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A double-atom partitioning of the molecular one-electron density matrix is used to describe atoms and bonds.
All calculations are performed in Hilbert space. The concept of atomic weight functions (familiar from Hirshfeld
analysis of the electron density) is extended to atomic weight matrices. These are constructed to be orthogonal
projection operators on atomic subspaces, which has significant advantages in the interpretation of the bond
contributions. In close analogy to the iterative Hirshfeld procedure, self-consistency is built in at the level of
atomic charges and occupancies. The method is applied to a test set of about 67 molecules, representing various
types of chemical binding. A close correlation is observed between the atomic charges and the Hirshfeld-I
atomic charges.

I. INTRODUCTION

The concept of Atoms In the Molecule (AIM) has always
played a central role in classifying and predicting chemical
properties. Because this concept does not naturally show up
in molecular orbital (MO) theory, there is a sustained interest
in extracting chemical atoms and functional groups from MO-
based calculations. Among the most popular techniques are
Mulliken population analysis [1], Bader’s Quantum Chemical
Topology (QCT) [2–4], the Hirshfeld method in its original
[5] and iterative version [6–9], the iterative stockholder ap-
proach [10], and Mayer’s fuzzy atoms [11].

Most methods are restricted to the partitioning of the elec-
tron density, but not all properties of a quantum mechanical
object can be explicitly expressed in terms of the electron
density. A more fundamental approach to the AIM should
be based on density matrices [12]. Because of the inher-
ent non-locality of the density matrix, it was recently argued
that a two-index partitioning into atomic (diagonal) and bond
(off-diagonal) contributions, is necessary to guarantee the lo-
cal nature and transferability of the atoms [13, 14]. The
authors recently introduced such an approach [14], but the
bond matrices had significant contributions from core elec-
trons and free electron pairs, which somewhat blurred the in-
terpretation in terms of chemical bonding. In this paper we
attempt to improve the description of atoms and bonds in a
molecule. The interpretive problems are overcome by defin-
ing atomic weight matrices to be orthogonal projection op-
erators onto one-electron subspaces assigned to atoms. The
proposed method bears a close resemblance to the iterative
Hirshfeld procedure, as we introduce the requirement of con-
sistency between weight matrices and atomic contributions.

II. DOUBLE ATOM PARTITIONING SCHEME

The spin-summed one-electron density matrix (1DM) for a
singlet N -electron molecular wavefunction Ψ(x1, . . . ,xN ) is

expressed as

ρij = N

∫
drdr′ϕi(r)ϕj(r

′)
∑
σ

(1)

[∫
dx2...

∫
dxNΨ†(r′σ,x2, ...xN )Ψ(rσ,x2, ...xN )

]
,

where the matrix representation in an orthogonal basis set
ϕi(r) was used. A decomposition of the identity matrix into
atomic weight matrices [15] (wA)ij

δij =
∑

A

(wA)ij , (2)

can be inserted on both sides of the molecular one-electron
density matrix to arrive at a double-index atomic partitioning

ρ =
∑

AB

ρAB =
∑

AB

wAρwB . (3)

The characteristics of such a partitioning are spatially local-
ized contributions ρAA belonging to an atom A and some de-
localized contributions (ρAB)B 6=A that describe the bonding
between atoms A and B [14].

If the atomic weight matrices are chosen as projectors onto
orthogonal subspaces, which implies that they are both idem-
potent and orthogonal

wAwB = wAδAB , (4)

then the bond matrices (ρAB)B 6=A have a zero trace and only
the atomic matrices ρAA will contribute to the number of elec-
trons N in the molecule

N = Tr(ρ) =
∑

A

Tr(ρAA). (5)

Note that in general the orthogonality of the weight matri-
ces does not imply a zero overlap between the atomic elec-
tron densities ρAA(r, r

′) in coordinate space, as occurs in e.g.
QCT.
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III. CONSTRUCTING ORTHOGONAL ATOMIC
PROJECTORS

The decomposition of one-electron space according to Eq.
(4) can be done in myriad ways, so a way must be found
that generates a chemically relevant decomposition. We found
that, starting from the 1DM’s ρ(0)AA for isolated atoms, the fol-
lowing recursive scheme (i = 0, 1, ...)

