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Assessment of a low-cost protocol for an ab initio based prediction of
the mixing enthalpy at elevated temperatures: The Fe-Mo system
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We demonstrate how a limited number of ab initio calculations in combination with a simple Debye model
can predict a concentration- and temperature-dependent mixing enthalpy for a binary system. Fe-Mo is taken
as a test case, and our predictions are compared with phase diagram information and a recently measured heat
of solution for Mo in Fe. Crystallographic and magnetic information is calculated for the λ and μ intermetallic
phases in the Fe-Mo phase diagram as well. The present methodology can be useful for making a quick survey of
mixing enthalpies in a large set of binary systems, in particular in the dilute concentration ranges where tabulated
data are often lacking and where CALPHAD-style modeling is less reliable.
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I. INTRODUCTION

The use of ab initio methods in materials research has
been booming over the past decade.1–6 Lattice parameters,
elastic constants, and the saturation magnetization are just
a few of the quantities that can now be routinely predicted
from the fundamental equations of quantum physics, without
a need for tunable parameters or experimental input. One
particular niche in this field deals with the ab initio predic-
tion of thermodynamic quantities: pressure-volume relation,
formation enthalpy, free energy, etc.6–9 This is particularly
useful as it builds a bridge between two worlds: the behavior
of individual atoms—which is the area where quantum
physics applies—and the macroscopic world that is described
by thermodynamics—which is the playground of material
scientists.

In this paper, we aim for an ab initio based prediction
of the concentration- and temperature-dependent enthalpy of
mixing of a binary metallic alloy, and this at an affordable
computational cost. The question is inspired by industrial
research: in the search for new bulk metallic glasses (BMG),
an empirical rule of thumb to identify potentially interesting
candidate systems is to look for a negative enthalpy of mixing
between the principal components.10 How can one obtain this
information for a large set of candidate systems (assuming
that only for a few of them tabulated data are available)?
Performing experiments is an option, but a time-consuming
one. Thermodynamic modeling (CALPHAD-style) can be an
efficient alternative, but suffers from two shortcomings: not
always all required input parameters are available (especially
for multicomponent alloys), and such macroscopic models
are likely to fail in the range of small concentrations (1–5%)
which is relevant for BMG systems. Both shortcomings do
not apply to ab initio methods, however: they are parameter
free, and it is easier to apply them to dilute systems than
to high-concentration alloys. On the other hand, a drawback
of ab initio methods is their inherent limitation to zero kelvin,
whereas the mixing enthalpy that one is looking for is typically
determined around the melting temperature.

As a specific study object, we take the Fe-Mo binary system.
This choice is motivated by several reasons. In the context of

BMGs, the Mo content is an important parameter in a family
of Fe-based metallic glasses.11 Mo is a well-known additive
to specialty steel grades as well. The heat of solution of Mo
in Fe has recently been measured experimentally,12 and has
been computed by means of the semiempirical embedded atom
method.13,14 Furthermore, the binary Fe-Mo phase diagram is
well studied,15–20 and keeps raising interest.19–23

In Sec. II the methods that are applied in this work
are presented, and their accuracy is tested in several ways.
Section III summarizes the key properties of the Fe-Mo
system, and gives an overview of the recent experimental and
theoretical work on this system. In Secs. IV and V, our results
for the formation enthalpy, the heat of solution and the mixing
enthalpy are presented, at 0 K and at higher temperatures. The
implications of these results are discussed in Sec. VI.

