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Abstract—This letter proposes a complete and efficient sim-
ulation framework to assess the effects of line-edge roughness
appearing in on-chip lines. The modeling approach consists of
three steps. First, a stochastic macromodel is created for the
per-unit-length RLGC parameters of the line. Secondly, random
conductor edge profiles are generated using randomized splines.
These are combined with the stochastic macromodel to readily
provide place-dependent RLGC parameters. Finally, the resulting
nonuniform transmission line is analyzed by means of a fast
and accurate perturbation technique. To validate the proposed
approach, a statistical analysis of the response of a coupled
inverted embedded microstrip line is carried out for different
roughness parameters.

Index Terms—Line-edge roughness, nonuniform transmission
lines, on-chip interconnects, perturbation methods.

I. INTRODUCTION

The increasing shrinking and miniaturization of device sizes
is leading to a non-negligible impact of line-edge roughness
(LER) on mm-wave and nanoscale on-chip interconnects [1].
LER is introduced by several sources in the manufacturing
process, including photolitographic mask uncertainties and
chemical properties of resist [2]. Owing to the inherent
random nature of the problem, several statistical approaches
have been proposed for the determination of the resistance
and/or capacitance of on-chip lines [3]–[5]. The aforemen-
tioned studies rely on a statistical representation of the LER
geometry, ranging from simple sinusoidal models to correlated
Gaussian processes. However, a general and comprehensive
method to assess the impact of LER on the global interconnect
performance, including all wave effects [6], appears yet to be
missing.

This letter addresses this issue by putting forward a new
modeling framework for the electrical performance of on-
chip lines subject to LER, which is summarized as follows.
First, a stochastic macromodel of the per-unit-length (p.u.l.)
RLGC parameters, accounting for conductor edge variations, is
constructed by using polynomial chaos expansions (PCEs) [7].
The p.u.l. parameters are obtained under the quasi-TM field
assumption with a boundary integral equation solver [8] capa-
ble of accurately capturing skin and slow-wave effects, which
unavoidably appear at the frequencies of interest. To limit the
computationally expensive calls to this electromagnetic field
solver, the calculation of the PCE coefficients is carried out by
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applying a stochastic testing (ST) method [9]. Second, rough
conductor edge profiles are generated by means of randomized
splines. The tuning of the spline parameters allows to achieve
different roughness characteristics. Once the trace profiles are
known, the stochastic macromodel is used to conveniently
obtain the place-dependent RLGC p.u.l. parameters. Finally,
a perturbation technique (PT) [10] is used to efficiently calcu-
late the S-parameters of the resulting, inherently nonuniform
transmission line (NUTL), as the methodology in [7] applies
to uniform lines only.

II. PROPOSED MODELING FRAMEWORK

For the sake of illustration, the discussion is based on
the coupled inverted embedded micristrip (IEM) lines shown
in Fig. 1, where all the relevant geometrical and material
parameters are indicated. The line has two aluminum signal
conductors embedded in a silicon dioxide layer lying on
a silicon substrate, and an aluminum ground on top. The
generalization to lines with different geometries and/or number
of conductors is straightforward.
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Fig. 1. Coupled IEM lines: (a) nominal cross-section; (b) top view of the
signal conductors with LER.

As shown in Fig. 1(b), in the presence of LER, the actual
position of the conductor edges varies along the direction of
propagation z. A local deviation δi(z) (i = 1, 2, 3, 4) from the
nominal position is introduced for each of the four edges. The
structure is therefore a NUTL, whose behavior is described by
the following set of Telegrapher’s equations [11]

d

dz
V(ω, z) = −jωL(ω, z)I(ω, z) (1a)

d

dz
I(ω, z) = −jωC(ω, z)V(ω, z) (1b)

where ω is the angular frequency, whilst V = [V1, V2]
T and

I = [I1, I2]
T collect the voltages and currents along the two
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conductors. The quantities

L(ω,z) = L(ω,δ1(z),...,δ4(z)) +R(ω,δ1(z),...,δ4(z))/jω (2a)
C(ω,z) = C(ω,δ1(z),...,δ4(z)) +G(ω,δ1(z),...,δ4(z))/jω (2b)

are the frequency- and place-dependent complex p.u.l. induc-
tance and capacitance matrices, which are functions of the
RLGC parameters evaluated for the pertinent configuration
of the conductor geometry at a given position z. Possible
correlation in the edge variations can be readily accounted
for by means of principal component analysis [12].