ρ(i) =
∑

A

ρ
(i)
AA ; w

(i)
A = (ρ(i))−

1
2 ρ

(i)
AA(ρ

(i))−
1
2

ρ
(i+1)
AA = w

(i)
A ρw

(i)
A (6)

converges and generates weight matrices w(∞)
A that obey Eq.

(4). In a forthcoming publication we will analyze this result
and introduce alternative recursive schemes, including proofs.
Here we just mention three points: (1) it is understood that
the molecular 1DM ρ used in Eq. (6) is positive semidefinite
by construction and therefore the same holds for the ρ

(i)
AA and

ρ(i); (2) when the 1DM of the isolated atom ρ
(0)
AA contains only

basis functions centered on atom A, the subspaces spanned
by the eigenvectors of ρ(0)AA are linearly independent, and as
a result the weight matrices w

(0)
A of the 0th iteration already

obey Eq. (4); (3) depending on the level of theory for the
atomic calculation it is possible that a nullspace is generated
for ρ(i), making the inverse square root in Eq. (6) singular.
We therefore replace any eigenvalues of the ρ

(0)
AA and ρ by a

small (10−5) positive value. This is sufficient to ensure that
all ρ(i) remain nonsingular.

IV. SELF-CONSISTENCY REQUIREMENTS

As in ordinary Hirshfeld, the choice of the starting point
(the isolated atom 1DM’s ρ

(0)
AA) is crucial, since different re-

sults are obtained depending on the charge and electronic state
of the isolated atom. Following the ideas behind the iterative
Hirshfeld procedure [6], the result can be made independent
of the starting point by building in self-consistency through
an outer iterative scheme (where Eq. (6) would represent the
inner iterative scheme). Note that the need for a fitted start
point

In our simplest implementation (called ’charge equaliza-
tion’) we start from rotationally averaged 1DM’s of the neu-
tral isolated atoms. The recursive scheme in Eq. (6) generates
effective electron numbers NA = Tr(ρ∞AA) for the atoms.
These can be used to create a rotationally averaged 1DM of
the charged isolated atom according to the linear interpolation
between integer electron numbers (k ≤ NA < k + 1)

ρ
(0)
AA[NA] = (k + 1−NA) ρ

(0)
AA[k]

+ (NA − k) ρ
(0)
AA[k + 1]. (7)

The charged ρ
(0)
AA[NA] can be used as the next starting point

in Eq. (6) and the whole process is repeated until convergence
for the effective electron numbers.

We noticed that, in contrast to the electron density, the 1DM
is much more sensitive to a mismatch in the orientation of
one-electron orbitals in the molecule and in the isolated atom
used to set up the AIM. In some cases, this resulted in rather
large AIM charges. In order to solve this problem we also im-
plemented a more sophisticated scheme (called ’population
equalization’). The simple implementation of the previous
paragraph is followed up to the point where ρ

(0)
AA[NA] is ob-

tained. We then use the eigenvalue decompositions

ρ
(∞)
AA =

∑

k

n
(∞)
AA,kϕ

(∞)
AA,kϕ

(∞)
AA,k (8)

ρ
(0)
AA[NA] =

∑

l

n
(0)
AA,lϕ

(0)
AA,lϕ

(0)
AA,l (9)

to generate the new starting point to Eq. (6). This is given by
Eq. (9), but with the rotationally averaged occupation num-
bers n0

AA,l replaced with the occupation numbers n(∞)
AA,k of the

partitioned atom. The correspondence is made on the basis of
maximal orbital overlap |〈ϕ(∞)

AA,k|ϕ(0)
AA,l〉|. By this procedure,

the rotationally averaged 1DM’s are replaced by 1DM’s con-
taining information on the molecular geometry. The whole
process is again repeated until convergence.

