
1 

 

THE FUKUI MATRIX: A SIMPLE APPROACH TO THE ANALYSIS OF THE 

FUKUI FUNCTION AND ITS POSITIVE CHARACTER 

Patrick Bultinck*,1, Dorien Clarisse1, Paul W. Ayers2, Ramon Carbo-Dorca3 

1. Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3), 

9000 Gent, Belgium. Patrick.Bultinck@UGent.be Tel. +3292644423, Fax +3292644983 

2. Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada. 

3. Institute of Computational Chemistry, University of Girona, Campus de Montilivi, 17071 

Girona, Catalonia, Spain 

 

TOC TEXT 

The Fukui function is generalized to the Fukui matrix revealing new hitherto not available 

information on its properties. 

 

ABSTRACT 

The Fukui matrix is introduced as the derivative of the one-electron reduced density matrix with 

respect to a change in the number of electrons under constant external potential. The Fukui 

matrix extends the Fukui function concept: the diagonal of the Fukui matrix is the Fukui 

function. Diagonalizing the Fukui matrix gives a set of eigenvectors, the Fukui orbitals, and 
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accompanying eigenvalues. At the level of theory used, there is always one dominant 

eigenvector, with eigenvalue very close to 1. The remaining eigenvectors are either zero or come 

in pairs with eigenvalues of the same magnitude but opposite sign. Analysis of the frontier 

molecular orbital coefficient in the eigenvector with eigenvalue 1 gives information on the 

quality of the frontier molecular orbital picture. The occurrence of negative Fukui functions can 

be easily interpreted in terms of the nodal character of the dominant eigenvector with respect to 

the remaining eigenvectors and eigenvalues. 

 

KEYWORDS: Fukui function, conceptual DFT 

 

INTRODUCTION 

 

Chemical reactions are of utmost importance not only to chemistry but also to society as 

they form a cornerstone of modern welfare through the development of e.g., drugs for life-

threatening diseases. It is therefore no wonder that models explaining molecular reactivity have 

been created for decades and continue to be developed. One of the best-known models is that 

based on the Frontier Molecular Orbitals (FMO) [1]. Although developed before most chemists 

became familiar with Density Functional Theory (DFT) and hence before the field known as 

Conceptual DFT existed, FMO theory can be connected to conceptual DFT provided some 

(common) approximations are accepted. The same is true for the Hard and Soft Acids and Bases 

(HSAB) theory [2] which was also embedded in conceptual DFT [3-6]. The energy of a molecule 

can be written as a functional of the number of electrons  N  and the external potential  v (r) [7]. 
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In chemical reactions both of these entities change for each reaction partner because the 

approach of the other reactant changes the external potential and induces charge transfer. The 

energy of a molecule can be expressed as follows: 
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The energy is a functional of the external potential  v (r) and the number of electrons  N  

and (1) allows computing the energy in terms of both these variables, with self-explanatory 

notation. The derivatives in (1) all have significance in so-called conceptual DFT and the reader 

is referred to Geerlings et al. for a review [8]. In this paper we focus on the first mixed derivative 

which, using the Hellmann Feynman theorem, can be expressed as: 
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 r   is the electron density of the molecule and 

  
f r  is the so-called Fukui function [9-13] 

which depends on the position coordinate but obviously also on the number of electrons in the 

system. The Fukui function is one of the most often used reactivity descriptors and is mainly 
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used for understanding nucleophilic/electrophilic molecular reactivity. Due to the discontinuity 

in the energy versus the number of electrons, one cannot truly take the derivative and one must 

distinguish a right or upper limit and left or lower, giving rise to two different Fukui functions 

[9-13]. This leads to the working equations: 
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The limitation of constant external potential means keeping the molecular geometry and atom 

types fixed.  

In this work we generalize the Fukui function by introducing a Fukui matrix. This allows 

us to address two questions: 1. “Can one assess the quality of a frontier orbital approach in a 

simple way?” 2. “Can one rationalize the occurrence of negative Fukui functions?”. Both 

questions deserve attention. Chemical reactivity is often interpreted in terms of the FMO, even 

though this is not always appropriate. There is a continuing interest in negative Fukui functions 

[14-22], and especially how they can be rationalized, and whether they have chemical 

significance. 

