both
E4q and pky g exceed Ey4 9 and koo respectively, or vice versa.

Therefore, to observe the Euler point (p = 1) in the working domain of tem-
peratures 100 K to 500 K the Arrhenius dependency parameters must meet
some limitations, e.g., typically ki o/ksp lies between 0.01 to 100. Then the
difference between the activation energies must be less than 20kJ /mol in
absolute value.



If the order of magnitude of the ratio of ky/ks is 10, the difference between
activation energies has to be of the order of 10 kJ / mol, which is quite realistic.

3 Intersections
3.1 Intersection of Ca(t) and Cg(t) curves

Two types of trajectories are studied: (a) phase trajectories in the space
of all variables (concentrations), (b) temporal trajectories of each variable
separately. It is a well-known mathematical fact that phase trajectories do
not intersect or merge. But the temporal trajectories may or may not inter-
sect. Physico-chemically, the intersection of the temporal concentration curves
C4(t) and Cp(t), for instance, means that these concentrations can be consid-
ered equal, C4(t) = Cp(t).

In these subsections, we investigate what kind of temporal concentration in-
tersections can occur under which conditions. The point of this intersection
analysis is to classify which orderings can prevail among their characteristics,
i.e., the times and values of their occurrences.

A special case of intersection is osculation, in which not only the concentrations
but also their temporal slopes coincide, C4(t) = Cp(t) and C'(t) = Cx(1).
Generally, it is possible to classify different qualitative cases:

(1) there is a single intersection at finite time, e.g., Fig. 4;

(2) there are multiple non-osculating intersections, e.g., Fig. 2;
(3) there is at least one osculating intersection, e.g., Fig. 3;
(4) there is no intersection, e.g., Fig. 10;

(5) intersection is achieved at time 400, e.g., Fig. 9.

We now have from solving C4(t) = Cg(t) from (5) and (6) for ¢ that

(o)
2ky — ko (25)
ko — ki

ta=p =

and distinguish the following cases:

(1) when ky < 2ky and k; # ko, the logarithm is taken of a positive value,
and rewriting the expression as

" . In ]{,’1 — 1H(2k‘1 — k’g)

A = (2ky — ko)

(26)



Appendix A clearly shows that it is always a positive value, hence phys-
ical. The value at the intersection is

Ca(tazp) = Cp(tazp) = Cao(2 — p)/*7 Y, p>0, p#1.(27)

As ko — 0, ta—p tends to In(2)/k; and Ca(ta=p) to Cao/2; as ke —
2ky, ta—p tends to infinity and Ca(t4—p) to 0. See e.g. Fig. 4.

When ky = k; (Euler point), the equations (9)—(11) must be used
instead of (5) and (6). There is also a single intersection, at the time

1 1
taep = — = — = tBmax 2
hn === 23)
and
CA(tA:B) == CB(tA:B) == 6_1. (29)
See e.g. Fig. 7.

(2) There is no intersection when ko > 2k;, because the solution to Cy(t) =
Cp(t) then becomes complex. See e.g. Fig. 10.

(3) It is impossible to have multiple non-osculating intersections because
there can only be one solution to Cx(t) = Cp(t), viz (26).

(4) It is impossible for an osculating intersection to occur because the system
Ca(t) = Cg(t), C'y(t) = Cx(t) has no solutions.

(5) When ky = 2k, intersection is achieved at time t = +o0. See Fig. 9. We
shall call this in the subsequent classification the Osculation point.

This analysis can be used to test the hypothesis about the type of mechanism:
if more than one intersection of the concentration curves C'4 and Cpg is ob-
served, it implies that the consecutive scheme A — B — C' cannot be valid,
and a more complex mechanism has to be proposed. If, on the other hand,
we assume this consecutive mechanism, the observed fact of intersection of

C4 and Cp immediately gives us a restriction on the domain of parameters:
ko < 2k;.