V. RESULTS AND DISCUSSION

The procedure described in Sec. IV was tested by partition-
ing the 1DM of a small set of ca. 67 simple molecules with
a singlet ground state, representative of a variety of chemi-
cal bonds. The set of molecules comprises the species tested
in [14], supplemented with some extra molecules with rel-
atively high Hirshfeld-I charges like CF4 and H2SO4. The
molecular and atomic 1DM’s were calculated at the restricted
Hartree-Fock level of theory using the Aug-cc-pVDZ basis set
[16–18]. The molecular geometry was taken from a B3LYP
[19–22] /cc-pVDZ [17, 18, 23] optimization. For CO addi-
tional calculations were performed in larger (Aug-cc-pVTZ
and Aug-cc-pVQZ) [16–18] basis sets in order to assess basis
set convergence.

A. The CO molecule

Diagonalization of the matrices in Eq. (3) leads to natu-
ral orbitals and occupancies. Fig. 1 presents the dominant
natural orbitals, and the corresponding occupancies, of the
atomic density matrix of carbon (a-e) and oxygen (f-j) in a
CO molecule using the population equalization scheme.

Similar to the double-index partitioning in 3D space based
on the use of Hirshfeld-I weights [14], the natural orbitals are
slightly deformed versions of the typical atomic 1s (a), 2s (b),
2pz , 2px and 2py (c-d-e) orbitals. However, in contrast to
[14], the current scheme generates occupancies of the orbitals
not involved in bonding (core orbitals or orbitals containing
free electron pairs) that are very close to their expected inte-
ger value. Also note that the double occupied molecular σ
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FIG. 1: The dominant natural orbitals, and the corresponding
occupancies of the atomic density matrix of carbon (a-e)
and oxygen (f-j) in a CO molecule. For details, see text.

FIG. 2: The dominant eigenvectors and eigenvalues of (twice) the
CO bond matrix in a CO molecule. For details, see text.

-, π1 and π2 Hartree-Fock orbitals simply divide their occu-
pancy over the atomic pz , px and py orbitals. The summed
occupancy of (c) and (h) in Fig. 1 is exactly 2.

Fig. 2 depicts the dominant eigenvectors and their eigen-
values of the CO bond matrix ρAB in the CO molecule. Their
shapes match those of the expected bonding and antibonding
orbitals, but in contrast to [14], the corresponding bonding
and antibonding orbitals have exactly opposite eigenvalues by
construction. The σ∗ → σ, π1∗ → π1 and π2∗ → π2 elec-
tron relocations are the main contributions to the bond matrix,
though there are some smaller contributions (i → d , j → e)
that have a mainly non-bonding character. Note that we avoid
the term ”occupancy” for the bond matrices, as the bond ma-
trix reflects a change in density rather then a density itself.

Apart from the dominant contributions shown in Figs. 1-
2, various orbitals with much smaller eigenvalues are also
present (as the Aug-cc-pVDZ molecular basis set has 46 ba-
sis functions). A complete overview is given in Table I for
both population equalization and charge equalization schemes
(bracketed values). Note that for the atomic density matrices,
apart from the five dominant natural orbitals, only two more
have small (∼ 10−2 − 10−3) populations, while the remain-
der have vanishing (< 10−13) populations. For the bond ma-
trix, apart from the ten dominant orbitals, only four more have
small eigenvalues, as was already noted in [14].

In Table II the stability of the proposed density matrix par-
titioning is examined. The results seem to be quite stable
with respect to basis set size, with differences for the traces
of atomic density matrices less than 0.01 going from DZ to
TZ, and less than 0.001 going from TZ to QZ. For the posi-
tive and negative components of the bond matrices there are

C , C O , O C , O + O , C
(a) 2.000 ( 2.000 ) 2.000 ( 2.000 ) ± 0.937 ( ± 0.919 )
(b) 1.999 ( 1.988 ) 1.987 ( 1.992 ) ± 0.788 ( ± 0.799 )
(c) 0.649 ( 0.605 ) 1.615 ( 1.601 ) ± 0.788 ( ± 0.799 )
(d) 0.385 ( 0.399 ) 1.615 ( 1.601 ) ± 0.163 ( ± 0.154 )
(e) 0.385 ( 0.399 ) 1.350 ( 1.395 ) ± 0.037 ( ± 0.128 )
(f) 0.013 ( 0.008 ) 0.001 ( 0.012 ) ± 0.014 ( ± 0.009 )
(g) 0.000 ( 0.000 ) 0.000 ( 0.000 ) ± 0.011 ( ± 0.007 )
(...) < 10−13 < 10−13 −10−13 >< 10−13

