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Abstract

Combining theoretical arguments with calculations in the computer algebra package
GAP, we are able to show that there are 27 isomorphism classes of hyperplanes in the
near hexagon for the group U4(3). We give an explicit construction of a representative of
each class and we list several combinatorial properties of such a representative.

Keywords: near hexagon, hyperplane, dual polar space, universal embedding, minimal full polarized
embedding
MSC2000: 05E20, 51A45, 51A50, 51E12

1 Introduction

1.1 Basic definitions

In this subsection, we recall the basic notions regarding hyperplanes, embeddings and near
polygons which are necessary to understand the results discussed in Subsection 1.2. Readers
familiar with these notions might skip this subsection and go immediately to Subsection 1.2.

Let Γ = (P ,L, I) be a point-line geometry with point-set P , line-set L and incidence relation
I ⊆ P×L. A set S of points of Γ is called a subspace if every line containing at least two points
of S is completely contained in S. A hyperplane of Γ is a proper subspace of Γ which meets
every line.

A full (projective) embedding of Γ into a projective space Σ is an injective mapping e from
P to the point-set of Σ satisfying: (i) 〈e(P)〉Σ = Σ; (ii) e(L) := {e(x) |x ∈ L} is a line of
Σ for every line L of Γ. The dimensions dim(Σ) and dim(Σ) + 1 are respectively called the
projective dimension and the vector dimension of e. If e : Γ→ Σ is a full embedding of Γ, then
for every hyperplane α of Σ, e−1(α ∩ e(P)) is a hyperplane of Γ. We say that the hyperplane
e−1(α ∩ e(P)) of Γ arises from the embedding e.

Two full embeddings e1 : Γ → Σ1 and e2 : Γ → Σ2 of Γ are called isomorphic (e1
∼= e2) if

there exists an isomorphism f : Σ1 → Σ2 such that e2 = f ◦ e1. If e : Γ→ Σ is a full embedding
of Γ and if U is a subspace of Σ satisfying
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(C1) 〈U, e(p)〉Σ 6= U for every point p of Γ,

(C2) 〈U, e(p1)〉Σ 6= 〈U, e(p2)〉Σ for any two distinct points p1 and p2 of Γ,

then there exists a full embedding e/U of Γ into the quotient space Σ/U mapping each point
p of Γ to 〈U, e(p)〉Σ. If e1 : Γ → Σ1 and e2 : Γ → Σ2 are two full embeddings of Γ, then we
say that e1 ≥ e2 if there exists a subspace U in Σ1 satisfying (C1), (C2) and e1/U ∼= e2. If
e : Γ → Σ is a full embedding of Γ, then by Ronan [28], there exists (up to isomorphism) a

unique full embedding ẽ : Γ→ Σ̃ satisfying (i) ẽ ≥ e, (ii) if e′ ≥ e for some full embedding e′ of
Γ, then ẽ ≥ e′. We say that ẽ is universal relative to e. If ẽ ∼= e for some full embedding e of Γ,
then we say that e is relatively universal. A full embedding e of Γ is called absolutely universal
if it is universal relative to any full embedding of Γ defined over the same division ring as e.

Suppose Γ = (P ,L, I) is a point-line geometry with three points on each line. If X1 and X2

are two sets of points of Γ, then we define X1 ∗ X2 = (X1 ∩ X2) ∪ (P \ (X1 ∪ X2)). Clearly,
X1 ∗ P = X1, X1 ∗ X1 = P , X1 ∗ X2 = X2 ∗ X1 and X1 ∗ (X2 ∗ X3) = (X1 ∗ X2) ∗ X3 for
all X1, X2, X3 ⊆ P . If X1 and X2 are two distinct hyperplanes of Γ, then X1 ∗ X2 is again a
hyperplane of Γ. If H(Γ) denotes the set of all hyperplanes of Γ, then H(Γ) ∪ {P} carries the
structure of a vector space over the field F2 if we put H1 + H2 := H1 ∗ H2, 0 · H1 := P and
1 ·H1 := H1 for all H1, H2 ∈ H(Γ).