3.2 Intersections of Ca(t) and Cc(t), and of Cg(t) and Co(t).

As mentioned in the previous subsection, C4(t) and Cp(t) do not always
intersect; but Cy4(t) and Ceo(t), and Cp(t) and C¢(t) always do; these are
therefore called unavoidable intersections.

For the intersection of C'y and C the normalized concentration Cy /C4 o solves
as 0 < x < 1 the following equation:

2 +z(1-2p)+(p—1) =0, (30)



when p # 1, otherwise

zlne —2x+1=0, (31)

whose solution is x = exp(2 + W_;(—¢e?)) = 0.317844 ... (see Appendix B for
the definition of the Lambert function W_).

For the intersection of C'z and C the normalized concentration Cy /Cy o solves
as r the equation

20" —z(1+p)+(p—1)=0. (32)

when p # 1, otherwise

2elnz —xz+1=0, (33)

whose solution is z = exp(3 + W_y(— W)) = 0.284668.. . ..

When p # 1 is a sufficiently simple integer or fraction, equations (30) and (32)
can be solved exactly.

In all cases the time of intersection is readily obtained as (In(1/x))/k; in view
of (5) and (9).

3.3 Intersections of C'y(t) and Cy(t), and of Cx(t) and CL(t)

Solving the equation for C’)(t) = C(t) with respect to ¢, we obtain when
ki # ko

In ks
Uy — ky

tyepg = ———1 72 4
A'=B k?g k?l ) <3>

which is well defined whenever ky < 2kq, ie., p < 2; it is seen to be positive
by Appendix A when rewriting it as

In ]{2 - 1n(2k1 - ]{'2)

t /=B — 2

and relying on Appendix A. At the Euler point the value is 2/k;. We then
have the remarkable property that

7(J-A’:B’ = tB,maX + tA:B- (36)



On the other hand, solving the equation for C;(t) = C{(t) with respect to t,
we obtain for ki # ko

2ks

In
ki + ko
tp—y = ———% 37
B'=C ]fg—kl ) ( )

which is always well defined, and positive as seen from rewriting it as

In(2ky) — In(ky + k2)
(2k2) — (ko + K1)

tp—cr = (38)

in view of Appendix A. At the Euler point the value is 1/(2k;).

4 Special points

In the course of our analysis, we have discovered several special points with
characteristic properties, which we will accordingly name and present system-
atically. For simplicity we assume C4 o = 1 here.

4.1 Acme point, p=1/2

The Acme point is defined by ko = ki/2, see Fig. 4. It has the following
remarkable intersection and culmination properties:

(1) setting p = 1/2 in (30), we find Cy and C¢ cut with Cy = Co = 1/4 =
0.25,Cp =1/2=0.5 at ty—c = Ind/k; = 1.386294/ky;

(2) note that at ta—c, Cp culminates (we call this an equiculmination prop-
erty), and this culmination value is exactly 1/2;

(3) from (25), we see that Cy and Cp cut with Cy = Cg = 4/9 = 0.444444,
Ce=1/9=0.111111 at ty—p = In(9/4) /k1; = 0.810930/k;;

(4) setting p = 1/2 in (32), Cp and C¢ cut with Cy = 1/9 = 0.111111,
CB = CC == 4/9 = 0.444444 at tB:C = 1119/1{31 = 2197224/]{?1 This is
also the time t_p/, and hence the upward slope of Cx at this point
equals twice the downward slope of Cp.

(5) There is a remarkable additivity property for the times of intersection:
ta=B +ta=c = tp=c-.

(6) Finally, another value coincidence occurs between the intersections, as
Ca(tazp) = Cp(tp=c) = 4/9 = 0.444444.



