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Abstract

Amongst the contributions to the theory of LDPC codes deriving from
finite geometries ([13], [12], [9]), we present a study of the code C which
has as parity-check matrix H the incidence matrix of the Hermitian curve
of PG(2, q2) and the q + 1-secant to it. The good performance of C with
iterative decoding algorithm is showed by Johnson and Weller in [11]. In
this paper we prove the ”double” cyclic structure of C, we shorten H in
a suitable way in order to obtain new codes and show how in some cases
we have a gain in the code-rate; finally we present a geometric approach
to easily construct the matrix H.

Keywords LDPC codes, quasi-cyclic codes, incidence matrix, Hermitian
curve

1 Introduction

Let H be a parity-check matrix for the binary code C; if H is sparse, then the
code C is said to be a Low Density Parity-Check (LDPC) code. Firstly intro-
duced by Gallager [7], LDPC codes have been recently revitalized in [13, 9],
where new results and applications are presented. The increasing interest in
LDPC codes stems from their satisfying performance with iterative decoding,
which turns out to be very close to the theoretical Shannon limit. Most of such
codes have been computer generated, therefore a consequent incomplete knowl-
edge about their structure is at the origin of a few unpleasant aspects in the
applications, such as a certain decoding complexity, and a hard-to-determine
minimum distance. More recent studies [13, 12, 9], are instead concerned with
parity-check matrices being incidence matrices coming from finite geometries.
Such a construction soon reveals its advantages: geometric properties -even
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trivial ones, e.g. two lines have at most one common point, and so on- im-
mediately translate into codes structural properties, in turn allowing for more
efficient decoding algorithms - cyclic, quasi-cyclic ones arise; furthermore easier
a priori descriptions of the code’s characteristic become available, such as direct
estimates on the minimum distance.

The aim of this paper is to give a rather satisfying description of some of the
basic properties of the code C having as parity-check matrix H the incidence
matrix of the Hermitian curve H(2, q2) and the q + 1 secants to H(2, q2). Such
a code has been already introduced and tested (see for example [11]) and it
seems to perform well. We go further in the description of the code C, in
particular we give a precise determination of the C code-rate, we give a proof
of the “double cyclic” structure of the code; eventually we describe a geometric
approach allowing for an easy construction the matrix H. Finally we present
the codes Cext and Csh, obtained in a standard way from C, by extending and
shortening H respectively, we compare their code-rate to the code-rate of C and
study their Tanner graph.

2 Incidence structures, matrices and graphs

An incidence structure is a triple P = (P,B, I), where P is a set of points, B
is a set of blocks and I ⊆ (P × B ∪ B × P) is a symmetric incidence relation.
We say that the point P and the block ` are incident (or P is on `, or ` passes
through P ) if and only if (P, `) ∈ I. An incidence structure P with |P| = n and
|B| = m can be represented by the incidence matrix, that is a (m× n)−matrix,
say H = [hij ], over GF (2) whose rows (columns) are indexed by the blocks
(points) and hij = 1 if and only if the ith block is incident with the jth point,
hij = 0, otherwise.

If any two blocks of P are incident with at most one common point, P is
called a partial linear space and the blocks are usually called lines. A partial
geometry pg(s, t, α) is such that: each line is incident with a constant number
s+ 1 of points, each point is incident with a constant number of t+ 1 lines and
for any non-incident point-line pair (P, `) the number of lines incident with P
and intersecting ` is α. The incidence matrix of a partial geometry is regular, in
the sense that any row has constant weight s+ 1 and any column has constant
weight t + 1. A map of P ∪ B into itself is called collineation if it maps points
into points, lines into lines and preserves the incidence relation.

A matrix H is said to be circulant if every row is obtained by the preceding
one by a right shift. Let G = 〈g〉 be a cyclic collineation group of a partial linear
space P =(P,B, I), which acts regularly on the set P, that is G is transitive on
the points and the only element of G that fixes a point is the identity. Fix a
point P ∈ P and label the elements of P so that Pi = P g

i−1

; let G(`) be a line

orbit under the action of G and label the lines of G(`) so that `i = `g
i−1

. In this
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way, we have an incidence matrix H =


H1

· · ·
· · ·
Ht

of P = (P,B, I) where Hi (the

incidence matrix of P∪G(`)) is a circulant matrix, ∀ i = 1, . . . , t. It is clear that
in order to construct the matrix H, it is enough to know the first row of every
Hi, that is, it is enough to know the incidence of t lines `i, i = 1, . . . , t such that
G(`i) 6= G(`j)∀ i 6= j ; we usually call such lines starters.

