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Abstract 

The diffusional behavior of solubilized flurbiprofen (a poorly water soluble anti-inflammatory drug) in 

the presence of non-ionic Tween20 micelles was studied in an acidic environment (pH 3) using 1H-

NMR.  Two different concentrations of flurbiprofen were considered, each at temperatures ranging 

from 15 to 55 °C. The variability of the hydrodynamic micellar diameter, which was calculated from 

diffusion 1H-NMR data, revealed a structural rearrangement of the Tween20 micelles, caused by the 

solubilization of flurbiprofen. It was found that the additional peaks (at about 0.1 ppm upfield to the 

original ones), which appeared upon clouding, corresponded to a slowly diffusing population of 

solubilized drug molecules, in slow exchange (on an NMR timescale) with the faster diffusing 

population. This phenomenon was only observed in saturated samples at a temperature of at least 

45 °C. For saturated samples at 55 °C, it was found that the flurbiprofen existed in dissolved, 

solubilized, as well as precipitated form. Combined diffusion and peak integration data revealed that 

the solubilized fraction was linked to micellar flurbiprofen (rapidly diffusing), small aggregates (slowly 

diffusing) and larger aggregates that were no longer observable by 1H-NMR.  
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1. Introduction 

Many new active pharmaceutical ingredients are poorly soluble in water [1], which reduces their 

applicability in aqueous systems. Micellar solutions, as well as nanosuspensions, are two possible 

formulation strategies to increase the solubility up to the millimolar range [2-4]. In both cases, a 

thorough knowledge of the drug solubilization within micelles is of utmost importance to ensure 

stability during storage. In micellar solutions, it is important to keep the active ingredient 

solubilized under different storage conditions. In nanosuspensions, part of the drug may become 

solubilized in the excess surfactant, which may badly affect their stability against Ostwald 

ripening [5,6]. 

Micellar solubilization can be defined as the spontaneous dissolution of a substance by 

reversible interaction with the micelles of a surfactant in water to form a thermodynamically 

stable isotropic solution [7]. The capacity of surfactants to solubilize drugs depends on numerous 

factors, such as the chemical structure of both drug and surfactant, temperature, pH and ionic 

strength amongst others [8]. In a previous paper, we studied the influence of temperature on 

the solubilization of the poorly water soluble anti-inflammatory drug flurbiprofen in non-ionic 

Tween20 surfactant micellar solutions in an acidic environment by both 19F and 1H-NMR 

spectroscopy. Using 19F-NMR, an increased solubilization capacity was observed as temperature 

increased. This effect became more pronounced above the cloud point, which was found to be 

reduced by more than 30°C in the presence of an excess of flurbiprofen. Upon clouding, peak 

splitting was observed in the 19F spectrum, which indicated the presence of two different pools 

of solubilized flurbiprofen in slow exchange on the 19F frequency timescale. Peak splitting was 

also observed in the 1H spectrum: additional small peaks occurred at about 0.1 ppm upfield to 

the original ones [9]. To investigate the nature of these different environments, we studied the 

diffusion behaviour of the different species present in both saturated and unsaturated mixtures 
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of flurbiprofen and Tween20 as a function of temperature by 1H-NMR. 

 

2. Materials and methods 

2.1 Materials 

Tween20 (Fig. 1) was obtained from Sigma-Aldrich. Flurbiprofen (Fig. 2) with purity ≥ 98 % was 

obtained from TCI Europe. Sodium acetate and acetic acid (p.a.) were from VWR prolabo. 

Deuterium oxide (D2O) with ≥ 99.8 atom % D was used as purchased from Armar Chemicals.  