A. Stochastic Macromodel of the RLGC Parameters

Assuming a Gaussian distribution for the variations δi, the
p.u.l. parameters are approximated by means of the following
Hermite-PCE [7]

X (ω) ≈
K∑

k=1

Xk(ω)φk(ξ1, ξ2, ξ3, ξ4), (3)

where X stands for any of the p.u.l. parameter matrices R, L,
G and C, while ξi = δi/σr is the edge variation normalized
w.r.t. the absolute standard deviation σr of the roughness.
The functions φk(ξ1, ξ2, ξ3, ξ4) are the quadrivariate Hermite
polynomials, which provide the best convergence for the Gaus-
sian distribution of the parameters. Note that other statistical
distributions can be treated in a similar way.

In order to limit the computational burden, the PCE co-
efficients Xk(ω) are calculated via ST [9], i.e., by point
matching the expansion (3) at a pre-defined set of K
points {(ξ1, ξ2, ξ3, ξ4)m}Km=1 and inverting the resulting sys-
tem:  X1(ω)

...
XK(ω)

 =
(
A−1 ⊗ I

) X̌1(ω)
...

X̌K(ω)

 ∀ω. (4)

In the above equation, X̌m, with m = 1, . . . ,K, is the
p.u.l. parameter sampled with the field solver [8] at the
mth ST point, A is a K × K matrix with entries Amk =
φk(ξ1m, ξ2m, ξ3m, ξ4m), i.e., the kth polynomial evaluated at
the same point, whilst I is the identity matrix of the same size
as the number of rows of X . The ST points are generated with
a suitable algorithm [9]. This approach limits the calls to the
field solver to K times only, in contrast to other approaches
that require a much higher number of samples to solve for the
PCE coefficients.

B. Line-Edge Roughness Model

The PCE (3) provides a compact macromodel for the p.u.l.
parameters as a function of the edge variations. To model
LER, a suitable description for the longitudinal behavior of
δ1,2,3,4(z) is required. The proposed idea is to subdivide the
line length ℓ in a given number of points Nr, where the
variations of the conductor edges are assumed to be mutually
independent. Samples for these variations are then drawn
according to a Gaussian distribution. The values at inter-
mediate positions are obtained by cubic spline interpolation,
thus ensuring a sufficient smoothness of the edge profile. The

separation ∆ℓ = ℓ/(Nr − 1) between two independent points
can be interpreted as a correlation distance. By tuning the
standard deviation σr of the geometrical parameters, as well
as the correlation distance ∆ℓ, the roughness profile can be
adjusted to match measured data.
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Fig. 2. IEM conductor profiles obtained with different values of ∆ℓ,
displayed with scales preserved over a section of 50 µm.

Different LER profiles are combined to reproduce the lon-
gitudinal shape of the conductors. For example, Fig. 2 shows
three different profiles (with the axis aspect ratio preserved)
for the conductors of one of the IEM lines of Fig. 1, obtained
with a standard deviation of σr = 0.1 µm and different values
of ∆ℓ. The picture shows how the “degree of nonuniformity”
indeed varies with the parameter ∆ℓ. Moreover, it is intuitively
understood that increasing the standard deviation results in the
edge to be rougher. Additionally, Fig. 1(b) depicts the profiles
of the two coupled lines obtained with ∆ℓ = 5 µm. These
profiles are in good agreement with real profiles measured with
scanning electron microscopes (see, e.g., [2]). It is important
to point out that, besides this alternative proposed approach,
state-of-the-art models can be fitted in the proposed simulation
framework as well. Once the z-dependent LER profiles are
available, the PCE (3) is evaluated to inexpensively obtain the
place-dependent p.u.l. parameters.

