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Abstract

New properties of intersections and coincidences of transient concentration curves
were discovered and are presented analytically using the classical consecutive mech-
anism A → B → C as an example. We identify six different special points, and
analyze and classify the 6 possible (out of 612 combinations) patterns of concentra-
tion peak and intersection times and values that distinguish the parameter subdo-
mains and sometimes can eliminate the mechanism. This developed theory is tested
on examples (multi-step radioactive decay, isomerization reaction). The mathemat-
ical analysis relies on a combination of elementary and symbolic techniques, special
functions and numerical approximations.
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1 Introduction

Among the innumerable processes which take place in chemistry and chemical
engineering, there are some whose features have as yet been woefully neglected.
The goal of the present paper is to distinguish and describe one family of such
features, i.e., intersection and coincidences of dependencies which exhibit an
unexpected elegance, both physical-chemical and mathematical. Most of the
results will be obtained analytically, computer calculations will be used only
to solve certain transcendental equations and be mentioned as such.

Consecutive reactions: what was known before

Consecutive reactions are one of the best-known basic mechanisms in chemical
kinetics. The simplest example of such sequential reactions is A → B → C.
Many important chemical processes are described via this scheme of reactions.

The simplest kinetic model is presented as follows:

dCA
dt

= −k1CA, (1)

dCB
dt

= k1CA − k2CB, (2)

dCC
dt

= k2CB, (3)

where CA, CB, CC are the concentrations of the substances A, B, C respec-
tively, and k1 and k2 ([1/s]) are the rate constants of the first and second
reaction, respectively. The temperature dependency of these rate constants is
to be of Arrhenius-type,

ki = ki,0 exp
(
−EA,i
RT

)
, (4)

where ki,0 is a pre-exponential factor [1/s], EA,i the activation energy [kJ/mol],
R universal gas constant [kJ /mol K], T is absolute temperature [K].

The solution of this simple system equations can be found in many popu-
lar textbooks (Hlavacek et al., 2007) 37b, (Froment and Bischoff, 1990), on
physical chemistry and chemical kinetics, even on Wikipedia. If CC,0 = 0, the
results are well known: when k1 6= k2

CA(t) = CA,0 exp(−k1t), (5)
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CB(t) =CA,0k1
exp(−k1t)− exp(−k2t)

k2 − k1
+CB,0 exp(−k2t), (6)

CC(t) =CA,0

[
1− k2 exp(−k1t)− k1 exp(−k2t)

k2 − k1

]
+CB,0(1− exp(−k2t)) (7)

so that

CA(t) + CB(t) + CC(t) = CA,0 + CB,0, t ≥ 0. (8)

Otherwise, when k1 = k2 the system has a different type of solution due to
the coincidence of both exponential decays. By direct solution or using the
Laplace domain (see Appendix C), it is seen that

CA(t) = CA,0 exp(−k1t), (9)

CB(t) = (CA,0k1t+ CB,0) exp(−k1t), (10)

CC(t) = CA,0 [1− (1 + k1t) exp(−k1t)] + CB,0(1− exp(−k1t)). (11)

From here on we assume also CB,0 = 0. Such formulas can be found e.g. in
(Eremin, 1976) and (Bairamov, 2003) p. 49, who presented this solution for
CB(t).

Obviously the concentration CB(t) is characterized by a maximum over time,
which is a fingerprint of the consecutive scheme A→ B → C contrary to the
parallel scheme A→ B, A→ C. For the latter mechanism, the kinetic model
is presented as follows:

dCA
dt

= −(k1 + k2)CA, (12)

dCB
dt

= k1CA, (13)

dCC
dt

= k2CA. (14)

The solution of the equations (12)–(14) is

CA(t) = CA,0 exp(−(k1 + k2)t), (15)
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CB(t) = CA,0
k1

k1 + k2
[1− exp(−(k1 + k2)t)], (16)

CC(t) = CA,0
k2

k1 + k2
[1− exp(−(k1 + k2)t)]. (17)

Obviously, in this scheme there is no maximum of any of the concentrations:
CA only decreases, CB and CC only increase.

The time of the peak of CB(t) for the consecutive scheme is also presented in
the references: from

C ′B(t) = CA,0k1
−k1 exp(−k1t) + k2 exp(−k2t)

k2 − k1
= 0 (18)

one solves

tB,max =

ln

(
k1
k2

)
k1 − k2

. (19)

That this satisfies the physicality requirement tB,max > 0 follows from the
elementary considerations outlined in Appendix A. The maximum value of
CB is then given by

CB(tB,max) = CA,0

(
k2
k1

) k2
k1 − k2 = CA,0ρ

ρ/(1−ρ), (20)

where we introduce the dimensionless ratio of rate constants ρ = k2/k1. See
Fig. 1 for the trend of this peak value as a function of ρ.