At the Acme point, the solutions (5)—(7) for Cag = 1, Cpo = 0 can be
rewritten (taking into account ke = k;1/2) as

Ca=exp(~kit) = (1/Ca)?.
Cp=2\/Ca(1—/Cy),
Co=(1—1/Cu)?

at all times ¢. From this it is clear that for every (Cy4, Cp, C¢) there is also a
trajectory point (Ce, Cp,C4) (replacing v/C4 by (1 — /Ch)), i.e., the phase
portrait of the trajectory is symmetrical under the exchange of A and C.
Consequently, if we were to base time on Cp (instead of C'y or C¢ as would
be more usual), each Cp value determines two real times ¢; and to, so that

(Ca(t1),Cp(t1), Cc(tr)) = (Col(tz), Cp(ta), Calta)).

4.2 FEuler point, p =1

See Fig. 7.

(1) From (25), C4 and Cp cut with Cy = Cg = 1/e = 0.367879 (which is also
the culmination value of Cp), Co =1 —2/e = 0.264241 at ta—p = 1/k;.
(Since k1Cy = koCp necessarily at the maximum of Cp, from ky = ko it
followed immediately Cy = Cp.)

(2) Since p = ko/k1 =1, (31) must be used, and can still be solved in closed
form using the Lambert function W_1: C'4 and C¢ cut with Cy = Cp =
exp(2 + W_l(—€_2)) = 0317844, CB =1- 26‘Xp<2 + W_l(—6_2)) =
0.364311 at ta—c = 1.146193/k;.

(3) Since p =1, (33) applies, which is also solvable in terms of W_1, so that
Cp and C¢ cut with

Ca = exp(1/2 + W_i(—exp(1/2)/2)), (39)

i.e.,0.284668, Cp = Co = 0.357665 at tp_c = —(1/24+W_1(— exp(1/2)/2))/k1 =
1.256431 /K.

4.8 Lambert point, triple intersection, p = 1.1739824 . ..

Is it possible to have a triple intersection, i.e., all three concentrations equal
at the same time? It turns out that the condition for this is (see Appendix B

10



for the definition of the Lambert function Wj)

ky . Wo(in(1/3)/3)
B © In(1/3)

= 1.1739824 . . . (40)

which we shall denote by py, the Lambert point ratio.

At this point, Cy = Cp = 1/3, so that in view of eqns (5) and (6), and writing
pr, for the solution ratio ko/k;

a6 G)) ()

Multiplying by (pr — 1) to remove the denominator (at the risk of introducing
a parasitic solution p;, = 1),

pr — 2+ 3exp(prIn(1/3)) = 0. (42)

Now introducing « through p;, = 2 — «/In(1/3), the equation simplifies to
aexp(a) = (1/3)In(1/3). This has two solutions: a = In(1/3) leads to p = 1,
which is parasitic (we know that triple intersection does not occur at the Euler
point), and o = Wy((1/3)In(1/3)) = —0.907473, which leads to the value pp,
in (40).

(1) C4, Cp and C¢ intersect simultaneously at value 1/3, time In(3)/k; =
1.098612.
(2) The culmination value of Cz is 0.338800.

The concentrations are plotted in Fig. 8.
4.4 Osculation point, p = 2

In what follows, ¢ denotes the golden ratio, ¢ = (v/5 4 1)/2 = 1.618033.. . ..

(1) Cp culminates at the value 1/4.

(2) Cp and Cg cut with Cg = Cc = 1/4 = 0.25, C4 = 1/2 = 0.5, at time
tpc =1In2/k, = 0.693147/k,.

(3) Ca and Ce cut with Cy = Co = 1/6 = 2— ¢ = 0.381966, Cg = 26—3 =
0.236067 at time ta—c = 2In¢/ky = 0.962423 /k;.

(4) C4 and Cp cut at time infinity and value zero (osculation).