2.2 Sample preparation 

A buffer solution with a pH value of 3 was obtained by mixing acetic acid and sodium acetate 

with final concentrations of 19.68 mM and 0.35 mM, respectively. This buffer solution was used 

in all experiments, unless stated otherwise. In this condition, the majority (about 95 %) of the 

flurbiprofen molecules (pKa = 4.03 according to Avdeef [10]) is in the undissociated form and 

thus poorly soluble in aqueous medium. As it is well known that the pKa of amphiphilic carboxyl 

acids in nonionic micelles is typically 1 tot 2 units higher than in aqueous solution, it follows that 

nearly all solubilized flurbiprofen molecules will be in the undissociated form [11].  

   

2.3 1H-NMR methods 

All NMR experiments were performed on a Bruker DRX spectrometer operating at a 1H frequency 

of 500.13 MHz. A 5 mm 1H, 13C, 15N TXI-Z-gradient probe with a maximum gradient strength of 

56.1 G∙cm-1 was used throughout. Temperature was controlled to within ± 0.1 °C with a 

Eurotherm 2000 VT controller. Diffusion coefficients were measured by PFG-NMR with a 

convection compensated double-stimulated-echo experiment using monopolar smoothened 

square shaped gradient pulses and a phase cycle modified according to Connell et al. [12]. The 

echo-decay of the resonance intensity obtained with the double stimulated echo sequences 

obeys equation (1), from which the diffusion coefficient D is derived as a function of the 

parameter k. A detailed description of the PFG-NMR method and the sequences mentioned 
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above is given in a review written by Price [13]. 

 

I = I0∙exp -D∙(Gs)²’ 

I = I0∙exp(-D∙k)         (1) 

 I  = echo intensity with gradient 

 I0 = echo intensity at zero gradient 

   = gyromagnetic ratio 

 G = maximum gradient amplitude 

   = duration of the gradient pulse 

 s = gradient shape factor (here 0.9) 

 ’ = diffusion delay corrected for the finite gradient pulse duration (’ =  – 0.6021∙) 

The determination of the diffusion coefficient with corresponding 67 % confidence interval was 

based on the fitting of a mono- or bi-exponential curve to the echo-decay of the peak integral of 

the selected resonances using the Monte Carlo procedure. This fitting procedure was repeated 

100 times for each experiment; according to Alper and Gelb [14], 60 fits are sufficient to produce 

a constant confidence interval. 

 

3. Results and Discussion 

3.1 1H-NMR spectrum of flurbiprofen solubilized in 10 mM Tween20 

 

Fig. 3 shows the spectrum at 25 °C of a 4 mM flurbiprofen suspension in a solution of 10 mM 

Tween20 in D2O. To enable the characterisation of the peaks, this spectrum was compared to a 

spectrum of Tween20 in the absence of flurbiprofen and to a spectrum of dissolved flurbiprofen 

in a 10 mM NaOH solution in D2O.  

At 0.9 ppm, a peak is observed from the terminal methyl group of the surfactant lauryl chain, 

whereas at 1.3 ppm the aliphatic CH2 groups of the hydrophobic moiety of Tween20 are visible. 
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The peak at 2.4 ppm belongs to the CH2 group next to the carbonyl function (-position) in 

Tween20 whereas the peak at 1.6 ppm belongs to the CH2 group next to it (-position). At 2.1 

ppm, a signal originating from the buffer solution (HAc/Ac–) is found. Whereas most ethylene 

oxide protons cause a large peak around 3.7 ppm, the CH2 of the ethylene oxide group next to 

the ester function results in a contribution at 4.2 ppm. The peak at 4.8 ppm corresponds to 

residual HDO. The flurbiprofen contributions to the spectrum are mainly visible at 1.5 ppm (from 

the methyl group of flurbiprofen) on the one hand, and between 7 and 8 ppm (from the aromatic 

moiety), on the other hand. At pH 3, the aqueous solubility of flurbiprofen is only 30 µM at the 

given temperature [15]. Hence, the clear presence of flurbiprofen resonances in this spectrum 

must result from its enhanced solubilization in the presence of Tween20. As some undissolved 

flurbiprofen remained visible, these samples will be refered to as saturated. 