When k1 = k2, relying or (9)–(11) and equating the time derivative of CB(t)
to zero, the maximum of CB(t) occurs at the time

tB,max =
1

k1
=

1

k2
. (21)

and there is a remarkable relationship, which is not widely known:

CB(tB,max) = CA,0e
−1. (22)

Studying this consecutive mechanism, we found it independently, but later
discovered that it was already mentioned in (Kubasov, 2004). We propose to
call this case k1 = k2 the Euler point E.
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To our present knowledge, eqns (1)–(22) comprise all theoretical results ob-
tained for this consecutive scheme. Presently we shall reveal and explain some,
to our knowledge as yet unknown, properties of this very simple scheme.

2 New results on the maximum of CB

2.1 Concentration patterns and comparison of rate constants

Calculating the concentration of A at tB,max from (5) or (9), CA(tB,max) =
CA,0ρ

1/(ρ−1) when ρ 6= 1, CA,0e
−1 otherwise. Consequently,

(CB(tB,max)/CA,0) = (CA(tB,max)/CA,0)
ρ. (23)

This is clearly illustrated by the pattern shown on the figures: if k1 = k2 (as
mentioned) the concentrations are equal (Fig. 7); if k1 < k2 then the concen-
tration of A exceeds that of B (Fig. 9); if k1 > k2 then the concentration of B
exceeds that of A (Fig. 4). Looking at experimental dependencies with these
patterns, and assuming the presented consecutive mechanism, we immediately
obtain an indication of the comparison between k1 and k2.

2.2 Observability of the Euler point

The question arises whether and if so, when the Euler point is observed, and,
more generally, when a given value ρ̃ of k2/k1 can be obtained through varia-
tion of the temperature T . We assume the Arrhenius dependency of the rate
coefficients (4). Solving in these terms k2 = ρ̃k1 for T , we find formally that

Tρ̃ =
1

R

EA,1 − EA,2
ln(ρ̃k1,0/k2,0)

. (24)

This expression must be positive to represent a physical value of absolute
temperature; rewriting the denominator as the difference (ln(ρ̃k1,0) − ln k2,0)
and again relying on Appendix A, positivity occurs precisely when either both
EA,1 and ρ̃k1,0 exceed EA,2 and k2,0 respectively, or vice versa.

Therefore, to observe the Euler point (ρ̃ = 1) in the working domain of tem-
peratures 100 K to 500 K the Arrhenius dependency parameters must meet
some limitations, e.g., typically k1,0/k2,0 lies between 0.01 to 100. Then the
difference between the activation energies must be less than 20 kJ /mol in
absolute value.
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If the order of magnitude of the ratio of k1,0/k2,0 is 10, the difference between
activation energies has to be of the order of 10 kJ /mol, which is quite realistic.

3 Intersections

3.1 Intersection of CA(t) and CB(t) curves

Two types of trajectories are studied: (a) phase trajectories in the space
of all variables (concentrations), (b) temporal trajectories of each variable
separately. It is a well-known mathematical fact that phase trajectories do
not intersect or merge. But the temporal trajectories may or may not inter-
sect. Physico-chemically, the intersection of the temporal concentration curves
CA(t) and CB(t), for instance, means that these concentrations can be consid-
ered equal, CA(t) = CB(t).

In these subsections, we investigate what kind of temporal concentration in-
tersections can occur under which conditions. The point of this intersection
analysis is to classify which orderings can prevail among their characteristics,
i.e., the times and values of their occurrences.

A special case of intersection is osculation, in which not only the concentrations
but also their temporal slopes coincide, CA(t) = CB(t) and C ′A(t) = C ′B(t).
Generally, it is possible to classify different qualitative cases:

(1) there is a single intersection at finite time, e.g., Fig. 4;
(2) there are multiple non-osculating intersections, e.g., Fig. 2;
(3) there is at least one osculating intersection, e.g., Fig. 3;
(4) there is no intersection, e.g., Fig. 10;
(5) intersection is achieved at time +∞, e.g., Fig. 9.

We now have from solving CA(t) = CB(t) from (5) and (6) for t that

tA=B =

ln

(
k1

2k1 − k2

)
k2 − k1

, (25)

and distinguish the following cases:

(1) when k2 < 2k1 and k1 6= k2, the logarithm is taken of a positive value,
and rewriting the expression as

tA=B =
ln k1 − ln(2k1 − k2)
k1 − (2k1 − k2)

, (26)
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Appendix A clearly shows that it is always a positive value, hence phys-
ical. The value at the intersection is

CA(tA=B) = CB(tA=B) = CA,0(2− ρ)1/(ρ−1), ρ > 0, ρ 6= 1. (27)

As k2 → 0, tA=B tends to ln(2)/k1 and CA(tA=B) to CA,0/2; as k2 →
2k1, tA=B tends to infinity and CA(tA=B) to 0. See e.g. Fig. 4.