II. METHODS AND ACCURACY TESTING

Our aim is to make ab initio based predictions of the
enthalpy of mixing �Hmix(x) for a Fe1−xMox alloy with
an underlying bcc lattice, and this for all concentrations
0 � x � 1 and at all relevant temperatures. (There is a
possibility for terminology confusion at this point. What we
mean by enthalpy of mixing is defined in Eq. (1). A synonym
for this quantity is “integral enthalpy/heat of solution,” or
shortly “enthalpy/heat of solution.” This is different from the
“differential enthalpy/heat of solution” which we define in
Eq. (6), and which is often called “enthalpy/heat of solution”
for short as well.) The mixing enthalpy is defined as the
enthalpy difference (per atom) between a configurationally
disordered solid solution Fe1−xMox (no short-range order)
and a weighted average of the elemental materials:

�Hmix(x) = H (Fe1−xMox)random

− [(1 − x)H (Fe) + xH (Mo)] . (1)

(In this paper, H , Hmix, Hform, and Hord are always expressed
per atom: Hmix(AnBm) is the mixing enthalpy of one unit cell
of AnBm, divided by the number of atoms in that unit cell. Hemb

and Hsol are expressed per impurity atom.) A solid solution is
called ideal if its mixing enthalpy is zero. The deviation from
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ideality is the excess enthalpy (of mixing), which is obviously
equal to the enthalpy of mixing itself. Similarly, the enthalpy of
formation of an ordered FeMo alloy is defined as the enthalpy
difference per atom between the ordered material Fe1−xMox

and a weighted average of the elemental materials:

�Hform(x) = H (Fe1−xMox)ordered

− [(1 − x)H (Fe) + xH (Mo)] . (2)

The difference between the enthalpy of mixing and the
enthalpy of formation is called the enthalpy of ordering, and
represents the heat released when a randomly disordered solid
solution evolves toward an ordered alloy:

�Hord(x) = �Hform(x) − �Hmix(x) (3)

= H (Fe1−xMox)ordered − H (Fe1−xMox)random. (4)

At 0 K and without external pressure p, the enthalpy reduces
to the ground state internal energy U (V0) at the equilibrium
volume V0. The same holds true for the Gibbs free enthalpy.
Therefore, determining (excess) (free) enthalpies of mixing at
zero pressure and temperature boils down to determining the
internal energy of pure elemental solids and their mixtures.
The internal energy is a quantity that can be computed by
ab initio methods (see further in this section). Solid state
ab initio calculations require a crystalline unit cell as input,
by which an infinite three-dimensional lattice is built. For
reasons of computer time, the number of atoms in such a
unit cell should not be more than a few hundred. This is too
small a number to mimic a truly disordered solid solution,
and therefore the (free) enthalpy for the random mixture in
Eq. (1) cannot be obtained right away. A common work-around
is to derive the properties of a disordered compound from
suitably chosen partially ordered compounds: the method
of special quasirandom structures (SQS).6,9,24–26 Based on
mixing enthalpy results obtained for many systems by SQS
and other methods, Sluiter and Kawazoe26 concluded that
the following approximate expression for the mixing enthalpy
holds in many cases:

�Hmix(x) ≈ x2(1 − x)

[
− ∂�Hmix

∂x

∣∣∣∣
x=1

]

+ x(1 − x)2

[
∂�Hmix

∂x

∣∣∣∣
x=0

]
. (5)

The two terms in square brackets are the dilute limit derivatives
of the mixing enthalpy, also known as the (differential)
enthalpy/heat of solution for infinite dilution26 or the dilute
impurity energy per solute atom.9 These derivatives can be
approximated by finite difference ratios for low concentrations
of either Fe or Mo. In this low concentration regime, the
distinction between ordered and disordered solid solutions
vanishes and Eqs. (1) and (2) evolve to the same values. Indeed,
for sufficiently low impurity concentrations, the distance
between two impurity atoms becomes large enough to prevent
impurity-impurity interaction. In such cases, it does not matter
anymore whether the impurity sublattice is ordered or not. This
opens the door to ab initio calculations.