The relation between the Fukui matrix and the Fukui function is reminiscent of the 

relation between the density matrix and the density function. This analogy also immediately 

makes clear why the introduction of the Fukui matrix is important. Just as with density matrices 

and electron density functions where the impossibility of physically non-meaningful negative 
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electron densities is most apparent from the fact that having natural orbitals with negative 

occupation numbers violates N-representability [23], the possibility of regions in space with 

negative Fukui functions may be investigated through the eigenvalues of the Fukui matrix. 

Moreover, the introduction of a Fukui matrix allows the introduction of orthonormal Fukui 

orbitals for correlated wave functions. The two questions introduced above are also highly 

relevant for workers in conceptual DFT as they often rely on FMO and the Fukui matrix reveals 

whether this is a reasonable approximation. 

 

THEORETICAL METHODS 

 

Although the Hohenberg-Kohn theorem promises that the electron density suffices to 

compute all information about a molecule [24], not all expectation values can be computed in a 

practical way from the electron density. The density matrix often gives more accessible 

information or allows for a simpler calculation of expectation values. In this work, we introduce 

the Fukui matrix in such a way that, like the relationship of the electron density to the density 

matrix [25], the Fukui function appears as the diagonal (  r  r '  in (5)). The Fukui matrix is 

therefore given as: 
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A similar idea was introduced by Balawender and Geerlings using ensemble density 

matrices [26]. However, its properties were not discussed as deeply as in the present paper. We 

focus on the properties of this matrix, its spectral decomposition in a relevant basis and its 
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importance for chemical reactivity. In the rest of this paper, we work in a basis-set representation 

instead of the spatial representation. Specifically, we express the density matrix in the basis of 

the natural orbitals   of the neutral molecule, as obtained from any ab initio calculation: 

     , ' '
i j i j

P    r r r r         (6) 

So the Fukui matrix projected on this basis is defined as: 
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To compute the Fukui matrix as the difference of two density matrices with different 

number of electrons, we need to express both density matrices in the same basis. The framework 

for the Fukui matrix remains the same for correlated wave functions but as we want to examine 

the quality of the FMO approximation, we work at the single determinant level of theory where 

to every molecular orbital an orbital energy is associated. At the Hartree-Fock level (and 

formally also the Kohn-Sham level) all matrices can be expressed in terms of the (real) 

molecular orbitals of the neutral molecule, which in this study is always a closed shell singlet. At 

the currently used level of theory, the density matrix of the neutral molecule in terms of the 

molecular orbitals is diagonal, although it is more general and more convenient from an 

algebraic standpoint to consider the entire matrices. The transformation of the molecular orbitals 

from the ionic species is a straightforward unitary transformation that requires only the 

expansion coefficient matrices of the molecular orbitals in the basis set that is common to both 

calculations. Using  C  and  D  to respectively denote these matrices for the neutral and ionized 

molecule, the two Fukui matrices can be easily obtained as: 
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where superscripts in the density matrix  i j
PP  refer to the density matrix of the neutral  N -

electron molecule or the charged species with   N  1  or   N  1  electrons. Owing to the 

normalization of the Fukui function, the trace of both Fukui matrices must be 1. The next step in 

the analysis is the diagonalization of the Fukui matrix 
f  with elements as in (8) and (9), 

yielding the decomposition: 

T

i i i i

i

F 
 
 f          (10) 

Henceforth, the 
 


i
are called the Fukui orbitals and the 

i i
F

  are called the Fukui eigenvalues. 

These Fukui orbitals are expressed as linear combinations of the molecular orbitals of the neutral 

molecule and the expansion coefficients together with the Fukui eigenvalue thus give immediate 

information on how much a specific Fukui orbital contributes to the Fukui matrix and thus Fukui 

function, and which molecular orbitals play the most important role. Given the current interest in 

spin resolved conceptual DFT [27-31], in our actual calculations, we distinguish two Fukui 

matrices, one for the   spin electrons and one for the   spin electrons. 

The representation in equation (10), allows for a very simple assessment of the two basic 

questions asked above: 
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1. If the FMO approximation is perfect, a single eigenvalue equal to 1 should appear and the 

corresponding Fukui orbital should be composed solely of the FMO of the neutral 

compound. All other eigenvalues should be exactly zero if one wants to reduce the study 

of chemical reactivity to the properties of the FMO. 