When k2 = k1 (Euler point), the equations (9)–(11) must be used
instead of (5) and (6). There is also a single intersection, at the time

tA=B =
1

k1
=

1

k2
= tB,max (28)

and

CA(tA=B) = CB(tA=B) = e−1. (29)

See e.g. Fig. 7.
(2) There is no intersection when k2 > 2k1, because the solution to CA(t) =

CB(t) then becomes complex. See e.g. Fig. 10.
(3) It is impossible to have multiple non-osculating intersections because

there can only be one solution to CA(t) = CB(t), viz (26).
(4) It is impossible for an osculating intersection to occur because the system

CA(t) = CB(t), C ′A(t) = C ′B(t) has no solutions.
(5) When k2 = 2k1, intersection is achieved at time t = +∞. See Fig. 9. We

shall call this in the subsequent classification the Osculation point.

This analysis can be used to test the hypothesis about the type of mechanism:
if more than one intersection of the concentration curves CA and CB is ob-
served, it implies that the consecutive scheme A → B → C cannot be valid,
and a more complex mechanism has to be proposed. If, on the other hand,
we assume this consecutive mechanism, the observed fact of intersection of
CA and CB immediately gives us a restriction on the domain of parameters:
k2 < 2k1.

3.2 Intersections of CA(t) and CC(t), and of CB(t) and CC(t).

As mentioned in the previous subsection, CA(t) and CB(t) do not always
intersect; but CA(t) and CC(t), and CB(t) and CC(t) always do; these are
therefore called unavoidable intersections.

For the intersection of CA and CC the normalized concentration CA/CA,0 solves
as 0 < x < 1 the following equation:

xρ + x(1− 2ρ) + (ρ− 1) = 0, (30)
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when ρ 6= 1, otherwise

x lnx− 2x+ 1 = 0, (31)

whose solution is x = exp(2 +W−1(−e2)) = 0.317844 . . . (see Appendix B for
the definition of the Lambert function W−1).

For the intersection of CB and CC the normalized concentration CA/CA,0 solves
as x the equation

2xρ − x(1 + ρ) + (ρ− 1) = 0. (32)

when ρ 6= 1, otherwise

2x lnx− x+ 1 = 0, (33)

whose solution is x = exp(1
2

+W−1(− 1
2
√
e
)) = 0.284668 . . ..

When ρ 6= 1 is a sufficiently simple integer or fraction, equations (30) and (32)
can be solved exactly.

In all cases the time of intersection is readily obtained as (ln(1/x))/k1 in view
of (5) and (9).

3.3 Intersections of C ′A(t) and C ′B(t), and of C ′B(t) and C ′C(t)

Solving the equation for C ′A(t) = C ′B(t) with respect to t, we obtain when
k1 6= k2

tA′=B′ =
ln

k2
2k1 − k2
k2 − k1

, (34)

which is well defined whenever k2 < 2k1, i.e., ρ < 2; it is seen to be positive
by Appendix A when rewriting it as

tA′=B′ = 2
ln k2 − ln(2k1 − k2)
k2 − (2k1 − k2)

, (35)

and relying on Appendix A. At the Euler point the value is 2/k1. We then
have the remarkable property that

tA′=B′ = tB,max + tA=B. (36)
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On the other hand, solving the equation for C ′B(t) = C ′C(t) with respect to t,
we obtain for k1 6= k2

tB′=C′ =
ln

2k2
k1 + k2
k2 − k1

, (37)

which is always well defined, and positive as seen from rewriting it as

tB′=C′ =
ln(2k2)− ln(k1 + k2)

(2k2)− (k2 + k1)
(38)

in view of Appendix A. At the Euler point the value is 1/(2k1).

4 Special points

In the course of our analysis, we have discovered several special points with
characteristic properties, which we will accordingly name and present system-
atically. For simplicity we assume CA,0 = 1 here.

4.1 Acme point, ρ = 1/2

The Acme point is defined by k2 = k1/2, see Fig. 4. It has the following
remarkable intersection and culmination properties:

(1) setting ρ = 1/2 in (30), we find CA and CC cut with CA = CC = 1/4 =
0.25, CB = 1/2 = 0.5 at tA=C = ln 4/k1 = 1.386294/k1;

(2) note that at tA=C , CB culminates (we call this an equiculmination prop-
erty), and this culmination value is exactly 1/2;

(3) from (25), we see that CA and CB cut with CA = CB = 4/9 = 0.444444,
CC = 1/9 = 0.111111 at tA=B = ln(9/4)/k1 = 0.810930/k1;

(4) setting ρ = 1/2 in (32), CB and CC cut with CA = 1/9 = 0.111111,
CB = CC = 4/9 = 0.444444 at tB=C = ln 9/k1 = 2.197224/k1. This is
also the time tA′=B′ , and hence the upward slope of CC at this point
equals twice the downward slope of CB.

(5) There is a remarkable additivity property for the times of intersection:
tA=B + tA=C = tB=C .