Since most signals of flurbiprofen and Tween20 do not overlap with each other, it becomes 

possible to study both the diffusion coefficient and the chemical shift of each component 

separately. The insert in Fig. 3 shows the polyethylene oxide (PEO) peak of a 10 mM Tween20 

solution in D2O at 25 °C, both in the absence (dotted line) and presence of 4 mM flurbiprofen 

(full line). The broadening of the PEO peak upon the addition of flurbiprofen i s due to a partial 

overlap of the signal from surfactant PEO with the CH group next to the methyl group of 

flurbiprofen. Hence, the peak at about 3.7 ppm cannot be used to obtain information that can be 

traced back to either flurbiprofen or the surfactant. As a further consequence, this peak will not 

be taken into consideration in all further analyses.  

Increasing the temperature of the 10 mM Tween20 solution containing 4 mM flurbiprofen, a 

completely transparent liquid (without any precipitate) was obtained at temperatures above 

35°C. This indicates that all the flurbiprofen becomes either dissolved in the aqueous phase or 

solubilized within the micelles and hence the micellar solution becomes unsaturated in these 

conditions. From the integration of the peak area of the flurbiprofen signals (using the acetic 

acid signal as internal standard), it was calculated that 2.5 mM was solubilized at 15 °C, 2.8 mM 
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at 25 °C, 3.6 mM at 35 °C and 4.0 mM at 45 °C and 55 °C. Hence, the NMR peak integration data 

corroborated the visual observation that the system underwent a transition from saturated to 

unsaturated when the temperature increased from 35 °C to 45 °C. From these data, it follows 

that the molar Tween20 to flurbiprofen ratio ranges from 2.5 to 3.6 within the temperature 

range considered. Considering an aggregation number of about 30 molecules of Tween20, each 

micelle contains about 8 to 12 flurbiprofen molecules. Based on 1H-NMR peak shift data, as well 

as 2D NOESY spectroscopy, it has been shown before that the flurbiprofen molecules are hereby 

preferably incorporated in the palissade layer of the Tween20 micelles, with the carboxyl groups 

in contact with the polyethylene oxide groups and the aromatic part directed towards the 

hydrophobic core of the micelle [9].  The increased micellar solubilization of the flurbiprofen 

molecules at higher temperatures is in line with similar observations on carbamezapine 

solubilization in Pluronic micelles [16]. These authors attributed the enhanced solubilization to 

the increase in thermal vibrations of the monomers in the micelles which results in an increase in 

the space available for solubilization of the drug in the micelle.  

Increasing the flurbiprofen content up to 20 mM, an exces of solid flurbiprofen remained visually 

observable at the bottom of the recipient, up to the highest temperature considered (i.e. 55 °C). 

In this case, a weak turbidity was observed in the supernatant at 45 °C, whereas a much more 

pronounced turbidity was obtained at 55 °C. The fact that the cloud point was already reached at 

a temperature of 45 °C can be assigned to the presence of flurbiprofen molecules in the micelles. 

It is indeed well known that solubilization may affect properties of surfactant solutions, such as 

the cloud point [17] or CMC [18]. 

The transition from a transparent to a cloudy aspect coincided with the emergence of an 

additional upfield peak for every Tween20 or flurbiprofen related peak in the NMR spectrum, as 

becomes obvious from the comparison of Fig. 3 and Fig. 4. The emergence of these additional 

peaks indicates that a distinct environment (which allows for sufficient molecular flexibility to 

enable detection by NMR) has become available for flurbiprofen molecules and that the 
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molecular exchange with this environment is slow with respect to the NMR frequency time-scale. 

Based on the inequality kex < 2πand noting that the frequency difference  between 

Tween20 or flurbiprofen protons in both environments is of the order of 50 Hz, an upper limit of 

about 300 s-1 can be estimated for the overall exchange rate constant kex. In order to acquire a 

better understanding of this complex behaviour, translational diffusion experiments were 

performed. 