The incidence graph G of an incidence structure P = (P,B, I), is a graph
which has as vertices set P∪B and two vertices x and y are connected if and only
if (x, y) ∈ I. A cycle in G is a sequence of connected vertices which starts and
ends at the same vertex and does not contain any other vertex more than once.
The length of a cycle is the number of its vertices and the girth of G is the length
of its shortest cycle. The graph of a partial geometry is free of cycles of length 4
and if α is greater than one, then G has N6 = 1

3m(n− s− 1)
(
α
2

)
cycles of length

6; if α = 1, then the partial geometry is called generalized quadrangle, the graph
G is free of cycles of length 4 and 6 and it contains N8 = 1

4m(n− s− 1)ts cycles
of length 8.

3 Finite-Geometry LDPC Codes

Let H be the incidence matrix of a partial geometry pg(s, t, α) and C be the
binary LDPC code that has H (respect. the transpose of H, say HT ) as parity-
check matrix. The code C turns out to be a [n, n−rank2(H)] (respect. [m,m−
rank2(H)]) code, where with rank2(H) we have denoted the rank of H over
GF (2); moreover, we have the minimum distance, rank2(H) and the girth of
the Tanner graph of the code expressed in terms of the parameters of the partial
geometry. In [12] the following lemma is proved:

Lemma 1 Let H be the incidence matrix of a partial geometry pg(s, t, α) and
C be the code which has HT as parity-check matrix, then we have

dmin ≥ max

{
(t+ 1) (s+ 1− t+ α)

α
,

2 (s+ α)

α

}
. (1)

Moreover, we have the following:

Lemma 2 Let H be the incidence matrix of a partial geometry pg(s, t, α) and
C be the code which has H as parity-check matrix, then we have

dmin ≥ max

{
(s+ 1) (t+ 1− s+ α)

α
,

2 (t+ α)

α

}
. (2)

Proof. The matrix HT is the incidence matrix of the dual geometry of the
partial geometry pg(s, t, α), that is a partial geometry pg(t, s, α).

In [12], it is showed that
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rank2 (H) ≤ st (t+ 1) (s+ 1)

α (t+ s+ 1− α)
+ 1 (3)

and if t+ s+ 1− α ≡ 1 mod 2, then

rank2 (H) ≥ st (t+ 1) (s+ 1)

α (t+ s+ 1− α)
. (4)

The Tanner graph of a binary [n, k] code C is a bipartite graph; the first
level consists of the n vertices vi which represent the code bits and the second
level consists of the k vertices sj which correspond to check sums; a code bit
vertex vi is connected with a check sum vertex sj one if and only if the code bit
vi is contained in the check sum sj . It is easy to see that the Tanner graph of a
code from a partial geometry pg(s, t, α) is the incidence graph G, hence if α > 1,
then the Tanner graph has girth 6, if pg(s, t, α) is a generalized quadrangle, then
the Tanner graph has girth 8 .

In [13], [12] and [9] LDPC codes construction based on the incidence struc-
ture of finite geometries is presented and the properties of these codes are inves-
tigated. One of the most important proprieties observed in these codes is that
they are cyclic or quasi-cyclic.

A [n, k] code C is said to be cyclic if the right shift of a codeword v =
v1v2...vn, i.e. v′ = vnv1...vn−1, is also a codeword. A cyclic code has a parity-

check matrix in the form H =


H1

· · ·
· · ·
Ht

, where Hi is a circulant matrix, ∀

i = 1, . . . , t. A linear code is said to be quasi-cyclic if it has a parity-check

matrix in the form H =


H1,1 . . . H1,s

. . . . . . . . .

. . . . . . . . .
Ht,1 . . . Ht,s

, where any Hi,j is a circulant

matrix.
Let V be a d+1 -dimensional vector space over the finite field GF (q), with q

a power of a prime number; the lattice of the subspaces of V is the d-dimensional
projective geometry Σ = PG(d, q). The Singer group S = 〈σ〉 is a cyclic group
of collineations of Σ that acts regularly on the set of points and hyperplanes of

Σ and hence has order qd+1−1
q−1 . Choose as d + 1-dimensional vector space over

GF (q) the field GF (qd+1) and let ξ be a primitive element of GF (qd+1); the
collineation σ is induced by the application

x ∈ GF (qd+1)→ ξx ∈ GF (qd+1).