(6) Finally, another value coincidence occurs between the intersections, as
CA(tA=B) = CB(tB=C) = 4/9 = 0.444444.
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At the Acme point, the solutions (5)–(7) for CA,0 = 1, CB,0 = 0 can be
rewritten (taking into account k2 = k1/2) as

CA = exp(−k1t) = (
√
CA)2,

CB = 2
√
CA(1−

√
CA),

CC = (1−
√
CA)2

at all times t. From this it is clear that for every (CA, CB, CC) there is also a
trajectory point (CC , CB, CA) (replacing

√
CA by (1 −

√
CA)), i.e., the phase

portrait of the trajectory is symmetrical under the exchange of A and C.
Consequently, if we were to base time on CB (instead of CA or CC as would
be more usual), each CB value determines two real times t1 and t2, so that
(CA(t1), CB(t1), CC(t1)) = (CC(t2), CB(t2), CA(t2)).

4.2 Euler point, ρ = 1

See Fig. 7.

(1) From (25), CA and CB cut with CA = CB = 1/e = 0.367879 (which is also
the culmination value of CB), CC = 1− 2/e = 0.264241 at tA=B = 1/k1.
(Since k1CA = k2CB necessarily at the maximum of CB, from k1 = k2 it
followed immediately CA = CB.)

(2) Since ρ = k2/k1 = 1, (31) must be used, and can still be solved in closed
form using the Lambert function W−1: CA and CC cut with CA = CC =
exp(2 + W−1(−e−2)) = 0.317844, CB = 1 − 2 exp(2 + W−1(−e−2)) =
0.364311 at tA=C = 1.146193/k1.

(3) Since ρ = 1, (33) applies, which is also solvable in terms of W−1, so that
CB and CC cut with

CA = exp(1/2 +W−1(− exp(1/2)/2)), (39)

i.e., 0.284668, CB = CC = 0.357665 at tB=C = −(1/2+W−1(− exp(1/2)/2))/k1 =
1.256431/k1.

4.3 Lambert point, triple intersection, ρ = 1.1739824 . . .

Is it possible to have a triple intersection, i.e., all three concentrations equal
at the same time? It turns out that the condition for this is (see Appendix B
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for the definition of the Lambert function W0)

k2
k1

= 2− W0(ln(1/3)/3)

ln(1/3)
= 1.1739824 . . . (40)

which we shall denote by ρL, the Lambert point ratio.

At this point, CA = CB = 1/3, so that in view of eqns (5) and (6), and writing
ρL for the solution ratio k2/k1

1

3
=

1

ρL − 1

(
1

3
−
(

1

3

)ρL)
. (41)

Multiplying by (ρL−1) to remove the denominator (at the risk of introducing
a parasitic solution ρL = 1),

ρL − 2 + 3 exp(ρL ln(1/3)) = 0. (42)

Now introducing α through ρL = 2 − α/ ln(1/3), the equation simplifies to
α exp(α) = (1/3) ln(1/3). This has two solutions: α = ln(1/3) leads to ρ = 1,
which is parasitic (we know that triple intersection does not occur at the Euler
point), and α = W0((1/3) ln(1/3)) = −0.907473, which leads to the value ρL
in (40).

(1) CA, CB and CC intersect simultaneously at value 1/3, time ln(3)/k1 =
1.098612.

(2) The culmination value of CB is 0.338800.

The concentrations are plotted in Fig. 8.

4.4 Osculation point, ρ = 2

In what follows, φ denotes the golden ratio, φ = (
√

5 + 1)/2 = 1.618033 . . ..

(1) CB culminates at the value 1/4.
(2) CB and CC cut with CB = CC = 1/4 = 0.25, CA = 1/2 = 0.5, at time

tB=C = ln 2/k1 = 0.693147/k1.
(3) CA and CC cut with CA = CC = 1/φ2 = 2−φ = 0.381966, CB = 2φ−3 =

0.236067 at time tA=C = 2 lnφ/k1 = 0.962423/k1.
(4) CA and CB cut at time infinity and value zero (osculation).

Experimentally, we are better able to observe peak and intersection values
than osculation at infinity, because tail analysis can be marred by experimental
error.
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4.5 Golden point, ρ = 1/φ

We can also consider the angle of intersection between concentration curves,
but this only makes sense when both axes are commensurate, as can be ob-
tained for instance by replacing time by CC(t). The angle α(t) between the
horizontal axis and the tangent to the CA vs. CC curve satisfies at any time t,

tanα(t) =
C ′A(t)

C ′C(t)
. (43)

Similarly, the angle β(t) between the horizontal axis and the tangent to the
CB vs. CC curve satisfies at any time t,

tan β(t) =
C ′B(t)

C ′C(t)
. (44)

Consequently, if t is the time of intersection, then the angle of intersection
γ is given by their difference, and invoking the formula for the tangent of a
difference,

tan(α− β) =
tanα− tan β

1 + tanα tan β
(45)

we see that

tan γ =
(C ′A − C ′B)/C ′C

1 + (C ′AC
′
B/C

′
C
2)
. (46)

Simplification then leads to

tan γ =

∣∣∣∣∣ ρ(ρ− 2)

ρ2 + ρ− 1

∣∣∣∣∣ , (47)

where we have added the absolute value signs to obtain a geometrically mean-
ingful angle between 0 and 90 degrees.