3.2 Diffusion NMR data on Tween20 in the absence and presence of flurbiprofen 

Since the critical micelle concentration (CMC) of Tween20 is about 58 µM at 25°C in H2O [19], it can 

be stated that almost all of the Tween20 molecules in a 10 mM solution were associated into 

micelles and that the relative amount of free molecules can be neglected. As a consequence, the 

diffusion coefficients related to the signals of Tween20 can all be dedicated to Tween20 micelles. In 

Fig. 5, the diffusion coefficients of Tween20 micelles are depicted as a function of temperature, at 3 

different concentrations of flurbiprofen: 0, 4 and 20 mM.  The  corresponding hydrodynamic 

diameter dh of the Tween20 micelles was calculated via the Stokes-Einstein equation: 

dh = kB∙T/(3∙π∙∙D). Hereby, kB is the Boltzmann constant. The viscosity of D2O was calculated as a 

function of the absolute temperature T, as prescribed by Kestin et al. [20]. According to Table 1, the 

hydrodynamic diameter of Tween20 micelles in the absence of flurbiprofen changed from 7.22 ± 0.04 

nm to 5.23 ± 0.03 nm upon changing the temperature from 15 to 55 °C. These values compare well 

to the reported hydrodynamic diameter of 6 to 7 nm for Tween20 in water at 21 °C obtained by both 

FCS and PCS [21]. According to Rosen [7], a (limited) increase of the aggregation number of the 

micelles of ethoxylated non-ionic surfactants with increasing temperature is possible. Hence, the 

decreasing micellar diameter at higher temperature points to the fact that, within the temperature 

range considered, the hydrodynamic behaviour is governed mainly by the dehydration of the PEO-

groups with increasing temperature rather than by the increased aggregation number [22,23].  

No visual turbidity was observed in the 10 mM Tween20 solutions containing 4 mM flurbiprofen 
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within the temperature range considered, which is an indication that the cloud point was not 

reached. Diffusion NMR measurements revealed a mono-exponential decay of the echo-intensity 

as a function of the parameter k at all temperatures up to 55 °C. Comparing the diffusion 

characteristics of the Tween20 micelles in the absence and presence of 4 mM flurbiprofen (Fig. 

5), it is clear that the diffusion coefficient of the Tween20 micelles was lowered upon 

flurbiprofen solubilization, which pinpoints a size increase. This effect was especially pronounced 

at higher temperature, in agreement with our previous work, in which it was found that the 

amount of solubilized flurbiprofen increases with temperature [9]. However, incorporation of 4 

mM flurbiprofen (i.e. 977 mg/L) into 10 mM Tween20 (i.e. 12275 mg/L) increases the  mass of the 

micelles by less than 9% (assuming no significant change in aggregation number), which would 

yield a size increase of less than 3%. Hence, the diffusion data indicate that the micelles do not 

only become swollen by the incorporated drug, but will also have a higher surfactant aggregation 

number. 

As long as the solution is saturated with flurbiprofen, i.e. at 15 °C, 25 °C and 35 °C, highly similar 

diffusion coefficients of the micelles are obtained after addition of 4 mM and 20 mM 

flurbiprofen (Fig. 5). For 20 mM flurbiprofen, the system remains saturated up to the maximum 

temperature of 55 °C used in the current study. In this case, an additional peak emerged for 

every Tween20 or flurbiprofen related signal in the NMR spectrum at a temperature o f at least 

45 °C. As these additional peaks are slightly shifted by about 0.1 ppm, it follows that they 

originate from species with a slightly different molecular environment. Considering the first (zero 

gradient strength) and last spectrum (highest gradient strength) acquired in a diffusion 

experiment under these circumstances, only the additional peaks remain visible at high gradient 

strength (Fig. 6). Hence, it is obvious that these additional peaks at higher temperatures 

originate from species that have a much smaller diffusional mobility, and hence must be ascribed 

to larger structures as compared to the micelles. In fact, this diffusion filtered spectrum is 

simplified by the complete disappearance of the water, acetate, as well as free ethoxylate 
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contributions, which are all fast decaying [24]. The peak area ratio of the flurbiprofen resonances 

