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1 Introduction

Over the years, priority scheduling has become the basis for a large class of queueing disciplines

that are designed to support different types of traffic in modern telecommunication systems. In the

Head-Of-Line (HOL) priority scheduling discipline, delay-sensitive traffic is always given priority

over delay-tolerant traffic. This HOL priority scheme provides low delays for the delay-sensitive

traffic, but it can cause excessive delays for the delay-tolerant traffic, especially when the network

is highly loaded (see e.g., [1, 5]).

One way to prevent this starvation of delay-tolerant traffic is the introduction of priority jumps

(see e.g., [1]). In a priority scheme with priority jumps, the priority level of delay-tolerant packets

may be increased in the course of time. In [3] for instance, the packet at the HOL-position of the

low-priority queue jumps at the end of each time unit to the high-priority queue if during that time

unit a packet of the high-priority queue is transmitted. The flow of delay-tolerant traffic into the

high-priority queue may then however be too drastic in some cases, with a too negative effect for

the delay-sensitive traffic as a result. Therefore, we add an extra jumping condition to this modified

HOL (m-HOL) scheme of [3].

Concretely, we present a jumping scheme in which a possible jump in a time unit also depends

on the number of delay-tolerant packets arriving in the system during that time unit: the Head-
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Of-Line Jump-If-Arrival (HOL-JIA) priority scheme. Via a probability generating function (pgf)

approach, we derive the pgfs of the system contents of the high- and low-priority queue, and the

pgf of the delay of a delay-sensitive packet. From these pgfs, we can easily calculate expressions for

some interesting performance measures, such as mean values and variances. A numerical example

finally shows the impact of the jumping mechanism.

The contribution of this paper concerns the model that is considered, as well as the solution

technique that we have used and the specific results that are efficiently determined by this tech-

nique. First, we show that by letting priority jumps depend on the arrival characteristics of the

delay-tolerant traffic the flow of this type of traffic into the high-priority queue is restricted. The

negative effect for the delay-sensitive traffic is then limited. The effect for the delay-tolerant traffic

can however still be considerably positive. The jumping mechanism in the HOL-JIA priority scheme

is thus better adapted to the amount of traffic that arrives in the system. Secondly, we demonstrate

that an analysis based on probability generating functions is very suitable for analysing queueing

systems with priority jumps. Specifically, some boundary functions need to be determined during

the solution process. This is a well-known feature for coupled queues (see e.g., [2, 4] for similar

cases). The pgf technique provides an efficient and fast method for the determination of these

boundary functions.

The outline of the paper is as follows. Section 2 describes the mathematical model. In Sections

3 and 4, we derive the steady-state system contents and study the delays of both types of packets,

respectively. Section 5 presents a small numerical example. Finally, we formulate some conclusions

in Section 6.

2 Mathematical model

We consider a discrete-time queueing system with two queues of infinite capacity and one

transmission channel. Two types of packets arrive at the system: packets of type 1, which enter

the first queue, and packets of type 2, which enter the second queue. The numbers of both types of

packets arriving in slot k are denoted by a1,k and a2,k respectively. The a1,ks and a2,ks are assumed

to be independent and identically distributed (i.i.d.) from slot-to-slot. Within one slot however,

a1,k and a2,k can be correlated. This possible correlation is described by the joint probability
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generating function (pgf) A(z1, z2) , limk→∞ E
[

z
a1,k

1 z
a2,k

2

]

. We furthermore define the marginal

pgfs AT (z) , A(z, z), A1(z) , A(z, 1) and A2(z) , A(1, z) of the total number, the number of

type-1 and the number of type-2 arrivals during a slot respectively. The corresponding arrival rates

are defined as λT , A′

T (1), λ1 , A′

1(1) and λ2 , A′

2(1), with λT = λ1 + λ2. Note that since there

is only one transmission channel, the stability condition for this system is given by λT < 1.

The transmission times of all the packets are deterministically equal to one slot. Packets in the

first queue have a higher priority than those in the second. So, whenever there are packets present

in the high-priority queue, they have tranmission priority, and only when the high-priority queue is

empty, packets of the low-priority queue are transmitted. Within both queues separately, packets

are stored according to a First-In, First-Out (FIFO) rule.