When this tangent value is infinite, orthogonal intersection occurs, i.e., when
ρ = (

√
5−1)/2 = 1/φ = 0.618034, the inverse of the golden ratio. This we call

the golden point, see Figs. 5 and 6. It has the following additional properties:

(1) The culmination value of CB is then φ−φ = 0.459040.
(2) CA and CB cut with CA = CB = (3 − φ)−φ

2
= 0.42871, CC = 1 − 2(3 −

φ)−φ
2

= 0.142561 at tA=B = φ2 ln(3− φ)/k1 = 0.846952/k1;
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(3) CA and CC cut with CA = CC = 0.270633, CB = 0.458732 at tA=C =
1.306989/k1;

(4) CB and CC cut with CA = 0.155992, CB = CC = 0.422003 at tB=C =
1.857946/k1.

Equation (47) also leads to two other interesting special cases: an angle of
45 degrees is associated with the Euler point ρ = 1 and with another point,
ρ = 1/3. Similarly, an angle of 60 degrees occurs for

ρ=

√
3
√

19 +
√

19− 3
√

3− 5

4
= 0.428145

ρ=

√
3
√

19−
√

19 + 3
√

3− 5

4
= 0.846771

and an angle of 30 degrees for

ρ=
−
√

3
√

17−
√

17 + 3
√

3 + 7

4
= 0.232904

ρ=

√
3
√

17−
√

17− 3
√

3 + 7

4
= 1.205542.

4.6 Triad point, ρ = 3

This point is defined by k2 = 3k1, see Fig. 10.

(1) CA and CB do not cut at all.
(2) CA and CC cut with CA = CC =

√
2 − 1 = 0.414213, CB = 3 − 2

√
2 =

0.171572 at time tA=C = ln(
√

2 + 1) = 0.881373.
(3) CB and CC cut with CB = CC = 1−φ/2 = 0.190983, CA = 1/φ = φ−1 =

0.618033, at time tB=C = lnφ/k1 = 0.481211/k1.
(4) CB culminates at the value

√
3/9 = 0.192450.

5 Ordering properties of time and of values for CB,max and at in-
tersections

5.1 Properties of maximum and intersection time curves

In Fig. 11 we plot the values of the time at which the maximum of CB is
reached, and those of the time of intersection of CA, CB, and CC , again with
respect to ρ = k2/k1, and assuming k1 = 1 s−1.
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(1) at the Acme point A the equiculmination implies that the CB,max and
CA = CC curves intersect (simply).

(2) At the Euler point E, the CB,max curve intersects simply with the CA =
CB curve.

(3) At the Lambert point L, the three intersection curves intersect simply.
(4) At the Osculation point O, the CB,max curve intersects simply with the

CB = CC curve, and the CA = CB curves has an asymptote. The practical
consequence of this, is that the CC curve intersects the CB curve to the
right of its maximum, if and only if the CA and CB curves intersect.

Qualitatively, we can summarize this in Table 1. The result of this analysis
is a set of possible patterns for the times at which intersections and the peak
occur. Confronting the experimental data with this list of possibilities, we may
conclude that the kinetic model relating to the proposed scheme is valid or
not.

5.2 Properties of concentration value curves at maximum and intersections

In Fig. 12 we plot the values of the maximum of CB and of the intersections
between CA, CB and CC with respect to ρ = k2/k1. These curves exhibit
remarkable properties:

(1) the CA = CB curve and the CB = CC curve intersect simply at the Acme
point A (as mentioned there),

(2) the CB,max and CA = CB curves intersect with osculation at the Euler
point E.

(3) The CA = CB, CB = CC and CA = CC curves intersect simply at the
Lambert point L.

(4) The CA = CC and CB,max intersect simply at the unique value ρ = k2/k1
that satisfies the transcendental equation

ρρ/(ρ−1) +
1− ρ−ρ

1− ρ
= 2, (48)

numerically, ρ = 1.197669. CB,max is then 0.335243, reached at time
0.912520/k1, and CA = CC is reached at time 1.092898/k1.

(5) The CB,max and CB = CC curves intersect with osculation at the Oscu-
lation point O.