So-called “supercells” representing an ordered sublattice of
impurities can be routinely dealt with by ab initio methods:
a m×m×m supercell of the host material unit cell is taken,

and a sparse sublattice is chosen on which the host material
atoms are replaced by impurity atoms. The number of atoms
in this large cell is called n, and, in the case of Mo impurities,
the impurity fraction is given by x = 1/n. This supercell is
the unit cell of a hypothetical ordered crystal, in which the
impurity atoms are far away from each other. In terms of a
supercell, the dilute limit of the heat of solution for Mo in Fe
is expressed as

�H Mo⊂Fe
sol = ∂�Hmix

∂x

∣∣∣∣
x=0

= lim
x→0

�Hmix(x)

x
(6)

= lim
n→∞ H Mo⊂Fe

emb (7)

= lim
n→∞ {nH (Fen−1Mo) − [(n − 1)H (Fe) + H (Mo)]} (8)

(and vice versa for Fe in Mo, with the opposite sign). The term
in curly brackets in Eq. (8) defines the embedding enthalpy
per solute atom for Mo in Fe-Mo alloys: the heat released
upon inserting a single substitutional Mo impurity into a pure
n-atom Fe cell. The same quantity divided by the number of
atoms n in the unit cell defines the formation enthalpy per
atom:

�Hform(Fen−1Mo) = H (Fen−1Mo)

−
[
n − 1

n
H (Fe)+ 1

n
H (Mo)

]

(9)

and is identical to Eq. (2), but now expressed in terms of a
supercell and therefore accessible by ab initio calculations.

Ab initio calculations for a systematic series of cubic
Fe-Mo supercells were done within the framework of density
functional theory,27–29 using the Perdew-Burke-Ernzerhof
exchange-correlation functional.30 For solving the scalar-
relativistic Kohn-Sham equations we have employed the aug-
mented plane waves + local orbitals (APW + lo) method29,31,32

as implemented in the WIEN2k package33 for periodic solids.
In this method the wave functions are expanded into spherical
harmonics inside nonoverlapping atomic spheres of radius
RMT and in plane waves in the remaining space of the unit
cell (= the interstitial region). We took RFe

MT = RMo
MT =

2.20 a.u. in all cases, except for λ-Fe2Mo where 2.00 a.u. was
taken in order to avoid overlapping spheres. The maximum �

for the expansion of the wave function into spherical harmonics
inside the spheres was taken to be �max = 10. The charge
density was Fourier expanded up to Gmax = 12

√
Ry. Local

orbitals were added for the Fe-3s and Fe-3p and the Mo-4s

and Mo-4p “semicore” states. The plane wave expansion of
the wave function in the interstitial region was truncated at
a very large value of Kmax = 8.5/Rmin

MT = 3.86 a.u.−1, which
leads to very accurate values for the calculated energies. A
very dense mesh of k points (corresponding to a 52 × 52 × 52
mesh for a conventional bcc unit cell) was taken, again leading
to very accurate energies. These unusually stringent values for
the basis set size (Kmax) and k mesh were necessary in order to
get numerically converged values for the formation enthalpies
at a given concentration x. For the same reason, the enthalpy
per atom H (Fe) for pure Fe in Eq. (8) was not calculated in
a primitive unit cell, but in a pure Fe supercell with n atoms.
Otherwise, multiplication by the large factor (n − 1) would
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blow up any small numerical deviation in the enthalpy of the
small cell.

The step from ab initio calculated quantities at 0 K to
quantities at higher temperatures is made by thermodynamics.
The Gibbs free enthalpy G for a given Mo concentration x

depends on pressure p and temperature T , and is defined as

Gx(p,T ) = pV + U − T S

≈ pV (ᾱ) + [
UT =0

el (ᾱ) + UT >0
el (ᾱ,T )

+UT =0
vib (ᾱ) + UT >0

vib (ᾱ,T )
]

− T [Sel(ᾱ,T ) + Svib(ᾱ,T ) + Sconf(x)] . (10)