Labelling the points and the lines of Σ in a suitable way (see Section2 and [8]),
the incidence matrix H of such incidence structure is a parity-check matrix of
a cyclic code.
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4 Hermitian LDPC Codes

We want to introduce a new class of codes arising from linear spaces.
A correlation π of Σ = PG(d, q) is a permutation of the subspaces which

inverts the inclusion, i.e. S ⊆ T implies Sπ ⊇ Tπ, for any subspace S and
T of Σ, and also if S is a h−dimensional subspace, then Sπ is a (d − h −
1)−dimensional subspace of Σ. A subspace S is called totally isotropic, isotropic
or non-isotropic with respect the polarity π according as S∩Sπ is S, nonempty
and properly contained in S or empty, respectively. A point (or a hyperplane)
is either non-isotropic or totally isotropic, in the latter case it is called absolute.
A polarity is a correlation of order two. A polarity π is said to be a unitary
polarity if it arises from a non-degenerate reflexive σ−sesquilinear form β of the
underling vector space V in the following way

S ⊆ V 7−→ Sπ = {u ∈ V/β(u, v) = 0 ∀ v ∈ S}

and the σ−sesquilinear form β is Hermitian, i.e. σ is the automorphism of
GF (q) of order two and β(u, v) = β(v, u)σ, ∀ u, v ∈ V . The projective space Σ =
PG(d, q) admits a unitary polarity if and only if q is a square. The set of non-
singular linear application f of V into itself such that β(u, v) = β(f(u), f(v)),
∀ u, v ∈ V , is called the unitary group U(d+ 1, q2); any element of U(d+ 1, q2)
induces a collineation of Σ and the set of such collineations is called the projective
unitary group PGU(d+ 1, q2). It is clear that a collineation of PGU(d+ 1, q2)
maps totally isotropic (respect. isotropic, non-isotropic) subspaces in totally
isotropic (respect. isotropic, non-isotropic) ones. From now on let π be a
unitary polarity of the plane PG(2, q2) and denote byH(2, q2) the set of absolute
points, which is also called the Hermitian curve; the set of absolute lines is
{Pπ, P ∈ H(2, q2)}.

The incidence structure P = (P,B, I) that we consider is the following: P is
the set of point of H(2, q2), B is the set of the non isotropic lines and I is the
natural incidence relation. The Hermitian curve H(2, q2) consists of n = q3 + 1
points and there are m = q2(q2 − q + 1) non isotropic lines. This incidence
structure is a linear space with parameters s = q, t = q2 − 1 and α = q + 1.

Let H be the incidence matrix of P: H is a m×n− matrix over GF (2), such
that any row has weight q + 1, any column has weight q2, hence the density
is 1

q2−q+1 . Finally, any two columns have exactly one non-zero component in
common and any two rows have at most one non-zero component in common.

Hiss proves in [10] that if q is even, then rank2(H) = q3 +1, if q is odd, then
rank2(H) = q(q2 − q + 1).

The code, say C which has HT as parity-check matrix is a binary [m, (q2 −
q− 1)(q2 − q+ 1)] LDPC code, if q is even, or a binary [m, (q2 − q)(q2 − q+ 1)]
LDPC code, if q is odd.

As the authors discuss in [9], since any two rows of H have at most one
non zero entry in common, C is capable of correcting any error pattern with
[ 12 (q + 1)] or fewer errors using one step majority-logic decoding and so has
minimum distance at least q + 2 (see also [11]), that is a better lower bound
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then the one found in (1).
The Tanner graph has girth 6 and it has N6 = 1

6n(n − 1)(n − q − 1) cycles
of length 6.

In order to prove next results, we need some preliminaries.
Let Π = PG(2, q2) be the projective plane over the finite field GF (q2).