Qualitatively, we can summarize this in Table 2. Similarly, the result of this
analysis is a set of possible patterns for the values at which intersections and
the peak occur. Note that the same value sequence is obtained for the intervals
1/2 < ρ < 1 and 1 < ρ < 1.17 . . .: this is due to the osculation at the Euler
point of the CA = CB and CB,max curves.
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Tables 1 and 2 present all possible scenarios of observed characteristics of
transient behavior in terms of the times of intersection and their values. There
are six possible regimes, related to the different parameter domains of ρ =
k2/k1. The domains are denoted D1 up to D5, the time sequences T1 up to
T5, and the value sequences V1 up to V5. Every domain is characterized by
two specific sequences of intersection times and values, the relation between
which is not always one to one. T1 is related to V1 (see Fig. 13); T2 to V2
(Fig. 14); T3 to V2 as well (Fig. 15); T3 related to V3 or V4, the domain
D4 being split in two subdomains D4a and D4b corresponding to V3 and
V4, respectively (Figs. 16 and 17). Finally, T5 is related to V5. (Fig. 18).
In fact, D4a is only a tiny domain (2% relative size), which may be hard to
observe. Only these scenarios can be observed. The total amount of possible
permutations of times and of values is 24 + 6 = 30 each (24 if AB occurs,
6 otherwise), there are 24 × 24 + 6 × 6 = 612 joint possibilities, of which
surprisingly only 6 can occur.

5.3 Classification of observable phenomena

In table 3, A stands for Acme, L stands for Lambert, E for Euler, G for Golden
Ratio, O for Osculation, T for triad.

Concerning the possibility to observe these points in practice: since they are
defined by values ρ̃ ranging from 1/2 to 3, (24) implies that the considerations
for the Euler point ρ̃ = 0 will carry through on the level of orders of magnitude
for the ratios of ki,0 and the difference in activation energy.

5.4 Right and Wrong in textbooks concerning two-step consecutive reactions

The formulas presented in textbooks, papers, Wikipedia, for consecutive reac-
tions are correct. In some textbooks, expressions for tB,max are given. However,
no classification and understanding is given of special points and the regimes
and scenarios of behavior governed by them. Consequently, the illustrations
are sometimes wrong, being impossible in this case. For instance in (Bairamov,
2003), in Fig. 2.1a p. 49 the correct sequence Bm<BC<AC<AB is exhibited
(i.e., between the Lambert and Osculation points, 1.17 . . . < ρ < 2, but in Fig.
2.2a p. 51, the impossible sequence BC<Bm<AC<AB is shown.

On the Web, at http://www.meteo.mcgill.ca/233/chap10/sld013.htm, we see
another impossible sequence, Bm<BC<AC.

Furthermore, in some cases the illustrations unintentionally do correspond
to special points, especially the Euler and Acme points, e.g., (Froment and

15



Bischoff, 1990), p. 16 (Euler point) and p. 367 (Acme point).

The mistake most often found, however, is to identify the domination of the
second exponent as a “quasi-steady-state”. Many authors do not understand
that there are only two extreme cases of dominating in this reaction: domi-
nating of the first or the second exponent, see eq. (6), and the other exponent
has nothing to do with quasi-steady-state regime. These two extreme regimes
are presented on Figs. 23 and 24. The first regime, in which k1 is very large
compared to k2, can be considered as the B → C regime, the second regime,
in which k2 is very large, as A→ C.

6 Selected Applications

In this section we present selected application to interesting examples.

6.1 Multi-step radioactive decay

In such multi-step processes, every step is by definition a first-order process.
We can apply our analysis: for instance (see (Lederer et al., 1968)), in the
Actinium series, 211Bi alpha-decays to 207Tl, this beta-decays to 207Pb with
respective half lifes 2.14 and 4.77min, respectively. Therefore in this two-step
consecutive process, the constant k2/k1 = 2.14/4.77 = 0.449, close to the
Acme point.

Similarly, in the Radium series, 214Pb beta-decays to 214Bi, which beta-decays
(for 99.98%) to 214Po, which alpha-decays very rapidly (half-life 0.16 ms to
201Pb. This multistep decay can be closely approximated by two steps, the
first with half-life 27min, the second 20min. The corresponding ratio of rate
constants is k2/k1 = 27/20 = 1.35, which lies between the Lambert and the
Osculation points.

6.2 Isomerization reactions

In accordance with data presented by (Wei and Prater, 1962), four interesting
cases are considered here and plotted in Figs. 19, 20, 21, 22.

16



7 Experimental error

When investigating in practice a reactor set-up, measurements will be affected
by some level of experimental error.

• For instance, determining the intersection between two curves may be done
through linear interpolation by first identifying two data points (t1, C1) and
(t2, C2) on the first curve, and two (t′1, C

′
1) and (t′2, C

′
2) on the second, such

that the two line segments defined by these will intersect. This intersection
is then given by t = Dt/D1 and C = −DC/D1, where

D1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t1 t2 0 0 1 0

C1 C2 0 0 0 1

1 1 0 0 0 0

0 0 t′1 t′2 1 0

0 0 C ′1 C
′
2 0 1

0 0 1 1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (49)

and

Dt =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t1 t2 0 0 0 0

C1 C2 0 0 1 0

1 1 0 0 0 1

0 0 t′1 t′2 0 0

0 0 C ′1 C
′
2 1 0

0 0 1 1 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, DC =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t1 t2 0 0 1 0

C1 C2 0 0 0 0

1 1 0 0 0 1

0 0 t′1 t′2 1 0

0 0 C ′1 C
′
2 0 0

0 0 1 1 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (50)