The symbol ᾱ represents the geometry of the crystal (shape
and size of the unit cell, and positions and identity of the
atoms inside the unit cell), and is uniquely determined by p,
T and x. For any individual contribution to the free enthalpy,
it is indicated whether it depends directly on p and/or T , or
rather indirectly via ᾱ, or both. For our purposes, the external
pressure p is zero. The zero temperature electronic energy
UT =0

el for the geometry ᾱ is provided in a straightforward
way by an ab initio calculation. The zero-point vibrational
energy UT =0

vib and the temperature-dependent vibrational
energy and entropy sum up to the vibrational Helmholtz
free energy Fvib = Uvib − T Svib. Within the quasiharmonic
approximation—where the phonon density of states g(ω,ᾱ)
is determined at every relevant volume—Fvib(ᾱ,T ) can be
expressed as an integral over g(ω,ᾱ).34–37 Obtaining Fvib thus
boils down to calculating the phonon density of states. The
latter can be done at various levels of approximation. An
accurate but rather time-consuming way is to compute the
entire phonon spectrum. A much faster alternative is to apply
the semiempirical Debye model.34 We opt for the latter, as
it is consistent with our goal to obtain a decent estimate for
the mixing enthalpy at an affordable computational cost. The
expression for the Helmholtz vibrational free energy within
the Debye model is given in Refs. 34 and 36, and it is shown
in Ref. 36 that this leads to accurate temperature-dependent
thermodynamical quantities for fcc Ni and Ni3Al. Expressions
for the electronic excitation energy UT >0

el and related electronic
entropy Sel are given in Refs. 38 and 36. They require calcu-
lating the electronic chemical potential and the 0 K electron
density of states at several volumes. Even though it is due to an
excitation, UT >0

el does not need to be positive: depending on
the shape of the density of states, the redistribution of electrons
according to a Fermi-Dirac distribution for T > 0 may result
in a band energy that is lower than the band energy for 0 K
(see, e.g., Table III). These electronic contributions have been
shown in Ref. 36 to be important for fcc Ni and Ni3Al, where
they affect enthalpy, heat capacity and thermal expansion in the
range of 10–30%. We have implemented the equations from
Ref. 36, verified that we could reproduce their results for fcc
Ni, and will use them in Sec. V to determine these electronic
contributions in the Fe-Mo system.

Removing the entropy terms from Eq. (10) yields the
enthalpy H for a geometry ᾱ at pressure p and temperature T :

Hx(p,T ) = Gx(p,T ) + T Stot(ᾱ,T ,x)

≈ pV (ᾱ) + [
UT =0

el (ᾱ) + UT >0
el (ᾱ,T ) (11)

+UT =0
vib (ᾱ) + UT >0

vib (ᾱ,T )
]
.

The enthalpy is the thermodynamic state function that is most
directly accessible from heat exchange experiments.

III. PROPERTIES OF THE Fe-Mo SYSTEM

The low-temperature (<800 K) part of the Fe-Mo phase
diagram can be found at several places, with minor
differences.16–20 It contains the two elemental phases (bcc-Fe
and bcc-Mo) and two crystalline intermetallic phases: the
λ-phase Fe2Mo (C14 Laves phase, prototype MgZn2) and
the μ-phase Fe7Mo6 (D85, prototype Fe7W6). Fe hardly
dissolves in pure Mo (coexistence range x = 0.989 − 1.000
at 800 ◦C20). For Mo concentrations between x = 0.46 and
x = 1.00, there is coexistence between bcc-Mo and Fe7Mo6.
Around x = 0.46, there is a small homogeneity range for pure
Fe7Mo6 (x = 0.413 − 0.452 at 800 ◦C20). Below x = 0.46,
Fe2Mo and Fe7Mo6 coexist. At x = 0.33, there is a narrow
range for pure Fe2Mo (x = 0.325 − 0.346 at 800 ◦C20). Below
x = 0.33, bcc-Fe and Fe2Mo coexist. Near x = 0.00, there is
a temperature-dependent solubility range for Mo in Fe, with a
width of a few percent (x = 0.000 − 0.037 at 800 ◦C20), and
tending to zero (= no solubility) when extrapolated to 0 K.