2. A necessary, but not sufficient, condition for a negative Fukui function to appear in some 

region of the molecule is that there must be at least one negative eigenvalue. Using the 

Fukui matrix, one can then easily explain how negative Fukui function can arise. 

These principles will be investigated for a small test set of molecules. 

 

COMPUTATIONAL METHODS 

 

In order to answer the two questions raised, B3LYP 6-311++G(2d,2p) calculations, 

including geometry optimization, have been performed on the set of fairly small molecules used 

previously by Otero et al. in their analysis of negative atom condensed Fukui functions [22]. The 

neutral molecules are closed shell singlets and all ionic species are taken to have spin 

multiplicity 2. The Fukui matrix is computed according to equations (8)-(9). By convention, the 

most abundant electron spin is always   in our calculations. To assess the quality of the 

algebraic manipulations, we checked that for adding an electron the   Fukui matrix has trace 1 

and the   part has trace zero and vice versa for removal of an electron. All calculations have 

been carried out using Gaussian-03 [32] and our own routines for the required algebraic 

manipulations based on information from formatted checkpoint files. 
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RESULTS AND DISCUSSION 

 

For all 18 molecules, the Fukui matrices have been diagonalized for both the addition of 

an electron and the removal of an electron. In all cases, the traces of the   and   Fukui matrices 

equal either 1 or 0 with deviations in the order of 10-9. Interestingly, the Fukui matrix with trace 

1, always showed one eigenvalue/vector combination with eigenvalue equal to 1 (henceforth 

referred to as the dominant Fukui orbital) and many with much smaller eigenvalues. There are 

several significant positive and negative secondary eigenvalues among the latter that, within 

numerical accuracy, come in pairs with values of equal magnitude but opposite sign. The Fukui 

matrices with trace zero lack the eigenvector with eigenvalue 1 but do exhibit a set of paired 

eigenvalues of equal magnitude but opposite sign. In the following we restrict ourselves to the 

study of the spin Fukui matrix with trace 1. This corresponds to the   Fukui matrix in case of 

addition of an electron and the   Fukui matrix for removal of an electron. 

Table 1 gives the most negative eigenvalue found, the number of positive and negative 

eigenvalues for all molecules (considering only eigenvectors with eigenvalue above 10-4 or 

below -10-4) as well as the coefficient of the appropriate FMO (HOMO or LUMO of the neutral 

molecule depending on the process considered) in the eigenvector with eigenvalue 1. 

 

 -

f     +

f     
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Molecule Pos Neg Low CFMO Pos Neg Low CFMO 

CH2NH 8 7 -0.0805 1.0000 8 7 -0.0187 0.9582 

CO2 11 10 -0.0791 1.0000 9 8 -0.0146 0.9761 

HCN 7 6 -0.0744 1.0000 7 6 -0.0221 0.9687 

N2O 11 10 -0.0719 0.9997 10 9 -0.0219 0.9801 

CO 7 6 -0.0552 0.9998 8 7 -0.0658 0.8906 

SO2 15 14 -0.0571 0.9999 16 15 -0.0861 0.9958 

SO3 16 15 -0.0431 1.0000 18 17 -0.0367 0.9768 

SCN- 14 13 -0.0841 0.9995 9 8 -0.0251 0.9782 

NCO- 11 10 -0.0753 0.9999 9 8 -0.0157 0.9865 

NO2
- 12 11 -0.0572 0.9998 13 12 -0.0514 0.9969 

HNO 8 7 -0.0569 0.9999 9 8 -0.0174 0.9970 

NOF 9 8 -0.0745 0.9996 10 9 -0.0331 0.7145 

CH3COCH3 16 15 -0.1060 0.9994 13 12 -0.0167 0.9748 

CH3COOH 16 15 -0.1060 0.9986 13 12 -0.0147 0.9657 

CH3NH2 9 8 -0.0660 0.9985 8 7 -0.0148 0.9581 
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CH3OH 9 8 -0.0778 0.9981 8 7 -0.0137 0.9419 

HCOOH 12 11 -0.0983 0.9997 11 10 -0.0258 0.9580 

CH2C(H)(O)- 12 11 -0.0876 0.9998 10 9 -0.0307 0.9570 

 

TABLE 1: Number of positive (pos) and negative (neg) eigenvalues in the Fukui matrix with 

trace 1 for the molecular set of Otero et al. and most negative eigenvalue (Low). CFMO denotes 

the coefficient of the relevant FMO in the eigenvector with eigenvalue 1. 