Experimentally, we are better able to observe peak and intersection values
than osculation at infinity, because tail analysis can be marred by experimental
error.
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4.5  Golden point, p=1/¢

We can also consider the angle of intersection between concentration curves,
but this only makes sense when both axes are commensurate, as can be ob-
tained for instance by replacing time by Cc(t). The angle a(t) between the
horizontal axis and the tangent to the C'y vs. C¢ curve satisfies at any time ¢,

tan a(t) = ¢, (t) (43)

Similarly, the angle 5(t) between the horizontal axis and the tangent to the
Cp vs. C¢ curve satisfies at any time t,

Cp(1)

tan G(t) = L)

(44)

Consequently, if ¢ is the time of intersection, then the angle of intersection
v is given by their difference, and invoking the formula for the tangent of a
difference,

tan a — tan 3
t _AB) = 45
an(a — §) 1+ tanatan (45)

we see that
i /
tany = (T4 CB)/CCZ ) (46)
1+ (CLC3/CE7)
Simplification then leads to
-2
tan y = plp—2) 7 (47)
pP+p—1

where we have added the absolute value signs to obtain a geometrically mean-
ingful angle between 0 and 90 degrees.

When this tangent value is infinite, orthogonal intersection occurs, i.e., when
p=(v5-1)/2 =1/¢ = 0.618034, the inverse of the golden ratio. This we call
the golden point, see Figs. 5 and 6. It has the following additional properties:

(1) The culmination value of Cz is then ¢~ = 0.459040.
(2) C4 and Cp cut with Cy = Cp = (3 — ¢)~%" = 0.42871, Cc. = 1 — 2(3 —
$)~? =0.142561 at to_p = ¢*In(3 — @) /ky = 0.846952/k;;

12



(3) C4 and Cg cut with Cy = Ce = 0.270633, Cp = 0.458732 at to_c =
1.306989/k1:

(4) Cp and Ce cut with Cy = 0.155992, Cp = C = 0.422003 at tp_c =
1.857946 k.

Equation (47) also leads to two other interesting special cases: an angle of

45 degrees is associated with the Euler point p = 1 and with another point,
p = 1/3. Similarly, an angle of 60 degrees occurs for

L VBVIT VIS 335

1 = 0.428145

19 —v1 —

p= V3VI19 \/f+ V35 _ 0.846771

and an angle of 30 degrees for
— 17— /1

e V3VIT \{1_7 F3VIET ooy
17 — /17 —

p= V3VIT \/f V3T = 1.205542.

4.6 Triad point, p = 3

This point is defined by ky = 3k;, see Fig. 10.

(1) C4 and Cp do not cut at all.

(2) C4 and Cg cut with Cy = Co = v/2 — 1 = 0.414213, Cp = 3 — 22 =
0.171572 at time t4—c = In(v/2 + 1) = 0.881373.

(3) Cp and Ce cut with Cp = Co = 1—¢/2 = 0.190983, Cy = 1/¢ = p—1 =
0.618033, at time tp_¢ = In¢/ky = 0.481211 /k;.

(4) Cp culminates at the value v/3/9 = 0.192450.

5 Ordering properties of time and of values for Cp .« and at in-
tersections

5.1 Properties of mazimum and intersection time curves

In Fig. 11 we plot the values of the time at which the maximum of Cp is
reached, and those of the time of intersection of C4, Cp, and C¢, again with

respect to p = ko/ky, and assuming k; = 1s71.

13



(1) at the Acme point A the equiculmination implies that the Cp max and
C4 = C¢ curves intersect (simply).

(2) At the Euler point E, the Cp max curve intersects simply with the Cy =
C'p curve.

(3) At the Lambert point L, the three intersection curves intersect simply.

(4) At the Osculation point O, the Cp max curve intersects simply with the
Cp = C¢ curve, and the Cy = Cg curves has an asymptote. The practical
consequence of this, is that the Cx curve intersects the C'g curve to the
right of its maximum, if and only if the C'4 and C'g curves intersect.

Qualitatively, we can summarize this in Table 1. The result of this analysis
is a set of possible patterns for the times at which intersections and the peak
occur. Confronting the experimental data with this list of possibilities, we may
conclude that the kinetic model relating to the proposed scheme is valid or
not.