Choose as tree-dimensional vector space over GF (q2) the field GF (q6). A point
P = (x) of Π, with x ∈ GF (q6) \ {0}, is {λx, λ ∈ GF (q2) \ {0}}. The Trace of
GF (q6) over GF (q2)

Tr : x ∈ GF (q6)→ x+ xq
2

+ xq
4

∈ GF (q2)

is a non singular linear map and any non singular linear map of GF (q6) over
GF (q2) is of the type:

Tr(u·) : x ∈ GF (q6)→ Tr(ux) ∈ GF (q2)

hence a line [u], with u 6= 0, is the set: {(x) ∈ Π/Tr(ux) = 0}.
As it is showed in [3], the sesquilinear form

(x, y) ∈ GF (q6)×GF (q6)→ Tr(xq
3

y)

is a non degenerate Hermitian form, so it induces a unitary polarity of Π. The
absolute points of such polarity , i.e. the points of the hermitian curve H

(
2, q2

)
,

have equation Tr(xq
3+1) = 0.

The Singer group S = 〈σ〉 of Π has order q4 + q2 + 1 and it is the direct sum
of two subgroups: S1 = 〈σ1〉 of order q2 + q + 1 and σ1 is induced by

x ∈ GF (q6)→ ξq
2−q+1x ∈ GF (q6)

and S2 = 〈σ2〉 of order q2 − q + 1 and σ2 is induced by

x ∈ GF (q6)→ ξq
2+q+1x ∈ GF (q6).

In [1] it’s showed that the point orbits of these two subgroups give arise to two
different cyclic partitions of Π:

Baer(u) :=
{
ξu+i(q

2−q+1)/ i = 0, ..., q2 + q
}

for u = 0, ..., q2 − q is a cyclic partition of Π into Baer subplanes, and

Arc(t) :=
{
ξt+i(q

2+q+1)/ i = 0, ..., q2 − q
}

for t = 0, ..., q2 + q is a cyclic partition of Π into complete arcs. We recall that
an arc A of Π is a set of points such that never three are collinear and A is said
to be complete if there is no arc which properly contains it. A Baer subplane
B is a subplane of Π such that every point (respect. line) of Π is incident with
a line (respect. point) of B, and it’s well known that if Π has order q2 then B
has order q. For every line ` of Π, ther exists one and only one Baer(u) such
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that |` ∩Baer(u)| = q+1 and in this case we say that ` contains a Baer subline
of Baer(u); for any other Baer(v) 6= Baer(u), we have |` ∩Baer(v)| = 1 or
q+ 1. Let Si (`) be the ` orbit under the action of Si; we note that if ` contains
a subline of Baer(u), then any other line of S1 (`) does and if ` is tangent
(respect. secant, external) to Arc(t), then any other line of S2 (`) is.

In [3], it’s showed that S2 is a subgroup of the unitary group PGU(3, q2),
hence there is a partition of P into q+ 1 complete arcs and a partition of B into
q2 orbits under the action of S2.

Now it is easy to prove the following

Proposition 3 The code C is quasi-cyclic.

Proof.
Let P1, . . . , Pq+1 be points of P and `1, . . . , `q2 be lines of B that have distinct

orbits under the action of S2. Label the elements of P in the following way:

P ((i−1)(q2−q+1)+j+1) := P
σj
2

i , i = 1, . . . , q + 1, j = 0, . . . , q2 − q; analogously for

the elements of B: `((i−1)(q
2−q+1)+j+1) := `

σj
2
i , i = 1, . . . , q2, j = 0, . . . , q2 − q.

Hence the incidence matrix is H =


H1,1 . . . H1,q+1

. . . . . . . . .

. . . . . . . . .
Hq2,1 . . . Hq2,q+1

 and Hi,j is a

circulant square matrix of order q2 − q+ 1, ∀ i = 1, . . . , q2 and j = 1, . . . , q + 1.

Let now B0 be Baer(0) and C = B0 ∩ H(2, q2). The following result shows
how to find points of P and lines of B with distinct orbits under the action of
S2, i.e. point-starters and line-starters respectively.

Proposition 4 The points of C are point-starters and the lines {[u], (u) ∈ B0\
C} are line-starters, in particular, if q is even, then {[u], (u) ∈ B0 \ C} = {[u]
not passing through (1) and (u) ∈ B0}.