Packets of the low-priority queue can jump to the high-priority queue according to the following

jumping mechanism: at the end of each slot in which a packet of the high-priority queue is trans-

mitted and in which type-2 packets have arrived at the system, the HOL-packet of the low-priority

queue jumps to the high-priority queue. Since the possible jump occurs at the end of the slot, the

jumped type-2 packet enters the high-priority queue after the type-1 packets that arrived during

the same slot.

3 System content

We derive an expression for the joint pgf of the system contents of both queues at the beginning

of a random slot in the steady state. Under the assumption that the packet in transmission (if

one) is part of the queue that is “served” in that slot, we define uH,k and uL,k as the system

contents of the high- and low-priority queue at the beginning of slot k, and uT,k as the total system

content at the beginning of slot k. The joint pgf of uH,k and uL,k is denoted by and defined as

Uk(z1, z2) , E
[

z
uH,k

1 z
uL,k

2

]

. The system under consideration satisfies the following system equations:

• if uH,k = 0:











uH,k+1 = a1,k

uL,k+1 = [uL,k − 1]+ + a2,k

, (1)
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• if uH,k > 0, uL,k = 0:











uH,k+1 = uH,k − 1 + a1,k

uL,k+1 = a2,k

, (2)

• if uH,k > 0, uL,k > 0:

– if a2,k = 0:











uH,k+1 = uH,k − 1 + a1,k

uL,k+1 = uL,k

, (3)

– if a2,k > 0:











uH,k+1 = uH,k + a1,k

uL,k+1 = uL,k − 1 + a2,k

, (4)

where [· · · ]+ denotes the maximum of the argument and zero. If one of the queues is empty at the

beginning of slot k, a packet of the other queue (if non-empty) is transmitted during slot k (see

Eqs. (1) and (2)). If both queues are non-empty on the other hand, it depends on the number of

type-2 arrivals in slot k whether a packet of the low-priority queue jumps to the high-priority queue

(Eqs. (3) and (4)). Introducing pgfs in the system equations, letting k → ∞ to reach the steady

state, and isolating U(z1, z2), yields

U(z1, z2) =











[z2(z1 − 1)A(z1, z2) + (z2 − z1)A(z1, 0)] U(0, 0)

+ (z2 − z1)(A(z1, z2) − A(z1, 0))U(z1, 0) + (z1 − z2)A(z1, 0)U(0, z2)











z1(z2 − A(z1, z2) + A(z1, 0)) − z2A(z1, 0)
. (5)

In the right-hand side of (5), there are three quantities yet to be determined: the constant U(0, 0)

and the boundary functions U(z1, 0) and U(0, z2). First, U(0, 0) is calculated via the normalization

condition U(1, 1) = 1. We obtain the probability of having an empty system: U(0, 0) = 1 −

λT . Secondly, the boundary functions U(z1, 0) and U(0, z2) can be found from (5), by applying

Rouché’s theorem and exploiting the analyticity of U(z1, z2) inside the unit circle (|z1| < 1, |z2| < 1).
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For U(z1, 0), we first take the limit of (5) for z2 → 0:

U(z1, 0) = A(z1, 0)
(z1 − 1)(1 − λT ) + z1U

(2)(0, 0)

z1 − A(z1, 0)
, (6)

where U (2)(0, 0) ,
∂U(z1, z2)

∂z2

∣

∣

∣

∣

z1=z2=0

denotes the probability of having an empty high-priority

queue and one packet in the low-priority queue. Applying Rouché’s theorem on the numerator

z1 − A(z1, 0) of the right-hand side of (6) further implies a unique solution s , A(s, 0) in the

unit circle (|s| < 1). The analyticity of U(z1, 0) inside the unit circle (|z1| < 1) then leads to an

expression for U (2)(0, 0) and by (6) for U(z1, 0) itself:

U(z1, 0) =
1 − λT

s

(z1 − s)A(z1, 0)

z1 − A(z1, 0)
. (7)

Furthermore, by applying Rouché’s theorem on the numerator of (5), we can show that for a

given z2 (|z2| < 1), the equation z1(z2 −A(z1, z2)+A(z1, 0))− z2A(z1, 0) = 0 has a unique solution

z1 = Y (z2) in the unit circle (|z1| < 1):

Y (z2) ,
z2A(Y (z2), 0)

z2 − A(Y (z2), z2) + A(Y (z2), 0)
. (8)

U(0, z2) can again be calculated by using the analyticity of U(z1, z2) inside the unit circle. This

produces

U(0, z2) =

(1 − λT )











(z2 − Y (z2))A(Y (z2), 0) [s + A(Y (z2), z2) − A(Y (z2), 0)]

−sz2(1 − Y (z2))A(Y (z2), z2) − s(z2 − 1)A(Y (z2), z2)A(Y (z2), 0)











s(z2 − A(Y (z2), z2))(Y (z2) − A(Y (z2), 0))
, (9)

where we have used Eqs. (7) and (8).

We now have derived all unknown quantities in (5), and have thus obtained an expression for the

joint pgf U(z1, z2). By further substituting z1 and z2 by the appropriate values, we can determine

the marginal pgfs UT (z) , U(z, z), UH(z) , U(z, 1) and UL(z) , U(1, z) of the total system

content, and of the high- and low-priority system contents respectively. It should be noted that the

expression for UT (z) is identical to the pgf of the system content of a queue with a FIFO-discipline

and with one type of arrivals, determined by AT (z). This is logic, because the total system content
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is independent of the order the packets are being served in. Furthermore, from the marginal pgfs,

expressions for the moments can be easily calculated by invoking the moment generating property

of pgfs. For further use, we here give the expression of the mean total system content E[uT ]:

E [uT ] = λT +
λTT

2(1 − λT )
, (10)

with λT = A′

T (1) the total arrival rate and λTT , A′′

T (1).

4 Packet delay

Let us first consider the delay of a type-1 packet. We therefore tag a type-1 packet and denote

its arrival slot by slot I. Since jumps occur at the end of slots, the tagged type-1 packet is queued

in front of a type-2 packet that possible jumps at the end of slot I. As a consequence, the delay

of the tagged type-1 packet, i.e., the number of slots between the end of the packet’s arrival slot

and the end of its departure slot, only depends on the system content of the high-priority queue

at the beginning of slot I (uH,I). Due to the i.i.d. arrivals from slot-to-slot, uH,I in slot I and uH

in an arbitrary slot have the same distribution due to the PASTA property. The pgf D1(z) of the

delay of a random type-1 packet can then be expressed in terms of UH(z) (see e.g., [5] for a similar

procedure) and is thus easily found. By further taking the first derivative of D1(z) for z = 1, we

get an expression for the mean delay E [d1] of a random type-1 packet. It is given by

E [d1] =
A2(0)(1 − λT ) + sλT − sA2(0)

2

sA2(0)(1 − A2(0))
+

λ11A2(0)

2λ1(A2(0) − λ1)
−

A(1)(1, 0)(1 − λ2)

A2(0)(A2(0) − λ1)

+
λ2

1 + λ1 − A2(0)

A2(0)(A2(0) − λ1)
, (11)

with λ11 , A′′

1(1) and A(1)(1, 0) ,
∂A(z1, z2)

∂z1

∣

∣

∣

∣

z1=1,z2=0

. By taking higher order derivatives for

z = 1, expressions of higher moments can also be obtained. Note also that for λT → 1, i.e., for the

total system going to its stability boundary, E[d1] remains finite.