Several studies about various aspects of the Fe-Mo system
have been reported during the past few years. The dilute limit
of the differential heat of solution [Eq. (6)] at the Fe-rich
side was recently determined by Mössbauer spectroscopy
in combination with the Hrynkiewicz-Królas method. Mo
concentrations as low as 1% were examined in samples that
were slowly cooled after annealing. As diffusion stops at about
700 K, the Mössbauer data that are taken at room temperature
probe the atomic configuration and the corresponding value for
�H Mo⊂Fe

sol at 700 K. A strongly negative �H Mo⊂Fe
sol is found

(see Table I). Three different theoretical approaches contribute
a complementary piece of information (Table I). A cellular
automata calculation found a weakly negative �H Mo⊂Fe

sol ,
while an embedded atom method (EAM) calculation found
a weakly positive value. A recent improved EAM calculation
found a larger positive value. Both EAM versions rely on
experimental input parameters that were obtained (mostly) at
room temperature. They can therefore be considered to yield
a 300 K result. The overall conclusion is that theory predicts
Mo not to dissolve in Fe at zero kelvin, which is consistent
with the experimental phase diagram. An ab initio study in
combination with the cluster expansion method (CEM), and
based on a limited set of four intermetallic phases, found a

TABLE I. Experimental and theoretical values for the heat of
solution of Mo in Fe as found in the literature and compared with
results from the present work.

�Hsol

(eV/atom) T (K) exp/theory method year/Ref.

−0.645(80) 700 exp Mössbauer 201012

−0.09 theory cellular automata 199339

+0.03 300 theory EAM 199313

+0.31 300 theory EAM 201014

+0.11 0 theory DFT this work
−0.34 700 theory DFT+QHD this work
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FIG. 1. (Color online) (a) Diamonds: Formation enthalpy at 0 K for cubic supercells as a function of Mo concentration. Circles: Formation
enthalpy at 0 K for the λ and μ intermetallic phases. Line: mixing enthalpy at 0 K. Inset: detail of the concentration range 0-8%. (b) Embedding
enthalpy at 0 K as a function of Mo concentration.

miscibility gap extending over the entire concentration range
at low temperature (Fig. 2-c in Ref. 23).

IV. RESULTS AT 0 K

In a first series of calculations, no temperature effects were
considered. The formation and embedding enthalpies were
calculated as a function of concentration, using Eqs. (8) and
(9) for a set of cubic supercells with either a simple cubic,
bcc, or fcc sublattice of impurities. The largest supercell,
corresponding to the lowest Mo concentration, contains 216
atoms (x = 0.0046). At the Mo-rich side, cells with up to 128
atoms (x = 0.9922) were considered. The results are shown
in Fig. 1. The formation enthalpies for the cubic supercells are
positive over the entire concentration range, indicating that
Fe and Mo will never mix in an ordered cubic phase at 0 K.
This confirms what one expects from an extrapolation of the
phase diagram to low temperatures. The formation enthalpies
of the two known intermetallic phases are negative, indicating
that λ and μ are indeed stable ground state phases at the
concentrations x = 0.333 and x = 0.462. The results of a full
ab initio structural optimization of the λ and μ phases are given
in Table II, and compared insofar as possible with experimental
information. No entries for these two compounds are found
at present in common crystallographic databases,40,41 such
that the information on the internal positions that is given
here might be their first explicit determination. Spin magnetic
moments are reported as well in Table II: the λ phase turns out

to be an antiferromagnet, the μ phase is a ferromagnet. We are
not aware of any experimental magnetometry studies on these
compounds, and suggest this as a worthwhile task.