 

From table 1 one immediately sees that the FMO approximation is quite good in most 

cases. The coefficient of the FMO in the dominant Fukui orbital is usually above 0.9, meaning 

that it accounts for at least 81% of the contribution to the Fukui matrix and Fukui function. As 

expected based on common experience, the FMO is worse for electron attachment, where the 

FMO corresponds to the LUMO. In some cases the FMO approximation can fail rather badly. 

The advantage of the Fukui matrix approach is that it directly reveals whether the FMO 

approximation is good enough whereas previously one had to perform a visual or more 

complicated numerical comparison between an electron density difference and a FMO density. 

The Fukui matrix thus flags cases where further analysis based on the FMO approximation might 

be ill-advised. This is of direct relevance when using the FMO approximation in chemical 

reactivity studies. 

Table 1 also illustrates that the number of positive eigenvalues is always one larger than 

the number of negative eigenvalues. As there is one eigenvalue equal to 1 within numerical 
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accuracy, the number of secondary positive eigenvalues equals the number of negative ones and 

for all molecules they are paired in the sense mentioned above. This pairing is a consequence of 

the idempotency of the density matrices considered in this study. It has been shown in general 

that the eigenvalue spectrum of a matrix that is the difference between two idempotent matrices, 

should be the same for the negative of this difference, except for possible eigenvalues 1  [33]. 

For the Fukui matrix, which at the present level of theory corresponds to the difference of two 

idempotent density matrices, this infers that the spectrum   must fulfill: 

       \ 1 \ 1 
 

   f f        (11) 

where  \ 1  is used to denote exclusion of these eigenvalues. This is exactly what is observed in 

the present study and is one of the few cases where this theorem on the difference of idempotent 

matrices applies in a chemical context. Equation (11) can only hold if all eigenvalues different 

from 1 or -1 are either zero or come in pairs of values +x and -x. 

The Fukui matrix approach is also useful for addressing the second question: are there 

regions in space in a molecule where the Fukui function is negative. Regions with negative Fukui 

functions are counterintuitive since it implies that when an electron is added (removed) to a 

molecule, some regions of space actually loose (gain) electron density. Negative eigenvalues in 

the Fukui matrices of the molecules in table 1 are very common. Such eigenvalues are a 

necessary condition for the occurrence of the much-debated [14-22] negative Fukui function as is 

immediately clear from equation (10). In general, regions with a negative Fukui function are 

unlikely because the dominant Fukui orbital overwhelms all other Fukui orbitals in all regions of 

space. However, in some cases, the dominant Fukui orbital may have small amplitude or even 

nodes in some regions of space; it is only in these regions that the secondary Fukui orbital pairs 
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might play an important role. Even in these regions, there is at least partial cancellation due to 

the fact that the non-zero eigenvalues come in pairs. To have a negative Fukui function, at least 

some of the Fukui orbitals with negative eigenvalues must occupy regions in space where the 

amplitude of the Fukui orbitals with positive eigenvalues is small enough. Unless the Fukui 

matrix has all three of these properties, negative Fukui functions will not be observed. 

The first condition, a low value for the dominant Fukui orbital, will be satisfied near 

nodal surfaces of this orbital. Note that this was also the reasoning followed by Ayers and co-

workers in recent work on the occurrence of negative Fukui functions [20-21]. However, 

whether a negative Fukui function will appear also depends on the other Fukui orbitals. The 

Fukui matrix allows for a straightforward analysis of this by inspection of the nodal structure of 

the dominant Fukui orbital versus the Fukui function minus the contribution of the dominant 

Fukui orbital in the spectral decomposition (10). For example, one may safely assume that there 

are no significant regions with negative Fukui functions if none of the secondary Fukui orbitals 

has a significant occupancy. One can predict, and even understand, the presence of negative 