5.2 Properties of concentration value curves at mazimum and intersections

In Fig. 12 we plot the values of the maximum of C'z and of the intersections
between C4, Cp and C¢ with respect to p = ko/k;. These curves exhibit
remarkable properties:

(1) the C4 = Cp curve and the Cg = C¢ curve intersect simply at the Acme
point A (as mentioned there),

(2) the Cpmax and C4 = Cp curves intersect with osculation at the Euler
point E.

(3) The Cy = Cp, Cp = C¢ and Cy = C¢ curves intersect simply at the
Lambert point L.

(4) The C4 = C¢ and Cp mayx intersect simply at the unique value p = ko /ky
that satisfies the transcendental equation

1— P
o/(p—1) P —9 48
p 1, : (48)
numerically, p = 1.197669. Cp max is then 0.335243, reached at time
0.912520/k;, and Cy = C¢ is reached at time 1.092898/k;.
(5) The Cpmax and Cp = C¢ curves intersect with osculation at the Oscu-
lation point O.

Qualitatively, we can summarize this in Table 2. Similarly, the result of this
analysis is a set of possible patterns for the values at which intersections and
the peak occur. Note that the same value sequence is obtained for the intervals
1/2<p<land 1< p< 1.17...: this is due to the osculation at the Euler
point of the C4 = Cp and Cp nax curves.

14



Tables 1 and 2 present all possible scenarios of observed characteristics of
transient behavior in terms of the times of intersection and their values. There
are six possible regimes, related to the different parameter domains of p =
ks/ki. The domains are denoted D1 up to D5, the time sequences T1 up to
T5, and the value sequences V1 up to V5. Every domain is characterized by
two specific sequences of intersection times and values, the relation between
which is not always one to one. T1 is related to V1 (see Fig. 13); T2 to V2
(Fig. 14); T3 to V2 as well (Fig. 15); T3 related to V3 or V4, the domain
D4 being split in two subdomains D4a and D4b corresponding to V3 and
V4, respectively (Figs. 16 and 17). Finally, T5 is related to V5. (Fig. 18).
In fact, D4a is only a tiny domain (2% relative size), which may be hard to
observe. Only these scenarios can be observed. The total amount of possible
permutations of times and of values is 24 + 6 = 30 each (24 if AB occurs,
6 otherwise), there are 24 x 24 + 6 x 6 = 612 joint possibilities, of which
surprisingly only 6 can occur.

5.8 Classification of observable phenomena

In table 3, A stands for Acme, L stands for Lambert, E for Euler, G for Golden
Ratio, O for Osculation, T for triad.

Concerning the possibility to observe these points in practice: since they are
defined by values p ranging from 1/2 to 3, (24) implies that the considerations
for the Euler point p = 0 will carry through on the level of orders of magnitude
for the ratios of k; ¢ and the difference in activation energy.

5.4 Right and Wrong in textbooks concerning two-step consecutive reactions

The formulas presented in textbooks, papers, Wikipedia, for consecutive reac-
tions are correct. In some textbooks, expressions for ¢p . are given. However,
no classification and understanding is given of special points and the regimes
and scenarios of behavior governed by them. Consequently, the illustrations
are sometimes wrong, being impossible in this case. For instance in (Bairamov,
2003), in Fig. 2.1a p. 49 the correct sequence Bm<BC<AC<AB is exhibited
(i.e., between the Lambert and Osculation points, 1.17... < p < 2, but in Fig.
2.2a p. 51, the impossible sequence BC<Bm<AC<AB is shown.

On the Web, at http://www.meteo.mcgill.ca/233/chap10/sld013.htm, we see
another impossible sequence, Bm<BC<AC.

Furthermore, in some cases the illustrations unintentionally do correspond
to special points, especially the Euler and Acme points, e.g., (Froment and
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Bischoff, 1990), p. 16 (Euler point) and p. 367 (Acme point).