From the same set of data that provides the formation
enthalpies in Fig. 1(a), embedding enthalpies are derived by
means of Eqs. (7) and (8). They are shown in Fig. 1(b). There
is an obvious difference in the convergence of the embedding
enthalpies at the two edges of the concentration range. This
is emphasized in Fig. 2, where the embedding enthalpy is
plotted as a function of Mo-Mo or Fe-Fe distance, rather than
as a function of Mo concentration. The embedding energy
of Fe in Mo for a cell with 32 atoms is already near its
value for infinite dilution (less than 0.03 eV change per solute
atom). For Mo in Fe, there is a further increase of 0.1 eV
per solute atom beyond a cell of 32 atoms, and even for
a cell with 216 atoms convergence has not yet been fully
reached. What is the reason for this, and why is it different
at both extremes of the concentration range? A notable
dependence of the embedding enthalpy on the concentration
has been observed before. Wolverton and Ozoliņš9 examined
the difference between embedding energies calculated for cells
with 32 and 64 atoms, for 26 solute elements in fcc Al.
Only in a small number of cases, differences of more than
a few percent were observed. Erhart et al.42 examined the
embedding enthalpy of Cr impurities in Fe for supercells up
to 108 atoms (Cr is isoelectronic with respect to Mo). They
considered not only cubic supercells, but more general types
of supercells as well. For Cr concentrations below x = 0.03,

TABLE II. Results of a full ab initio structural optimization of the λ (space group 194) and μ (space group 166, rhombohedral setting)
intermetallic Fe-Mo phases. Experimental lattice parameters are taken from Ref. 20. Spin magnetic moments per atom are given within spheres
with radius RMT. The total magnetic moment per formula unit (including the interstitial space) is 1.12 μB for Fe2Mo and 8.52 μB for Fe7Mo6.

a (Å) c (Å) Element Site x y z Moment (μB )

Fe2Mo 4.6594 7.7433 Fe 2a 0.000 00 0.000 00 0.000 00 −1.13
(λ) Fe 6h 0.170 84 0.341 69 0.750 00 +1.16

Mo 4f 0.333 33 0.666 67 0.069 34 −0.03
exp 4.73(1) 7.76(8)

Fe7Mo6 9.0894 Fe 1a 0.000 00 0.000 00 0.000 00 +1.83
(μ) α = 30.23◦ Fe 6h 0.090 63 0.589 00 0.090 63 +1.27

Mo 2c 0.166 45 0.166 45 0.166 45 −0.11
Mo 2c 0.348 37 0.348 37 0.348 37 +0.02
Mo 2c 0.451 28 0.451 28 0.451 28 −0.17

exp 9.013
α = 30.64◦
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FIG. 2. (Color online) Embedding enthalpy at 0 K for Mo diluted
in a Fe matrix (diamonds) and for Fe diluted in a Mo matrix (squares),
plotted as a function of impurity-impurity distance. The labels at each
point indicate the size of the supercell.

scatter in the embedding enthalpy was below 0.02 eV/solute
atom. The latter behavior is similar to what we observe
at the Mo-rich side. The concentration dependence at the
Fe-rich side, however, is significantly stronger. Wolverton and
Ozoliņš9 attributed such concentration dependence to Friedel
oscillations. We observe this mechanism to be at work in
Fe-Mo as well. A Mo impurity strongly perturbs the Fe spin
moments, with an amplitude of >0.1μB and a range that
extends beyond the boundaries of the 216 atom cell. A Fe
impurity in Mo, on the other hand, induces spin moments
on the nonmagnetic Mo atoms in its neighbourhood that never
exceed 0.03μB and rapidly fade out away from the Fe impurity.
This means that an effective Mo-Mo interaction mediated by
the region of strongly perturbed Fe moments acts over much
longer distances than an effective Fe-Fe interaction in a Mo
matrix—which is what we observe as a slow saturation of the
embedding enthalpy at the Fe-rich side.

V. RESULTS AT HIGHER TEMPERATURES

In a second series of calculations, the effect of temperature
is taken into account by the procedure described in Sec. II. For
two supercells (x = 0.037 and 0.969) an accurate energy-vs-
volume curve was calculated, using the same basis set size and
k mesh as for the determination of the embedding enthalpy,
and optimizing the positions of the atoms inside the supercell
at every volume. A Birch-Murnaghan equation of state was
fit through these data, from which the equilibrium volume V0,