Proof. In [1], it is proved that |Arc(0) ∩Baer(u)| = 1 ∀ u = 0, ..., q2−q but the
same proof can be used to show that |Arc(t) ∩Baer(u)| = 1 ∀ u = 0, ..., q2 − q
and t = 0, ..., q2+q, hence it is clear that the points of C are starters. For duality,
we have that S1(`) ∩ S2(m) consists in one line, for every line ` and m of Π,
hence the lines of S1(`) ∩ B are starters. The non isotropic lines are {` = Pπ,

P non absolute point} = {[uq3 ], (u) /∈ P}. If ` = [1], then S1(`) ∩ B = {[u],

(u) ∈ B0} ∩ {[uq
3

], (u) /∈ P} = {[u], (u) ∈ B0 \ C}. If q is even, then {[u],

(u) ∈ B0 \ C} = {[u], (u) ∈ B0 and Tr(uq
3+1) 6= 0} = {[u], (u) ∈ B0 and

Tr(u2) 6= 0} = {[u], (u) ∈ B0 and Tr(u) 6= 0} = {[u], (u) ∈ B0 and (1) 6∈ [u]}.

The incidence structure we are considering has s = q, i.e. any line passes
through q+ 1 points; moreover we recall that the set P is partitioned into q+ 1
arcs. Next step is to describe how the q + 1 points of a line are disposed in the
q + 1 arcs (hence we give a description of the submatrices Hij). Fisher et. al.
in [6] prove the following two lemmas:
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Lemma 5 If q is even, then Baer(u)∩H(2, q2) is a subline of Baer(u); if q is
odd, then Baer(u) ∩H(2, q2) is a subconic of Baer(u), ∀ u = 0, ..., q2 − q.

Remark 6 A conic of the plane PG(2, q), q odd, is a set of points represented
by the vectors v of a tree dimensional vector space over GF (q), say V (3, q),
such that Q(v) = 0, for some non degenerate quadratic form Q of V (3, q). All
the conics of the plane are projectively equivalent (i.e. there exists a linear
collineation that maps one onto the other) and the group of collineations that
fix a conic is called the projective orthogonal group PO(3, q). Finally we recall
that PO(3, q) is isomorphic to PGL(2, q), the group of linear collineations of
the line.

Lemma 7 If ` contains a subline of Baer(u), then ` is tangent to the q + 1
arcs that contain the q + 1 points of ` ∩Baer(u).

Now we prove the following:

Proposition 8 If q is even, then there exists a unique orbit S2(`) such that any
line of S2(`) is tangent to Arc(t), ∀ Arc(t) ⊂ P; any other orbit S2(m) 6= S2(`)
is such that any line of S2(m) is tangent to the same unique arc of P and secant
to the same q

2 arcs of P. If q is odd, then there exist 1
2 (q + 1) orbits S2(`) such

that any line of S2(`) is tangent to the same two arcs of P and secant to the
same q−1

2 arcs of P; moreover there exist 1
2 (q − 1) orbits S2(m) such that any

line of S2(m) is secant to the same q+1
2 arcs of P.

Proof. For any S2(`) consider the unique line that contains a subline of B0,
namely just `. If q is even, than C is a subline and two cases can occur: `∩C = C,
hence, by lemma7, ` is tangent to any arc of P and any other line of S2(`) is; or
|` ∩ C| = 1, hence ` is tangent to a unique arc of P and any other line of S2(`)
is tangent to the same arc. If q is odd, then C is a subconic and we have two
cases: |` ∩ C| = 2, so ` is tangent to two arcs of P and any other line of S2(`)
is tangent to the same arcs; otherwise ` ∩ C = ∅, hence ` is not tangent to any
arc of P and any other line of S2(`) is not.

Finally, we prove the ”double cyclic structure” of the code C, i.e. we find a
circulant display of submatrices Hij .

Proposition 9 If q is even, then
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H =



I1 I2 . . . . . . . . . Iq+1

A1,1 A1,2 . . . . . . . . . A1,q+1

A1,q+1 A1,1 . . . . . . . . . A1,q

. . . . . . . . . . . . . . . . . .
A1,2 A1,3 . . . . . . . . . A1,1

A2,1 A2,2 . . . . . . . . . A2,q+1

A2,q+1 A2,1 . . . . . . . . . A2,q

. . . . . . . . . . . . . . . . . .
A2,2 A2,3 . . . . . . . . . A2,1

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
Aq−1,1 Aq−1,2 . . . . . . . . . Aq−1,q+1

Aq−1,q+1 Aq−1,1 . . . . . . . . . Aq−1,q
. . . . . . . . . . . . . . . . . .