Determining an expression for the pgf D2(z) of the delay of a random type-2 packet is rather

complex, and still an open issue at the moment. It is however possible to calculate the mean delay

E [d2] of a random type-2 packet. Indeed, according to Little’s law, we first have that E [uT ] =

λT E [d], with E [uT ] being the mean total system content and E [d] the mean delay of an arbitrary
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packet. The probability that a randomly arriving packet is of type 1 (type 2) equals
λ1

λT

(
λ2

λT

), and

we thus further have that E [d] =
λ1

λT

E [d1] +
λ2

λT

E [d2]. Combining these two expressions, we find

E [d2] =
E [uT ] − λ1E [d1]

λ2
. (12)

E [uT ] and E [d1] have been calculated (in Eqs. (10) and (11) respectively), and we are thus able to

derive an expression for the mean delay of a random type-2 packet.

5 Numerical example

In the previous section, we have briefly described the procedures to obtain expressions for the

mean packet delays of both types of traffic. In this section, we present a small numerical example

to illustrate the impact and the significance of the HOL-JIA priority scheme for varying traffic

mixes. We therefore compare the mean delays with the mean delays in a HOL priority queue (see

[5]) and in a queue with the m-HOL priority scheme (see [3]). We consider an arrival process with

A(z1, z2) =

(

1 −
λ1

16
(1 − z1) −

λ2

16
(1 − z2)

)16

. (13)

Here, λ1 and λ2 are the arrival rates of type-1 (delay-sensitive) and type-2 (delay-tolerant) traffic

respectively. This is the arrival process to a queue in an 16x16 output-queueing switch with Bernoulli

arrivals at its inlets, and with uniform routing. We furthermore define α as the fraction of type-1

traffic in the overall traffic mix, i.e., α = λ1/λT , with λT = λ1 + λ2.
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Figure 1: Mean value of packet delays versus α

Figures 1a. and 1b. show the mean packet delays of both types of traffic for λT = 0.7 and λT =
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0.9 respectively, as functions of α, for the HOL, the m-HOL and the HOL-JIA priority schemes. It

is first noticed that the curves of E[d1] and E[d2] for the HOL-JIA scheme lie between those for

the HOL scheme and the m-HOL scheme, as expected. Secondly, we observe little performance

difference between the HOL scheme and the HOL-JIA scheme when α is low, i.e., when few type-1

packets arrive at the system. When α is low in the HOL-JIA scheme, the high-priority queue is

often empty and few type-2 packets jump to the high-priority queue. Both types of traffic thus

behave similarly as in the HOL scheme, and the effect of the jumping mechanism is thus limited

in the HOL-JIA scheme. In the m-HOL scheme on the other hand, a type-2 packet jumps to the

high-priority queue every slot where both queues are non-empty. As a result, a higher E[d1] and

lower E[d2] than for the HOL(-JIA) scheme is observed. As already mentioned in the introduction,

the effect of the m-HOL scheme may then be too drastic in some cases, and the HOL-JIA scheme

mimicing the HOL scheme is satisfactory for low α.

When α is high, the m-HOL scheme achieves a small delay differentation. The HOL-JIA scheme

on the other hand, can considerably influence E[d2] compared to the HOL scheme, while the negative

effect on E[d1] stays limited (see Figure 1b.). E.g., when λT = 0.9 and α = 0.8, E[d2] decreases from

about 17.3 for HOL to about 10.5 for HOL-JIA, with only a small increase for E[d1] (from about

2.21 to about 3.82). We also see that for α → 1, E[d2] for the HOL-JIA and HOL schemes converge

(see Figure 1a.). When α ≈ 1 in the HOL-JIA scheme, an exceptionally arriving type-2 packet has

a large probability of entering an empty low-priority queue. To be transmitted however, this type-2

packet has to wait in the low-priority queue until the high-priority queue becomes empty (since it

is only allowed to jump if another rare type-2 packet arrives). Hence, we find a similar behaviour

as in the HOL scheme.

6 Conclusions

We first conclude that the HOL-JIA scheme does what it is designed for: the delay-tolerant

traffic can be saved from starvation compared to the HOL scheme, while the delay-sensitive traffic is

only mildly affected, as opposed to the m-HOL scheme. Secondly, an analysis based on probability

generating functions efficiently overcomes mathematical challenges and is moreover useful for the

calculation of important performance measures. The pgf of the low-priority delay is however still
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an open issue.
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