(at 7-8 ppm) to the Tween20 lauryl chain resonance (aliphatic CH2 groups and terminal methyl 

group) increased by 14% at the end of the diffusion experiment. The increased importance of the 

flurbiprofen signal compared to the lauryl signal may indicate that the additional peaks of the 

hydrophobic part of Tween20 are more rapidly decaying than those of flurbiprofen. However, 

this increased relative peak area may also indicate a relatively higher flurbiprofen to Tween20 

ratio in the surfactant aggregates that give rise to the additional peaks in the spectrum at 55 °C. 

It is indeed quite probable that the larger aggregates are enriched in more hydrophobic 

components and hence have a higher solubilizing capacity. In fact, it has been shown that larger 

rodlike micelles have a higher solubilization capacity as compared to smaller spherical 

aggregates [25].   

When the main and additional peak of each functional group were considered together, a bi-

exponential decay of the echo intensity was seen. Hereby, the diffusion coefficient of the main 

peak was similar to the one obtained in the presence of 4 mM flurbiprofen, whereas the 

diffusion coefficient of the additional upfield peak had a much lower diffusion coefficient. The 

diffusion data obtained from bi-exponential analysis were corroborated by mono-exponential 

analysis of the separate major and minor peak, as illustrated by Fig. 7 for the terminal methyl 

group of the surfactant hydrophobic tail. Thus, the diffusion coefficient of the terminal methyl 

group of Tween20 for the additional (minor) peak was (6.2 ± 0.3).10 -12 m2s-1, and (13.8 ± 0.3).10-

12 m2s-1 at 45°C and 55°C, respectively, which is an order of magnitude smaller than the diffusion 

coefficient found for the main peak, which was equal to (6.68 ± 0.05).10 -11 m2s-1 and (10.76 ± 

0.05).10-11 m2s-1, respectively. Table 2 indicates that especially the fastest diffusion coefficient 

was reproduced to within roughly 10%, whereas the slowest diffusion coefficient showed more 

variability. Based on the relative peak area of the main and the additional peak, the former 

corresponds to 90 and 81% at 45 and 55 °C, respectively. The last column in table 2 reveals that 

similar results for the contribution of the fastest diffusion coefficient were obtained from the 
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relative contributions of the bi-exponential fitting procedure. Hence, the results obtained by a 

simple bi-exponential fit may be considered as accurate. Comparing the bi-exponential fit results 

for the Tween20 aliphatic CH2 groups to these for the terminal methyl group, no significant 

differences were observed in both the diffusion coefficients and their relative contributions, 

both at 45 and 55 °C (Table 2).     

For the sake of completeness, it can be mentioned that the hydrodynamic diameter of the 

surfactant aggregates at 45 °C and 55 °C as determined by the Stokes-Einstein equation was 9.56 

± 0.06 nm and 6.60 ± 0.05 nm for the largest diffusion coefficient and 198.21 ± 1.05 nm and 

44.17 ± 0.65 nm for the smallest diffusion coefficient, respectively. 

 

3.3 Diffusion NMR data on dissolved and solubilized flurbiprofen 

In Fig. 5, the diffusion coefficients of flurbiprofen (i.e. the mean diffusion coefficient of the 

different aromatic signals in the 7 to 8 ppm region) in a solution of 10 mM Tween20 and either 4 

mM or 20 mM flurbiprofen at a pH value of 3 are summarised. In order to enable the comparison 

of these data with molecular diffusion, a flurbiprofen solution in 10 mM NaOH was considered.  