the static bulk modulus B and its pressure derivative B ′ were
obtained. These were used to determine the Debye temperature
in the approximation of an isotropic liquid.43 This served as
input for the quasiharmonic Debye model as implemented in
the GIBBS code,43 to obtain the Gibbs free enthalpy [part of
Eq. (10)] as a function of volume and temperature. At this
stage, no electronic contributions were taken into account yet.
At four temperatures—0, 500, 1000 and 1500 K—the volume
at which the minimum of the Gibbs free enthalpy is reached
was determined. At these four volumes, the electronic density
of states was ab initio calculated, after which the electronic
contributions in Eq. (10) were obtained (see Sec. II). By
means of Eq. (11), the enthalpy of these systems at the four
temperatures and corresponding volumes was found. The same
procedure was applied to pure Fe and pure Mo as well. A
selection of relevant quantities is listed in Table III.

Hemb could now be obtained in the same way as at 0 K
[Eqs. (7) and (8)]. The evolution of Hemb as a function of
temperature is shown for Fe26Mo and FeMo31 in Fig. 3. The
effect is significant for the Fe-rich alloy, and negligible for the
Mo-rich alloy. Considering the fact that the Fe-rich and Mo-
rich compounds are close to pure Fe and pure Mo, respectively,
we now make the approximation that the temperature induced
shift for the dilute limits of the embedding enthalpy will be
identical to the shift in these x = 0.037 and x = 0.969 alloys,
respectively (one justification for this approximation is that
relative trends tend to be more robust properties than absolute
values). This finally gives us temperature-dependent solution
enthalpies at both sides of the concentration range, from
which we obtain by means of Eq. (5) a temperature-dependent
expression for the mixing enthalpy. This is plotted for four
relevant temperatures in Fig. 4.

In order to decide whether or not mixing will occur at
a given concentration and temperature, the free enthalpy of
mixing needs to be considered:

�Gmix = �Hmix − T �Smix, (12)

�Smix is the (configurational, vibrational, and electronic) en-
tropy of the solid solution, minus the corresponding entropies
of the pure phases. We have calculated the vibrational and
electronic entropy for several ordered cubic (Fe,Mo) crystals,
and found them to be at least one order of magnitude smaller
than the ideal configurational entropy. Following, e.g., Ref. 44,

TABLE III. First four columns: equilibrium volume, bulk modulus, its pressure derivative, and electronic temperature-independent energy at
equilibrium volume as result of a Birch-Murnaghan fit to calculated E(V ) data. θD: Debye temperature in the model of an isotropic elastic liquid.
V : unit cell volume at T = 500 K according to a purely vibrational quasiharmonic Debye model. UT >0

el : temperature-dependent electronic
contribution to the energy at 500 K. Uvib: vibrational contribution to the energy at 500 K. The columns with energies serve as input in Eq. (11)
to calculate enthalpies per atom.

0 K 500 K

V0 B B ′ UT =0
el (V = V0) θD V UT >0

el Uvib

(Å3) (GPa) (eV/atom) (K) (Å3) (eV/atom) (eV/atom)

Fe 11.372 200.0 6.0219 −34634.7985 511.3 11.720 0.0065 0.0921
Fe26Mo 313.809 198.4 4.2557 −37433.3157 504.6 319.889 −0.0007 0.0893
FeMo31 502.449 255.7 4.1836 −107833.6754 443.4 507.771 0.0033 0.0926
Mo 15.804 260.6 4.2217 −110194.9485 445.1 15.968 0.0044 0.0925
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FIG. 3. (Color online) Embedding enthalpy as a function of
temperature for representative Fe-rich and Mo-rich alloys. Diamonds:
Debye model without electronic contribution. Circles: with electronic
contribution. Triangles: without electronic contribution and in the
approximation that the equation of state parameters for the alloy are
a simple interpolation of the corresponding parameters for pure Fe
and pure Mo.

we consider therefore the latter only. In this way, the free
enthalpy of mixing is written as

�Gmix = �Hmix

+ kBT [x ln x + (1 − x) ln (1 − x)] . (13)

This leads to a picture that is qualitatively similar to Fig. 4,
but with all intersection points with the horizontal axis shifted
by 10% (300 K), 15% (700 K), or 20% (1000 K) more to the
right. The concentration intervals where mixing in the cubic
phase is predicted to be favorable (i.e., negative �Gmix) are
summarized in Table IV. These predictions are consistent with
the experimental observation that it is much easier to dissolve
Mo in bcc-Fe than Fe in bcc-Mo. The results for intermediate
concentrations cannot be directly compared to experiment due
to the existence of the λ and μ phases.