C. Perturbation Technique (PT) for Nonuniform Lines

The assessment of the LER impact still requires the solution
of the NUTL (1), for which no exact closed-form solution
exists. The standard approach to deal with (1) is to discretize
the line into short and locally uniform sections and then
to calculate the overall chain-parameter matrix (CPM) as
the product of the matrices of each section [11]. Unfortu-
nately, this method leads to large computational times and
its application hinders the analysis of large sample sizes,
e.g., with the aim of assessing the impact of LER from a
statistical standpoint. Moreover, the CPM inherently leads to
an undesired staircasing of the LER profiles.

To overcome the aforementioned issues, a two-step PT for
NUTLs [10], which was proven to be fast and accurate [13], is
adopted here. The method is based on the representation of the
actual voltages and currents as the sum of three contributions,
i.e., V = V0+V1+V2 and I = I0+I1+I2. Each contribution
is obtained as the solution of a uniform transmission line with
distributed source terms:

d

dz
Vi(ω, z) = −jωL̃(ω)Ii(ω, z) + VF,i(ω, z) (5a)

d

dz
Ii(ω, z) = −jωC̃(ω)Vi(ω, z) + IF,i(ω, z) (5b)
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i = 0, 1, 2, where the constant p.u.l. complex inductance
and capacitance matrices are the average of the actual quan-
tities over z, i.e., L̃(ω) = 1

ℓ

∫ ℓ

0
L(ω, z)dz and C̃(ω) =

1
ℓ

∫ ℓ

0
C(ω, z)dz, respectively. Given the source terms and the

boundary conditions at the line terminations, the solution
of (5) is readily calculated [11]. Specifically, the zeroth-order
contributions V0 and I0 are the solution of (5) with null
excitation terms (i.e., VF,0 = IF,0 = 0). The first- and second-
order contributions are the solution of (5) with forcing terms

VF,i(ω, z) = −jω
[
L(ω, z)− L̃(ω)

]
Ii−1(ω, z) (6a)

IF,i(ω, z) = −jω
[
C(ω, z)− C̃(ω)

]
Vi−1(ω, z) (6b)

i = 1, 2, instead. Semi-analytical expressions are available for
each voltage and current contribution [10].

III. NUMERICAL RESULTS AND DISCUSSION

The proposed framework is used to analyze the pair of
coupled IEM lines of Fig. 1 with a length ℓ = 1 mm.
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Fig. 3. Magnitudes of the S-parameters (in dB) for the IEM line of Fig. 1,
computed for random LER profiles with different correlation distances.

First, a stochastic macromodel consisting of a third-order
PCE with K = 35 terms is created. Next, random LER profiles
are generated assuming a standard deviation of σr = 0.1 µm.
Fig. 3 shows the S-parameters obtained from the total voltages
and currents at the line ends (z = 0 and z = ℓ), calculated
for 50 Ω terminations as the sum of the three contributions
that are governed by (5). Each group of curves corresponds
to 1000 Monte Carlo realizations of LER profiles with a
different value of ∆ℓ. The darker lines are associated to shorter
correlation distances. This study shows that in the case of short
correlation distances, the effect of LER tends to be averaged
out, thus yielding a smaller variation of the response. This is
in agreement with literature results [3]–[5].

The adoption of the PT allows to solve (1) up to 24× faster
than the reference CPM approach, while providing an absolute
error on the S-parameters below 2.2 × 10−4 (i.e., −73 dB)
in magnitude. For further discussion on the accuracy of the
PT, the reader is referred to [10] and [13]. The creation of

the stochastic macromodel requires about 175 min instead.
It should be noted that this step is essential, as each call to
the field solver takes about 5 min. Hence, ad-hoc calcula-
tion of many place-dependent p.u.l. parameters via the field
solver is virtually impossible! Yet, in contrast to brute-force
Monte Carlo approaches, the combination of the stochastic
macromodel and the PT makes the statistical analysis feasible.
From the calculated responses, statistical information such as
quantiles or probability distribution can be extracted as well.

IV. CONCLUSIONS

An effective modeling framework for on-chip interconnects
affected by LER is presented in this letter. The methodology
relies on the construction of a PCE-based stochastic macro-
model for the RLGC parameters of the line, the generation
of random LER profiles via cubic spline interpolation, and
the simulation of the resulting NUTL by means of a PT.
The combination of the above elements makes the statistical
assessment of the interconnect response feasible, accurate and
efficient.
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