The temperature dependence of the diffusion coefficient of dissolved flurbiprofen (in 10 mM 

NaOH) is adequately described by the Arrhenius equation: linear regression of the logarithm of 

the diffusion coefficient as a function of the reciprocal temperature yielded a determination 

coefficient R2 of 0.99 with diffusion coefficient values ranging from (3.6 ± 0.2)∙10 -10 m2s-1 at 15 °C 

to (11.8 ± 0.6)∙10-10 m2s-1 at 55 °C. 

The diffusion coefficient of flurbiprofen in a micellar solution (Fig. 5) was always one order of 

magnitude smaller than the diffusion coefficient of truely dissolved flurbiprofen, which is caused 

by the solubilization of flurbiprofen in the micelles. In the micellar solutions containing 4 mM 

flurbiprofen, all decay curves were mono-exponential, which means that there is a quick 

exchange between the dissolved form of flurbiprofen and the solubilized form. At 15 °C and 25 

°C, the diffusion coefficient of flurbiprofen was equal to the diffusion coefficient of the micelles. 
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At 35°C, 45°C and 55°C, however, the diffusion coefficient of flurbiprofen was higher than the 

diffusion coefficient of the micelles. This phenomenon is caused by the fact that the observed 

diffusion coefficient Dobs is a weighted average of the diffusion coefficient of the dissolved 

fraction Ddissolved and the diffusion coefficient of the solubilized fraction  Dsolubilized.  

Dobs = p*Dsolubilized + (1 - p)*Ddissolved      (2) 

In equation (2), p represents the solubilized fraction. Assuming that the diffusion coefficient of 

the solubilized flurbiprofen is equal to the diffusion coefficient of the micelles, whereas the 

diffusion coefficient of the free flurbiprofen may be approximated by the value of the dissolved 

species in 10 mM NaOH, equation (2) allows estimating the dissolved fraction (1-p) and the 

solubilized fraction (p) of flurbiprofen. At 15 and 25 °C, the dissolved fraction of flurbiprofen 

could not be discerned from 0, whereas it increased from 0.9% at 35 °C over 1.2% at 45°C to 

1.4% at 55°C. In fact, the dissolved fraction at 45 °C, i.e. 1.2% of 4 mM, which equals 48 µM, 

corresponds well to the reported aqueous solubility at pH 3.0, which is 30 µM at 25 °C according 

to Li & Zhao [15]. In a solution of 10 mM Tween20 and 20 mM flurbiprofen, mono-exponentially 

decaying functions for the aromatic protons of flurbiprofen were only observed at 15, 25 and 35 

°C. Hereby, no significant difference between the diffusion coefficient of flurbiprofen and the 

diffusion coefficient of the micelles was observed at 15 and 25 °C (Fig. 5). At 45 °C and  55 °C, the 

integrated flurbiprofen signal in the 7 to 8 ppm region yielded a bi-exponentially decaying curve, 

with similar properties as the Tween20 terminal methyl signal and the aliphatic methylene 

signals (Table 2). However, as was also observed in the presence of only 4 mM of flurbiprofen, 

the fastest diffusion coefficient of flurbiprofen was significantly larger than the fastest diffusion  

coefficient of the hydrophobic part of the surfactant, which was earlier ascribed to the enhanced 

flurbiprofen solubility at higher temperatures. The slow diffusion coefficient, on the other hand, 

was highly similar for both flurbiprofen and Tween20.  In addition, the relative contribution of 

the fastest diffusing flurbiprofen species was significantly smaller as compared to the Tween 
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molecules, which once more points towards a higher flurbiprofen to Tween20 ratio in the 

slowest diffusing structures.  