The mistake most often found, however, is to identify the domination of the
second exponent as a “quasi-steady-state”. Many authors do not understand
that there are only two extreme cases of dominating in this reaction: domi-
nating of the first or the second exponent, see eq. (6), and the other exponent
has nothing to do with quasi-steady-state regime. These two extreme regimes
are presented on Figs. 23 and 24. The first regime, in which k; is very large
compared to kg, can be considered as the B — C regime, the second regime,
in which ks is very large, as A — C.

6 Selected Applications

In this section we present selected application to interesting examples.

6.1 Multi-step radioactive decay

In such multi-step processes, every step is by definition a first-order process.
We can apply our analysis: for instance (see (Lederer et al., 1968)), in the
Actinium series, 2''Bi alpha-decays to 2°7Tl, this beta-decays to 2°"Pb with
respective half lifes 2.14 and 4.77min, respectively. Therefore in this two-step
consecutive process, the constant ky/ky = 2.14/4.77 = 0.449, close to the
Acme point.

Similarly, in the Radium series, 2'4Pb beta-decays to 2'“Bi, which beta-decays
(for 99.98%) to **Po, which alpha-decays very rapidly (half-life 0.16 ms to
201Ph. This multistep decay can be closely approximated by two steps, the
first with half-life 27min, the second 20min. The corresponding ratio of rate
constants is ko /k; = 27/20 = 1.35, which lies between the Lambert and the
Osculation points.

6.2 Isomerization reactions

In accordance with data presented by (Wei and Prater, 1962), four interesting
cases are considered here and plotted in Figs. 19, 20, 21, 22.
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7 Experimental error

When investigating in practice a reactor set-up, measurements will be affected
by some level of experimental error.

e For instance, determining the intersection between two curves may be done
through linear interpolation by first identifying two data points (1, C}) and
(2, Cs) on the first curve, and two (¢}, C7) and (t5, C%) on the second, such
that the two line segments defined by these will intersect. This intersection
is then given by t = D;/D; and C' = —D¢ /Dy, where

ti1 t 0 010

Ci;Cy 0 001

1 1 0 000
D=

0 0t th 10

0 0CIC,01

001 100

and

tiy to 0 0 00

C;Cy 0 010

1 1 0 001
Dt:

0 0 ¢t thoo

0 0C;Cy10

0 01 101

(49)
ty ta 0 0 10
C1Cy, 0 000
110001

D¢ = . (50)
00t ¢10
0 0C,C,00
001101

Since determinants are multilinear, it is a straightforward application of
error analysis to propagate estimates on the time and concentration errors
through these formulas, whether using a statistical or an interval approach.
e When a maximum must be located, experimental errors can lead to false
values or obscure the true one; typically, one would then fit a least-squares
parabola through enough data points and estimate the maximum from that.
Again, the mathematics for the resulting formulas is an application of linear
algebra techniques.
e More generally, one may wish to use maximally the information provided by
all the data points: this can readily be done by fitting the exact solution via
the parameters k; and ky to the data, ideally taking into account a full sta-
tistical description including repeat experiments, estimated (co)variances,
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etc. If the resulting residues show no persistence of systematic errors (a
desideratum that may require substantial correction efforts), the nonlinear
least squares method will yield aggregate estimates of the standard devi-
ations o2 and correlation r on the rate constants values, which can then
be propagated through all formulas to determine, e.g., confidence intervals
for the identification of special points. In particular, to the ratio p = ko/k;
there corresponds a variance

o ki{os + k3ot — 2rk ko010

o ol

8 Results and Conclusions

The analysis that we presented significantly improves our ability to distinguish
mechanisms; previously, we considered that observing a maximum of Cp is a
sufficient indication to distinguish the consecutive mechanism A — B — C
from the parallel A — B, A — C. Now we are able based on our six possible
scenarios, either to falsify the hypothesis of the A — B — (' consecutive
mechanism (and propose a more complicated alternative), or to justify it and
infer some conditions on the ratio p of the rate constants.

8.1 Mathematical technique

The results of this paper were obtained by careful combinations of elementary
and symbolic mathematics, special functions and numerical approximations.
We fully intend to use the same array of tools in investigating more complex
linear and even some nonlinear models along the same lines.