Fukui functions by straightforward manipulations of the Fukui matrix and, optionally, visual 

inspection of the Fukui orbitals using graphical user interfaces. In fact, the entire analysis can be 

performed very quickly and with less effort than using the more common approach based on 

comparing functions plotted on some grid. As an example of how the Fukui matrix helps in 

understanding negative Fukui functions, figure 1 shows for removal of an electron the total 

Fukui function (a), the sum of its positive contributions (b) and the sum its negative contributions 

(c) based on the Fukui matrix eigenvalues for FCCF optimized at the B3LYP/6-311++G(2d,p) 

level and using the corresponding neutral and ionic density matrices. The 0.0002 isosurface of 

the Fukui function in (a) agrees very well with that reported by Melin et al. [20] in their study of 
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negative Fukui functions. However, thanks to the generalization of the Fukui function to the 

Fukui matrix, one can visualize separately isosurfaces at 0 .0 0 0 2  corresponding to the positive 

contributions (b) and the negative contributions (c). 

(a)  

(b)  

(c)  

Figure 1: 0 .0 0 0 2  Isosurfaces of  f


r  for the total Fukui function (a), the sum of contributions 

with positive eigenvalues (b) and negative eigenvalues (c) for FCCF. 

The dominant eigenvector consists, in line with the results apparent from table 1, almost 

entirely from one of the degenerate HOMO orbitals. However, both of these degenerate orbitals  

has a nodal surface containing the molecular axis while analysis of the positive and negative 

contributions along this axis reveals that the negative contributions outweigh the positive ones in 

significantly large regions of space, resulting globally in picture (a) where on the inner part of 

the molecule the Fukui function results negative (see Melin et al. [20] for a detailed discussion of 
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the total Fukui function). This simple example shows that the Fukui matrix reveals that the FMO 

approximation does not fully account for the Fukui function and reveals at the same time that it 

can result negative. If so desired, the analysis can be even extended to a Fukui orbital by orbital 

analysis. 

For the practicing chemist this is all valuable information. Even if the FMO 

approximation breaks down, as happens mainly for cases of addition of an electron, the chemist 

can still obtain a dominant Fukui orbital that can subsequently be used for chemical 

interpretation but he/she must take in to account that there are remaining secondary eigenvalues 

and that any analysis based on the dominant Fukui orbital will fail in regions of space near nodal 

surfaces of this orbital. At the same time, even though there is always a dominant Fukui orbital, 

the Fukui matrix explains why regions with negative Fukui functions may occur and where they 

might be found. This information was not available previously. The Fukui function is still the 

key quantity for interpreting and even predicting molecular reactivity but the Fukui matrix makes 

the amount of available information much larger, in the same way that the density matrix is a 

richer source of information than the density function itself. 

 

CONCLUSIONS 

 

The Fukui matrix extends the Fukui function in the same way that the density matrix 

extends the electron density. Specifically, the Fukui function is the diagonal of the Fukui matrix. 

Using the Fukui matrix, one can dissect the Fukui function into Fukui orbitals and their 

corresponding eigenvalues. This provides a simple way to assess the quality of the Frontier 



16 

 

Molecular Orbital (FMO) approximation. It also provides understanding as to whether the Fukui 

function can be negative in some regions of space and also where a negative Fukui function can 

be expected. The manipulations required to study the Fukui matrix are very simple algebraic 

manipulations involving no more than unitary transformations, diagonalization and inversion of 

matrices. 

Tests for a set of organic and inorganic compounds reveal that there is always a dominant 

eigenvector with an eigenvalue equal to 1, but that there are numerous other non-zero 

eigenvalues as well. The latter are found to come in pairs whose eigenvalues have the same 

magnitude but opposite sign. This is a consequence of the Fukui matrix being a difference of two 

idempotent density matrices at the level of theory used in this study. The Fukui matrix 

decomposition provides insight into the occurrence of negative Fukui functions. These will only 

occur when the dominant eigenvector with eigenvalue 1 is small in a region of space where the 

eigenvectors with negative eigenvalues are larger than those with positive eigenvalues. By 

examining the coefficient of the FMO for the dominant Fukui matrix eigenvector, one can assess 

the quality of the FMO approximation. This approximation is observed to be quite good for 

electron removal, but less reliable for electron addition. 

The extra insights that can be extracted from the Fukui matrix suggest that Fukui function 

analysis should be routinely performed in this way. 
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