From the integrated peak area values in the 7-8 ppm region (corresponding to the flurbiprofen 

aromatic signals) and using acetic acid as internal standard, it was calculated that 2.4 mM of 

flurbiprofen was solubilized at 15 °C, 2.9 mM at 25 °C, 4.8 mM at 35 °C, 8.8 mM at 45 °C and 6.7 

mM at 55 °C by 10 mM Tween20 in the presence of 20 mM flurbiprofen. According to these data, 

the flurbiprofen solubilization seems to reach a maximum around the temperature of 45 °C, i.e. 

when the cloud point occurs. However, it is important to notice that the relative peak area of 

(the terminal methyl group of) Tween20 in the 20 mM flurbiprofen containing sample at 55°C 

was about 20% lower than in the similar sample without flurbiprofen, whereas it was not 

affected by the presence of 4 mM flurbiprofen (Table 3). Hence, the apparently lower 

flurbiprofen solubilization at 55 °C must be ascribed to excessive aggregation of Tween20 

surfactant molecules, whereby the molecular mobility in (at least part of) these large aggregates 

becomes too low to enable its detection by high resolution NMR.  

 

4. Conclusions 

In the present work, flurbiprofen solubilization by micellar Tween20 solutions (pH 3) was studied 

by diffusion NMR. Peak integration revealed that flurbiprofen solubilization increased as the 

temperature was increased, whereas diffusion data showed that solubilization induced an 

increased hydrodynamic diameter of Tween20 micelles at low flurbiprofen loads, which is partly 

due to an increased aggregation number upon sorption. At higher flurbiprofen loads and 

temperatures of at least 45 °C, visible clouding occured, which gave rise to the emergence of two 

distinct flurbiprofen populations which are in very slow (or no) exchange within the NMR 

frequency timescale.  

Combining all diffusional data, it follows that the flurbiprofen-saturated Tween20 samples at 
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elevated temperature do not only consist of micelles, but also incorporate nanosized aggregates 

(which are still observable by NMR), as well as still larger aggregates in which the molecular 

flexibility is reduced to such an extent that they can no longer be observed by NMR techniques. 

As Ostwald ripening is promoted by solubilization in nonionic surfactants [6], the stability of 

nanosuspensions may be troublesome upon storage at elevated temperature. In addition, the 

formation of larger surfactant aggregates may affect the organ distribution upon administration 

of micellar solutions and may even cause blockage of small blood vessels [26].     
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Figure legends 

Fig. 1 Chemical structure of polysorbate 20 (commercially available as Tween20).  

n = a + b + c + d = 20. 

 

Fig. 2 Chemical structure of flurbiprofen. 

 

Fig. 3 1H-spectrum at 25 °C of 4 mM flurbiprofen in a 10 mM Tween20 solution in D2O (pH 3). The 

insert shows a detailed view of the ethylene oxide related peak both in the absence (dotted line) and 

presence (solid line) of 4 mM flurbiprofen. 

 

Fig. 4 Stacked diffusion 1H-spectrum of 20 mM flurbiprofen in a 10 mM Tween20 solution in D2O (pH 

3) at 55 °C. Each spectrum represents a specific gradient strength, increasing from the first spectrum 

in front to the last recorded spectrum at the back. Additional upfield peaks for Tween20 as well as 

for flurbiprofen occur and remain visible up to the highest gradient strength applied, whereas the 

original peaks at that point are severely reduced and thus no longer visible.  

 

Fig. 5 Diffusion coefficient (and standard deviation) of 10 mM Tween20 micelles in D2O (pH 3) in the 

absence (non-shaded) and presence of 4 mM (single shaded) or 20 mM (double shaded) flurbiprofen 

as a function of the temperature. The data were obtained from a mono-exponential fit to the pfg-

NMR decay curves from either the terminal methyl (grey), or the aliphatic methylene protons (white) 

of the lauryl moiety of 10 mM Tween20, or the aromatic moiety (black) of 4 mM or 20 mM 

flurbiprofen at 15 °C, 25 °C, 35 °C, 45 °C, and 55 °C. 
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Fig. 6 Diffusion filtered 1H-spectrum of 20 mM flurbiprofen in a 10 mM Tween20 solution in D2O (pH 

3) taken at 55 °C. The spectrum was recorded at the highest experimental gradient strength (0.449 

G∙cm-1). 