VI. DISCUSSION AND CONCLUSIONS

How sophisticated a procedure does one need to apply in
order to obtain at a moderate computational cost a fair ab
initio based estimate of the concentration- and temperature-
dependent mixing enthalpy of a prototype binary alloy (Fe-
Mo)? For a 0 K assessment, a low-order polynomial26 based on
solution enthalpies that are ab initio calculated with supercells
gives a result that is consistent with the available phase diagram
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FIG. 4. (Color online) Mixing enthalpy at 0, 300, 700, and 1000 K
as a function of Mo concentration. The single point in the inset
is the experimental value by Chojcan et al. at 1% and 700 K,12

obtained using their embedding enthalpy as the slope of a linear
mixing enthalpy.

TABLE IV. Concentrations intervals where the free enthalpy of
mixing [Eq. (13)] is found to be negative.

T (K) x range

0 –
300 0.00–0.30
700 0.00–0.65

1000 0.00–0.77

information: no mixing at all (Table I and Fig. 1(a)). Supercells
with about 64 atoms provide reasonably accurate solution
enthalpies, and by inspection of the perturbation of magnetic
moments (if any) in the neighbourhood of the solute atom,
one can assess whether this supercell size is sufficient or not.
Numerically accurate values are obtained only when a large
basis set and a dense Brillouin zone sampling are used. For
the same reason of numerical accuracy, reference energies for
the pure solvent matrix need to be calculated in supercells
of the same size as for the solution enthalpy calculation. The
advantage of the present method over the SQS method is that
only two single-impurity supercell calculations are sufficient
to provide the required input data for 0 K mixing enthalpies,
and that no additional formalism is needed.

When temperature-dependent information is needed, a
quasiharmonic Debye model with the inclusion of electronic
correction terms36 and configurational entropy [Eq. (13)] gives
a result that is in qualitative agreement with experimental data
(Table IV and Fig. 4). At room temperature, mixing occurs
in the concentration range 0-30%, with a minimal mixing
enthalpy value of −0.007 eV/atom at 10% Mo and a minimal
value of −0.016 eV/atom for the free enthalpy of mixing
at 15% Mo. If a more accurate prediction is needed, then a
quasiharmonic model with ab initio calculated phonon spectra
is the way to go. The computational cost is considerably
larger though. Figure 3 and Table III demonstrate that without
taking electronic terms into account it is impossible to obtain
acceptable values for embedding and mixing enthalpies.
Figure 3 demonstrates as well that a thermodynamic treatment
of alloys based on structural parameters that are interpolations
of the pure compounds leads to unacceptable results, even for
small impurity concentrations.

We predict the λ and μ phases to be stable ground state
phases in the Fe-Mo phase diagram. A full prediction of their
crystallographic properties is provided (Table II). λ-Fe2Mo
is predicted to be an antiferromagnet, while μ-Fe7Mo6 is a
ferromagnet.

The procedure that is described here can be applied
routinely to determine concentration- and temperature-
dependent enthalpies of mixing in binary systems for
which this information is not tabulated. The computational
cost is moderate. Based on the present analysis for Fe-
Mo, we expect the resulting mixing enthalpy to be at
least qualitatively in agreement with experiment, especially
in the dilute ranges where CALPHAD-style modeling has
limited predictive power. This procedure will be useful
for situations where a larger set of candidate systems
has to be scanned for promising properties (i.e., negative
mixing enthalpy), as happens for instance in the search
for new bulk metallic glasses.
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