Aq−1,2 Aq−1,3 . . . . . . . . . Aq−1,1


where Ii is the identity matrix of order q2−q+1, ∀ i = 1, . . . , q+1 and Aij is a
square circulant matrix of order q2−q+1, ∀ i = 1, . . . , q−1 and j = 1, . . . , q+1.

If q is odd and r = q + 1, then

H =



A1 A2 . . . . . . . . . . . . . . . Ar
B1,1 B1,2 . . . B1, r2

B1, r2+1 B1, r2+2 . . . B1,r

B1, r2
B1,1 . . . B1, r2−1 B1,r B1, r2+1 . . . B1,r−1

. . . . . . . . . . . . . . . . . . . . . . . .
B1,2 B1,3 . . . B1,1 B1, r2+2 B1, r2+3 . . . B1, r2+1

B2,1 B2,2 . . . B2, r2
B2, r2+1 B2, r2+2 . . . B2,r

B2, r2
B2,1 . . . B2, r2−1 B2,r B2, r2+1 . . . B2,r−1

. . . . . . . . . . . . . . . . . . . . . . . .
B2,2 B2,3 . . . B2,1 B2, r2+2 B2, r2+3 . . . B2, r2+1

C1,1 C1,2 . . . . . . . . . . . . . . . C1,r

C1,r C1,1 . . . . . . . . . . . . . . . C1,r−1
. . . . . . . . . . . . . . . . . . . . . . . .
C1,2 C1,3 . . . . . . . . . . . . . . . C1,1

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .
Cq−2,1 Cq−2,2 . . . . . . . . . . . . . . . Cq−2,r
Cq−2,r Cq−2,1 . . . . . . . . . . . . . . . Cq−2,r−1
. . . . . . . . . . . . . . . . . . . . . . . .

Cq−2,2 Cq−2,3 . . . . . . . . . . . . . . . Cq−2,1


where Ai, i = 1, . . . , r, Bij, i = 1, 2 and j = 1, . . . , r, Cij, i = 1, . . . , q − 2 and
j = 1, . . . , r are square circulant matrices of order q2 − q + 1.

Proof. In the subplane B0, PO(3, q) ∼= PGL(2, q) ⇒ in both cases C is a line
or a conic, there exists a cyclic group T = 〈τ〉 that fixes C and is isomorphic to
the Singer group of the line (i.e. |T | = q + 1 and T acts regularly on the points
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of C). C ↪→ H(2, q2) ⇒ T is a subgroup of PGU(3, q2). If C is a line, then
T fixes C and the point Cπ = (1) ∈ B0. In this case, the other line-orbits (in
B0) have all order q + 1 (see, for example, [8]). If C is a conic of B0, namely
the conic of equation y2 = xz (see the Remark6), we consider the following
isomorphism between PO(3, q) and PGL(2, q): f ∈ PGL(2, q) represented by

A =

(
a b
c d

)
7→φ(f) ∈ PO(3, q) represented by φ′(A)

d2 2cd c2

bd ad+ bc ac
b2 2ab a2

. Let

ξ be a primitive element of GF (q2) with minimal polynomial x2 − x+ η, where
η is a primitive element of GF (q) (it does exist, see [2]); the collineation that
spans the Singer group of the line is represented by

S =

(
0 −η
1 1

)
hence τ is represented by

S′ : φ′(S) =

 1 2 1
−η −η 0
η2 0 0

 .

det(S′−λI) = (η−λ)(λ2 + (2η−1)λ+η2). The irreducibility of x2−x+η over
GF (q) implies the irreducibility of the polynomial x2+(2η−1)x+η2 over GF (q),
then S′ has one eigenvalue λ = η and eigenspace V (η) = 〈e〉 = 〈(2,−1, 2η)〉.

Hence T fixes the point P = 〈e〉 and ` = Pπ, i.e. the line of equation
ηx + y + z = 0. Let Q = 〈v〉, v = (x, y,−ηx − y), be a point on `, then
S′vT = ((1 − η)x + y,−η(x + y), η2x)T ; hence it is clear that, on `, S′ induces
a collineation represented by the matrix(

1− η 1
−η −η

)
=

(
1 1
−η 0

)2

and (
1 1
−η 0

)
=

(
0 1
1 0

)
S

(
0 1
1 0

)
.