Since determinants are multilinear, it is a straightforward application of
error analysis to propagate estimates on the time and concentration errors
through these formulas, whether using a statistical or an interval approach.
• When a maximum must be located, experimental errors can lead to false

values or obscure the true one; typically, one would then fit a least-squares
parabola through enough data points and estimate the maximum from that.
Again, the mathematics for the resulting formulas is an application of linear
algebra techniques.
• More generally, one may wish to use maximally the information provided by

all the data points: this can readily be done by fitting the exact solution via
the parameters k1 and k2 to the data, ideally taking into account a full sta-
tistical description including repeat experiments, estimated (co)variances,
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etc. If the resulting residues show no persistence of systematic errors (a
desideratum that may require substantial correction efforts), the nonlinear
least squares method will yield aggregate estimates of the standard devi-
ations σ1,2 and correlation r on the rate constants values, which can then
be propagated through all formulas to determine, e.g., confidence intervals
for the identification of special points. In particular, to the ratio ρ = k2/k1
there corresponds a variance

σ2
ρ =

k21σ
2
2 + k22σ

2
1 − 2rk1k2σ1σ2
k41

. (51)

8 Results and Conclusions

The analysis that we presented significantly improves our ability to distinguish
mechanisms; previously, we considered that observing a maximum of CB is a
sufficient indication to distinguish the consecutive mechanism A → B → C
from the parallel A→ B, A→ C. Now we are able based on our six possible
scenarios, either to falsify the hypothesis of the A → B → C consecutive
mechanism (and propose a more complicated alternative), or to justify it and
infer some conditions on the ratio ρ of the rate constants.

8.1 Mathematical technique

The results of this paper were obtained by careful combinations of elementary
and symbolic mathematics, special functions and numerical approximations.
We fully intend to use the same array of tools in investigating more complex
linear and even some nonlinear models along the same lines.

8.2 Direct application and future development

In the nearest future, we will continue analyzing the following series of first-
order reaction mechanisms: parallel irreversible first-order reactions A → B,
A → C; consecutive first-order reactions in which one step is reversible; tri-
angle of first-order reactions (reversible or not), changing parameters of the
system, especially the initial composition and the temperature. Some simple
models with nonlinear dependencies will be analyzed as well. The results ob-
tained for the change of concentration in time can be immediately applied to
steady-state plug-flow reactor models, in which space or residence time play
the role of the astronomic time. Such analyses can also be done for CSTR
reactors.
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We will analyze such models both for close systems and for open systems with
mass exchange. An interesting opportunity of these are provided by thermo-
desorption and thermogravimetry problems: in both cases, there is a sequence
of linear processes and the kinetic model reflects this sequence and the change
of other factor(s) as well. In the first case, the change of temperature in time;
in the second, the loss of weight over time. The problem of intersection can
be presented for exit flow dependencies for diffusion-reaction models (related
to the Temporal Analysis of Products, TAP, data), etc. Special attention will
be paid to the analysis of multi-step radioactive decay, where the coefficients
are known very accurately.

As the systems considered grow more complex, the number of intersection
and maximum points and of their orderings will grow rapidly: polynomially
for the former, combinatorially for the latter. This increasing complexity can
to some extent be matched by automatic methods, whether numerical and
symbolic depending on what the theoretical setting will allow. Ultimately,
we expect that unifying properties will emerge; indeed, we generally believe
that the analysis of intersections and coincidences presents a source of vast
information for new families of patterns for distinguishing mechanisms and
parameter domains, and might even find applications outside the domain of
chemical kinetics.

List of Symbols

A, B, C Substances involved in a reaction mechanism.
CA, CB, CC Concentrations of the substances A, B, C.

CA,0, CB,0, CC,0 Initial values of the substance concentrations. CC,0 is always assumed 0; CB,0
is assumed 0 in most of the treatment. In the figures CA,0 is conventionally
set to 1.

EA,1, EA,2 Arrhenius activation energies for k1 and k2, [kJ/mol]; see (4).
k1, k2 Reaction rate constants [1/ s].

k1,0, k2,0 Arrhenius coefficients for k1 and k2, [1/ s[]; see (4).
L Laplace transform, defined as

LF (s) =

∞∫
0

e−stF (t) dt. (52)

φ The golden ratio, (
√

5 + 1)/2 = 1.618033 . . ..
R universal gas constant [kJ /mol K].
ρ The dimensionless ratio k2/k1. When varying the temperature T to reach a

value of ρ, the target is denoted ρ̃.
T Absolute temperature [K].
t Time [s].
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W0, W−1 Principal and (−1) branch of the Lambert W -function, see Appendix B.
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Table 1
Qualitative list of possible cases (time).

Table 2
Qualitative list of possible cases (values).