Sum 5.432 ( 5.400 ) 8.568 ( 8.600 ) 2.738 ( 2.816 )

TABLE I: All natural populations in the atomic density matrices
(CC and OO) and eigenvalues of the bond matrix (CO)
in a CO molecule. Non-bracketed and bracketed values
belong to the population equalization scheme and the

charge equalization scheme respectively. For details, see
text.

CO Aug-cc-pVDZ Aug-cc-pVTZ Aug-cc-pVQZ
A , B Tr(ρA,B) Tr(ρA,B) Tr(ρA,B)
C , C 5.432 ( 5.400) 5.425 ( 5.393) 5.426 (5.394)
O , O 8.568 ( 8.600) 8.575 ( 8.607) 8.574 (8.606)
C , O + O , C ± 2.738 ( ±2.816) ± 2.756 ( ± 2.811) ± 2.731 ( ± 2.814)

TABLE II: Basis set convergence of the summed positive and
negative eigenvalues in the atomic and bond matrices

for CO. Non-bracketed and bracketed values belong to
the population equalization scheme and the charge

equalization scheme respectively. For details, see text.

fluctuations of about 0.02 from DZ to TZ and from TZ to QZ.
We checked that the stability holds even at the level of the
individual orbital eigenvalues in Table I. In the charge equal-
ization scheme, all eigenvalues differ less than 0.003 going
from DZ to TZ, and less than 0.002 from TZ to QZ. In the
population equalization scheme, the atomic matrices behave
similarly (maximal deviation of 0.005 from DZ to TZ and of
0.003 from TZ to QZ), but the bond matrix eigenvalues de-
viate slightly more (maximal deviation of 0.015 from DZ to
TZ and of 0.022 from TZ to QZ). We also checked that for
almost all the orbitals in Figs. Figs. 1-2, the shapes are visu-
ally indistinguishable when changing basis set size from DZ
to QZ. The exceptions are the bond matrix orbitals (e) and (j),
corresponding to small (in absolute value) eigenvalues, where
a somewhat more distorted shape is observed.

B. Evaluation of the atomic charges

Fig. 3 displays the correlation between the charges ob-
tained with the Hirshfeld-I method [6] (known to be a reliable
AIM method) and the charges resulting from either the charge
equalization scheme or the population equalization scheme
applied to the entire set of 67 molecules. Both schemes show
a strong linear correlation with Hirshfeld-I. It is remarkable
that the linear correlation is more satisfying for the population
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FIG. 3: Comparison of the Hirshfeld-I charges with those generated
by the charge equalization scheme (red circles) and the

population equalization scheme (black squares). For
details, see text.

equalization scheme (R2=0.96, slope=1.18) than when only
the atomic charges are made self-consistent (R2=0.90, slope

= 1.45). As mentioned, this is related to the inadequacy of
the rotationally averaged 1DM’s used as starting point in the
charge equalization scheme. In some cases, the latter leads to
unexpectedly high charges. This problem seems to be solved
using the population equalization procedure, which is more
adapted to the molecular geometry.

VI. CONCLUSIONS

We have implemented a two-index partitioning of the
molecular density matrix into atomic and bond contributions
using atomic weight matrices that are orthogonal projection
operators in one-electron Hilbert space. The method is highly
efficient in terms of computation time since no 3D integrals
need to be computed. The resulting decomposition provides a
rather physical description of the adaptations made by atoms
in a molecule and the deformation caused by the bonding pro-
cess. The bond matrices are traceless, i.e. the electrons are
all in the atomic contributions and not in the bond matrices.
Core orbitals and free electron pairs are fully assigned to the
atoms. The trial atoms and the AIM atoms are required to
have equal charges or equal orbital populations. The latter ap-
proach leads to a better correlation of the atomic charges with
the Hirshfeld-I atomic charges.
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