This means that T induces on ` a group of collineation isomorphic to the sub-
group of order q+1

2 of the Singer group of the line, hence on ` there are two

point orbits of order q+1
2 . Any point not on ` and distinct by P can be written

in unique way as 〈v + e〉, with 〈v〉 ∈ `; we have τk(〈v + e〉) = 〈ξ2kv + ηke〉 =
〈ξ2kv + ξk(q+1)e〉 = 〈v + e〉 if k is at least q + 1, hence such a point has orbit
of order q + 1. For duality, there are two line orbits of order q+1

2 and q − 1
line orbits of order q + 1, and one of these is the orbit of the tangent lines to
the conic, which not occur in the incidence structure we are considering. Let
now P be a fixed point of C and label the point starters in the following way:
Pi+1 := P τ

i

, i = 0, . . . , q. If q is even, then there is a line starter, say `0, that
contains the subline C and there are q − 1 line starters, say `1, . . . , `q−1, that
contain sublines with distinct orbits under the action of T , then label the line
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starters as follows: `(0) := `0, and `((i−1)(q+1)+j+1) := `τ
j

i , i = 1, . . . , q − 1 and
j = 0, . . . , q. If q is odd, then there is a line starter, say `0, that contains the
unique subline fixed by T , there are two line starters, say `1,`2, that contain
sublines with distinct orbits of order q+1

2 under the action of T and finally,
and there are q − 2 line starters, say `3, . . . , `q, that contain sublines with dis-
tinct orbits of order q + 1 under the action of T ; hence label the line starters

as follows: `(0) := `0, `((i−1)(
q+1
2 )+j+1) := `τ

j

i , i = 1, 2 and j = 0, . . . , q−12 ,

`((i−1)(q+1)+j+1) := `τ
j

i , i = 3, . . . , q and j = 0, . . . , q.

Remark 10 We explicitly observe that if q is even, then in order to construct
the matrix H is enough to know the incidence of q − 1 lines of S1([1]) \ {[1]}
such that they pass trough a fixed point of C and do not pass trough (1).

4.1 Extended and shortened codes

The code-rate of a [n, k] linear code is k
n , hence C has code-rate q2−q−1

q2 , if q

is even, or q−1
q , if q is odd. We observe that the higher is q the higher is the

code-rate, but considering high values of q implies a high complexity of calculus
and longer codes.

Extended and shortening in a suitable way finite-geometry codes, we obtain
new good LDPC codes with the same Tenner graph girth, as it is showed in
[9]; essentially, we obtain new codes that lack in regularity and in quasi-cyclic
structure, but that have higher code-rate.

The column (or row) splitting is a technique employed in [9] for codes de-
riving from finite geometries, in particular it has been applied on the incidence
structure we have considered in [11]. If we split any row of H in s rows of less
weight, then we obtain from C a new code, say Cext, with sn code-bits and
the same number of linearly independent check-sums, hence Cext has code-rate
sq2−q−1
sq2 , if q is even, or sq−1

sq , if q is odd.

Let H′ be the matrix obtained by H deleting a column which corresponds
to a point P of H(2, q2). The Tanner graph of the code, say C1

sh, which has
(H′)T as parity-check matrix, has N ′6 = 1

6n(n − 1)(n − q − 1) − 1
2n(n − q − 1)

cycles of length 6. Moreover, we can delete a row and q+ 1 columns of H, i.e. a
line of the incidence structure and the q+ 1 points on it: we obtain a code, say
C2
sh, and its Tanner graph has N ′′6 = 1

3 (m − 1)
(
q
2

)
(n − 2q − 1) cycles of length

6. Finally, deleting a column and q2 rows of H, i.e. a point of the incidence
structure and the q2 lines trough it, we obtain a code, say C3

sh, and its Tanner
graph has N ′′′6 = 1

3 (n− 1)(m− 2q2 + 1)
(
q
2

)
cycles of length 6.