8.2  Direct application and future development

In the nearest future, we will continue analyzing the following series of first-
order reaction mechanisms: parallel irreversible first-order reactions A — B,
A — (' consecutive first-order reactions in which one step is reversible; tri-
angle of first-order reactions (reversible or not), changing parameters of the
system, especially the initial composition and the temperature. Some simple
models with nonlinear dependencies will be analyzed as well. The results ob-
tained for the change of concentration in time can be immediately applied to
steady-state plug-flow reactor models, in which space or residence time play
the role of the astronomic time. Such analyses can also be done for CSTR
reactors.
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We will analyze such models both for close systems and for open systems with
mass exchange. An interesting opportunity of these are provided by thermo-
desorption and thermogravimetry problems: in both cases, there is a sequence
of linear processes and the kinetic model reflects this sequence and the change
of other factor(s) as well. In the first case, the change of temperature in time;
in the second, the loss of weight over time. The problem of intersection can
be presented for exit flow dependencies for diffusion-reaction models (related
to the Temporal Analysis of Products, TAP, data), etc. Special attention will
be paid to the analysis of multi-step radioactive decay, where the coefficients
are known very accurately.

As the systems considered grow more complex, the number of intersection
and maximum points and of their orderings will grow rapidly: polynomially
for the former, combinatorially for the latter. This increasing complexity can
to some extent be matched by automatic methods, whether numerical and
symbolic depending on what the theoretical setting will allow. Ultimately,
we expect that unifying properties will emerge; indeed, we generally believe
that the analysis of intersections and coincidences presents a source of vast
information for new families of patterns for distinguishing mechanisms and
parameter domains, and might even find applications outside the domain of
chemical kinetics.

List of Symbols

A, B, C' Substances involved in a reaction mechanism.
Cy, Cp, Cc Concentrations of the substances A, B, C.
Ca,0, Cpo, Cco Initial values of the substance concentrations. Cc is always assumed 0; Cp o
is assumed 0 in most of the treatment. In the figures C'4 o is conventionally
set to 1.
E 41, Eas Arrhenius activation energies for k1 and ko, [kJ/mol]; see (4).
ki1, k2 Reaction rate constants [1/s].
k10, k2o Arrhenius coefficients for k1 and ko, [1/5]]; see (4).
L Laplace transform, defined as

o0

LF(s) = / e~SUF (L) dt. (52)

0

¢ The golden ratio, (v/5+1)/2 = 1.618033... ..

R universal gas constant [kJ /mol K].

p The dimensionless ratio ko/k;. When varying the temperature 7" to reach a
value of p, the target is denoted p.

T Absolute temperature [K].

t Time [s].
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Wy, W_1 Principal and (—1) branch of the Lambert W-function, see Appendix B.
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List of table captions

Table 1

Qualitative list of possible cases (time).
Table 2

Qualitative list of possible cases (values).
Table 3

Classification of observable phenomena.
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List of figure captions (in the body of the manuscript)
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Fig. 1. Plot of pp/(l_p) vs. 0 < p < 10; this is Cp max as a function of p = ky/ky.
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Fig. 2. Non-physical example of two non-osculating intersections.
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Fig. 4. Acme point A: ky = 0.5s71 ky = 1571,
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Fig. 5. Golden point G: kg = (1/¢)s™! = 0.618033, k; = 1s7L.
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Fig. 6. Golden point G: ks = (1/¢)s™! = 0.618033, k; = 1s~!. A and B vs. C.
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Fig. 8. Lambert point L: ko = 1.1739824s7 1, ky = 15 1.
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Fig. 9. Osculation point O: ko = 2871, ky = 1s7L.
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Fig. 10. Triad point T ko = 3s~ 1, ky = 1s71.
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Fig. 11. Plot of times tp max, intersection times of C'y and Cp, then C4 and C¢,
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Fig. 12. Plot of Cp max, intersections of C'y and Cp, then C4 and C¢, then Cp and
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Fig. 13. Example (detail) of domain D1: plot of C4, Cp and C¢ vs. time for
ko =0.255"1 k; = 157!, In time, AB<AC<Bm<BC; in value, AC<AB<BC<Bm.
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Fig. 14. Example (detail) of domain D2: plot of Cy4, Cp and C¢ vs. time for
ko =0.75s71 k; = 157! In time, AB<Bm<AC<BC:; in value, AC<BC<AB<Bm.
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Fig. 15. Example (detail) of domain D3: plot of C4, Cp and C¢ vs. time for
ky = 1.08s7 !, ky = 1571 In time, Bm<AB<AC<BC; in value, AC<BC<AB<Bm.
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Fig. 16. Example (detail) of domain D4a: plot of C4, Cp and C¢ vs. time for
ky =1.18s7 ! k; = 1s7!. In time, Bm<BC<AC<AB:; in value, AB<BC<AC<Bm.