Table 3
Classification of observable phenomena.
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Fig. 1. Plot of ρρ/(1−ρ) vs. 0 ≤ ρ ≤ 10; this is CB,max as a function of ρ = k2/k1.
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Fig. 2. Non-physical example of two non-osculating intersections.
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Fig. 3. Non-physical example of one finite osculating intersection.
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Fig. 4. Acme point A: k2 = 0.5 s−1, k1 = 1 s−1.
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Fig. 5. Golden point G: k2 = (1/φ) s−1 = 0.618033, k1 = 1 s−1.
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Fig. 6. Golden point G: k2 = (1/φ) s−1 = 0.618033, k1 = 1 s−1. A and B vs. C.
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Fig. 7. Euler point E: k2 = k1 = 1 s−1, tB,max = 1 s.
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Fig. 8. Lambert point L: k2 = 1.1739824 s−1, k1 = 1 s−1.
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Fig. 9. Osculation point O: k2 = 2 s−1, k1 = 1 s−1.
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Fig. 10. Triad point T : k2 = 3 s−1, k1 = 1 s−1.
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Fig. 11. Plot of times tB,max, intersection times of CA and CB, then CA and CC ,
then CB and CC
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Fig. 12. Plot of CB,max, intersections of CA and CB, then CA and CC , then CB and
CC

27



 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.5  1  1.5  2  2.5  3  3.5  4

C_A(t)
C_B(t)
C_C(t)

Fig. 13. Example (detail) of domain D1: plot of CA, CB and CC vs. time for
k2 = 0.25 s−1, k1 = 1 s−1. In time, AB<AC<Bm<BC; in value, AC<AB<BC<Bm.
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Fig. 14. Example (detail) of domain D2: plot of CA, CB and CC vs. time for
k2 = 0.75 s−1, k1 = 1 s−1. In time, AB<Bm<AC<BC; in value, AC<BC<AB<Bm.
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Fig. 15. Example (detail) of domain D3: plot of CA, CB and CC vs. time for
k2 = 1.08 s−1, k1 = 1 s−1. In time, Bm<AB<AC<BC; in value, AC<BC<AB<Bm.
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Fig. 16. Example (detail) of domain D4a: plot of CA, CB and CC vs. time for
k2 = 1.18 s−1, k1 = 1 s−1. In time, Bm<BC<AC<AB; in value, AB<BC<AC<Bm.

A Positivity of a certain expression and the monotone increasing
natural logarithm

Any value of the form ln(x/y)/(x− y), with x > 0, y > 0, x 6= y, is positive:
it can be rewritten as (lnx − ln y)/(x − y), and since the ln is monotone
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Fig. 17. Example (detail) of domain D4b: plot of CA, CB and CC vs. time for
k2 = 1.6 s−1, k1 = 1 s−1. In time, Bm<BC<AC<AB; in value, AB<BC<Bm<AC.
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Fig. 18. Example (detail) of domain D5: plot of CA, CB and CC vs. time for
k2 = 4 s−1, k1 = 1 s−1. In time, BC<Bm<AC; in value, BC<Bm<AC, no AB.

increasing, the sign of the numerator is the same as that of the denominator,
so the quotient is positive.
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Fig. 19. Plot of CA, CB and CC vs. time for k2/k1 = 3.371/3.724 = 0.9052, close to
Euler point E
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Fig. 20. Plot of CA, CB and CC vs. time for k2/k1 = 5.616/10.344 = 0.5429, close
to Acme point A

B Lambert W function

Any solution x to xex = y is a value of the Lambert function W (y). This
definition creates an infinite number of branches of complex functions; by W0

we denote the so-called principal branch, which is real on both sides near
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Fig. 21. Plot of CA, CB and CC vs. time for k2/k1 = 4.623/10.344 = 0.4469, close
to Acme point A
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Fig. 22. Plot of CA, CB and CC vs. time for k2/k1 = 4.623/3.371 = 1.3714, not
close to any special point, between L and O.

y = 0, and by W−1 the branch that is real from y = −1/e to 0 (but no
further). See Fig. C.1 and (Corless et al., 1996).
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Fig. 23. Large k1 example: k2 = 0.1 s−1, k1 = 1 s−1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5  6  6.5  7  7.5  8  8.5  9  9.5  10

C_A(t)
C_B(t)
C_C(t)

Fig. 24. Large k2 example: k2 = 10 s−1, k1 = 1 s−1.

C Laplace-domain solution of (1)–(3)

Applying the Laplace transform, the system becomes

sLCA − CA,0 =−k1LCA, (C.1)

sLCB − CB,0 = k1LCA − k2LCB, (C.2)
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sLCC = k2LCB, (C.3)

whence by elementary manipulations,

LCA =
CA,0
s+ k1

, (C.4)

LCB =
k1CA,0

(s+ k1)(s+ k2)
+

CB,0
s+ k2

, (C.5)

LCC =
k1k2CA,0

s(s+ k1)(s+ k2)
+

k2CB,0
s(s+ k2)

. (C.6)

The case k1 = k2 only has to be distinguished from the general case at this
point because it causes a double pole to occur in the partial fraction expansions
of the first terms on the right-hand sides of (C.5) and (C.6).
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