 

Fig. 7 Echo intensity of the surfactant terminal methyl group as a function of the parameter k, in the 

presence of 20 mM flurbiprofen at 55 °C. The decay of the main peak is represented by the black 

dots, whereas the decay of the additional (small) peak is represented by the white dots, both fitting 

mono-exponential. The bi-exponential decay of the total methyl resonance (including both the main 

and additional peak) is given by the semi-filled dots.  
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Tables 

 

 

Table 1. Hydrodynamic diameter of Tween20 micelles as a function of temperature in a 10 mM 

solution in D2O (pH 3) in the absence and presence of 4 mM and 20 mM flurbiprofen. 

 

 

 

  Hydrodynamic diameter dh (nm) 

T (°C)  (mPa.s) 0 mM flur 4 mM flur 20 mM flur 

15 1.44 ± 0.07 7.22 ± 0.04 7.51 ± 0.04 7.50 ± 0.05 

25 1.09 ± 0.05 7.32 ± 0.04 7.49 ± 0.05 7.56 ± 0.04 

35 0.87 ± 0.04 6.69 ± 0.04 8.10 ± 0.05 8.76 ± 0.05 

45 0.71 ± 0.04 6.05 ± 0.03 8.97 ± 0.05 12.01 ± 0.10 

55 0.60 ± 0.03 5.23 ± 0.03 9.77 ± 0.07 10.71 ± 0.14 
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Table 2. Comparison of the diffusion coefficients (in 10-11 m²/s) obtained by either a mono-

exponential or a bi-exponential fit to the experimentally determined pfg-NMR decay curves for the 

terminal methyl and aliphatic methylene protons of the lauryl chain of Tween20, as well as for the 

aromatic protons of flurbiprofen in a 10 mM Tween20 solution (pH 3) containing 20 mM flurbiprofen 

at both 45 °C and 55 °C. The rapidly diffusing fraction is given as a percentage (fractionfast).   

 

 

 
  T (°C) 

 
           Group 

 
Mono-exponential    

data analysis 

 
Bi-exponential data-analysis 

 Dfast Dslow fractionfast (%) 

    45 

 
-CH3 

 
5.47 ± 0.18 

 
6.84 ± 0.04 

 
0.33 ± 0.00 

 
91.2 ± 0.2 

 
-CH2- 

 
5.42 ± 0.17 

 
6.82 ± 0.03 

 
0.33 ± 0.00 

 
91.0 ± 0.2 

 
flurbiprofen 

 
5.26 ± 0.29 

 
7.73 ± 0.05 

 
0.31 ± 0.00 

 
86.4 ± 0.2 

 
 

  
    55 
     

 
-CH3 

 
7.50 ± 0.59 

 
12.18 ± 0.27 

 
1.82 ± 0.16 

 
79.3 ± 1.5 

 
-CH2- 

 
7.52 ± 0.56 

 
11.67 ± 0.20 

 
1.61 ± 0.15 

 
81.3 ± 1.3 

 
flurbiprofen 

 
7.29 ± 0.73 

 
14.13 ± 0.23 

 
1.72 ± 0.09 

 
75.2 ± 0.9 
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Table 3.  Ratio of the relative peak area (to the peak area of acetic acid) of the terminal methyl group 

of Tween20 in the presence of 4 mM and 20 mM flurbiprofen to the relative peak area in the 

absence of flurbiprofen at 15, 25, 35, 45, and 55 °C. 

 

 

 methyl peak ratio in presence of  

T (°C) 4 mM flurbiprofen 20 mM flurbiprofen 

15 0.97 1.00 

25 0.99 0.97 

35 1.00 0.99 

45 0.97 0.99 

55 1.00 0.80 
 

 

 

 

 

 