A Positivity of a certain expression and the monotone increasing
natural logarithm

Any value of the form In(z/y)/(z —y), with x > 0, y > 0, x # y, is positive:
it can be rewritten as (Inz — Iny)/(x — y), and since the In is monotone
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Fig. 17. Example (detail) of domain D4b: plot of C4, Cp and C¢ vs. time for
ko =1.6s71 k; = 1s7!. In time, Bm<BC<AC<AB:; in value, AB<BC<Bm<AC.
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Fig. 18. Example (detail) of domain D5: plot of C4, Cp and C¢ vs. time for
ky =457, ky = 157! In time, BC<Bm<AC; in value, BC<Bm<AC, no AB.

increasing, the sign of the numerator is the same as that of the denominator,
so the quotient is positive.

30



ccl —

8 85 9 95 10

Fig. 19. Plot of C4, Cp and C¢ vs. time for ko /k1 = 3.371/3.724 = 0.9052, close to
Euler point F
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Fig. 20. Plot of C'4, Cp and C¢ vs. time for ko /k1 = 5.616/10.344 = 0.5429, close
to Acme point A

B Lambert W function

Any solution z to ze® = y is a value of the Lambert function W(y). This
definition creates an infinite number of branches of complex functions; by W}
we denote the so-called principal branch, which is real on both sides near
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Fig. 21. Plot of Cy4, Cp and C¢ vs. time for ka/k1 = 4.623/10.344 = 0.4469, close
to Acme point A
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Fig. 22. Plot of C4, Cp and C¢ vs. time for ko/k; = 4.623/3.371 = 1.3714, not
close to any special point, between L and O.

y = 0, and by W_; the branch that is real from y = —1/e to 0 (but no
further). See Fig. C.1 and (Corless et al., 1996).
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Fig. 23. Large k; example: ko = 0.1s71, ky = 1s71.

T T

] C Al —

| cBb

cew ——
0.8
0.6
04
02

o L I

0O 05 1 15 2 25 3 35 4 45 5 55 6 65 7 75 8 85 9 95 10

Fig. 24. Large ky example: kg = 10571, ky = 1s7 1
C Laplace-domain solution of (1)—(3)

Applying the Laplace transform, the system becomes

SﬁCA - CAvoz_kflECA, (Cl)
S;CCB - 0370 = kl,CCA — k'QLCB, (02)
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SECC = kQLCB, (C?))

whence by elementary manipulations,

Cap
_ ; A4
ﬁCA S—|—k17 (C )
k1Cap Cho
LCOp = ’ ’ C.5
P s+ k) (s+ky) | s+ky (C.5)
LCO = k1kaCa koCp o (C.6)

Cs(s+ k) (s+ ko) s(s k)

The case k1 = ko only has to be distinguished from the general case at this
point because it causes a double pole to occur in the partial fraction expansions
of the first terms on the right-hand sides of (C.5) and (C.6).
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Fig. C.1. The branches Wy and W_; of the Lambert W function.
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