Actually, there is a gain in the code-rate just in the codes Cext and C1
sh. In

the following, we compare the code-rate of the code C and the code-rate of the
codes obtained by C shortening or extending H:

C Cext C1
sh C2

sh C3
sh

q even q2−q−1
q2

sq2−q−1
sq2

(q−1)2
q2−q+1 ≥ q4−2q3−q2−q−1

(q−1)(q3+q+1) ≥ q−2
q−1

q odd q−1
q

sq−1
sq ≥ q−1

q ≥ (q2−q+1)(q2−q−1)
(q3+q+1)(q−1) ≥ q3−2q2+q−1

q2(q−1)
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C Cext C1
sh C2

sh C3
sh

q = 4,s = 2 0.6875 0.84375 0.69231 ≥ 0.51691 ≥ 0.66667
q = 8,s = 2 0.85937 0.92969 0.85965 ≥ 0.82232 ≥ 0.85714
q = 5,s = 2 0.8 0.9 ≥ 0.8 ≥ 0.76140 ≥ 0.79
q = 7,s = 2 0.85714 0.92857 ≥ 0.85714 ≥ 0.83713 ≥ 0.85374

5 The construction of H

In this section we discuss geometric considerations that allow to construct the
matrix H in a easy way in the particular case of q even (see Remark10 ).

EVEN CHARACTERISTIC
Let f(t) = t3 + βt + α be a primitive polynomial over GF (q2) (it exists

provided q 6= 4, see [2]) and let ξ be a root of f(t) in GF (q6): ξ is a primitive
element of GF (q6) and Tr(ξ) := TrGF (q6)�GF (q2) (ξ) = 0. Choose the set
{1, ξ, ξ2} as a basis of the tree-dimensional vector space GF (q6) over GF (q2).
Let P = (x) and let ` = [u] be a point and a line respectively of PG(2, q2),
with x = x0 + x1ξ + x2ξ

2 and u = u0 + u1ξ + u2ξ
2 ∈ GF (q6); from now on

we put P = 〈(x0, x1, x2)〉 and ` is the set of points (x0, x1, x2) of equation
u0x0 + αu2x1 + αu1x2 = 0. The Hermitian curve H(2, q2) has equation xq+1

0 +

Tr(ξq
3+1)xq+1

1 + Tr(ξ2q
3+1)x1x

q
2 + Tr(ξq

3+2)xq1x2 + Tr(ξq
3+1)2xq+1

2 = 0; let

ξq
3

be (0, λ, µ), by straightforward calculation we get Tr(ξq
3+1) = µα and

Tr(ξq
3+2) = λα, hence the equation of H(2, q2) is

xq+1
0 + µαxq+1

1 + (λα)qx1x
q
2 + λαxq1x2 + (µα)2xq+1

2 = 0. (5)

The collineation σ that spans the Singer group of PG(2, q2) is induced by
the non singular linear application

x = x0 + x1ξ + x2ξ
2 ∈ GF (q6) 7→ xξ = αx2 + (x0 + x2β)ξ + x1ξ

2 ∈ GF (q6)

and it is represented by the matrix

S =

0 0 α
1 0 β
0 1 0


Let Si = 〈σi〉, i=1,2, be the two subgroups of the Singer group described in the

Section4 ; then σ1 is represented by Sq
2−q+1 and σ2 by Sq

q+q+1.
The set C = H(2, q2) ∩ Baer(0), is a Baer subline of the line [1], hence C

has to satisfy the following conditions:{
x0 = 0

xq+1
0 + µαxq+1

1 + (λα)qx1x
q
2 + λαxq1x2 + (µα)2xq+1

2 = 0
. (6)

We can assume that x2 = 1, so x1 must satisfy:
µαxq+1

1 + (λα)qx1 + λαxq1 + (µα)2 = 0⇔
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(µαx1 + λα)q+1 + (λα)q+1 + (µα)3 = 0.
Since (λα)q+1+(µα)3 = 0 ∈ GF (q)\{0} (otherwise (5) derives from a degenerate
Hermitian form) and α is a primitive element of GF (q2), we can assume that
(λα)q+1 + (µα)3 = αk(q+1), for a suitable k ∈ 1, . . . , q − 1, so we have

x1 = λµ−1 + µ−1αk−1+i(q−1), i = 1, . . . , q − 1.

If τ spans the group T (see Proposition9), then the action of τ on C is given by:

x1 7→ λµ−1 + αq−1(λµ−1 + x1)

and so τ is represented by the matrix1 0 0
0 αq−1 λµ−1(1 + αq−1)
0 0 1

 .

Finally, line starters which have distinct orbits under the action of T are the
lines that satisfy the following condition:

• ` ∈ S1([1]) \ {[1]};

• let P = 〈(0, x1, 1)〉 be a fixed point of C, then ` passes trough P and not
trough 〈(1, 0, 0)〉; such a line ` has equation x0 + ux1 + ux1x2 = 0, with
u 6= 0.
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