Suppose Γ = (P ,L, I) is a fully embeddable point-line geometry with three points on each
line. Then by Ronan [28], Γ admits the absolutely universal embedding and every hyperplane of
Γ arises from this embedding. We now give a description of the absolutely universal embedding
of Γ. Let V be a vector space over the field F2 with a basis B whose vectors are indexed by the
elements of P , say B = {vp | p ∈ P}. Let W denote the subspace of V generated by all vectors
vp1 + vp2 + vp3 where {p1, p2, p3} is a line of Γ. Then the map p ∈ P 7→ {vp +W,W} defines a
full embedding of Γ into the projective space PG(V/W ) which is isomorphic to the absolutely
universal embedding of Γ.

A near polygon is a partial linear space Γ = (P ,L, I) with the property that for every point
p ∈ P and every line L ∈ L, there exists a unique point on L nearest to p. Here, distances
d(·, ·) are measured in the collinearity graph G of Γ. If d is the diameter of G, then the near
polygon is called a near 2d-gon. We will always assume that d is finite. The near 0-gon consists
of one point (no lines) and the near 2-gons are precisely the lines. Near quadrangles are usually
called generalized quadrangles (GQ’s).

For every point x of a near polygon Γ = (P ,L, I), for every non-empty subset X of P
and every i ∈ N, we define Γi(x) := {y ∈ P | d(x, y) = i}, x⊥ = Γ0(x) ∪ Γ1(x), d(x,X) =
min{d(x, y) | y ∈ X}, Γi(X) = {y ∈ P | d(y,X) = i}. If X1 and X2 are two non-empty sets of
points of Γ, then we define d(X1, X2) := min{d(x1, x2) |x1 ∈ X1 and x2 ∈ X2}.

A near polygon is called dense if every line is incident with at least three points and if every
two points at distance 2 have at least two common neighbours. By Theorem 4 of Brouwer
and Wilbrink [5], every two points of a dense near polygon at distance δ from each other are
contained in a unique convex sub near 2δ-gon. These convex sub near 2δ-gons are called quads
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if δ = 2. If X1, X2, . . . , Xk are k (sets of) points of a near polygon Γ, then 〈X1, X2, . . . , Xk〉
denotes the smallest convex subspace of Γ containing X1, X2, . . ., Xk.

The set of points at non-maximal distance from a given point x of a dense near polygon Γ
is a hyperplane of Γ. We call this hyperplane the singular hyperplane with deepest point x and
we denote it by Hx. By Shult [30, Lemma 6.1], every hyperplane of a dense near polygon is
also a maximal subspace. If H is a hyperplane of a dense near polygon Γ and if Q is a quad
of Γ, then either Q ⊆ H or Q ∩H is a hyperplane of Q. By Payne and Thas [26, 2.3.1], one of
the following cases then occurs:

(i) Q ⊆ H;
(ii) Q ∩H = x⊥ ∩Q for some point x of Q;
(iii) Q ∩H is a proper subquadrangle of Q;
(iv) Q ∩H is an ovoid of Q, i.e. a set of points of Q meeting each line in a unique point.

If case (i), (ii), (iii), respectively (iv), occurs, then Q is called deep, singular, subquadrangular,
respectively ovoidal, with respect to H.

Let e : Γ→ Σ be a full embedding of a dense near polygon Γ = (P ,L, I). If H is a hyperplane
of Γ arising from e, then since H is a maximal subspace of Γ, 〈e(H)〉Σ is a hyperplane of Σ and
〈e(H)〉Σ ∩ e(P) = e(H). The embedding e is called polarized if every singular hyperplane of Γ
arises from e. If e is polarized, then the subspace Re :=

⋂
x∈P〈e(Hx)〉Σ satisfies the conditions

(C1) and (C2) mentioned above and e/Re : Γ→ Σ/Re is also a full polarized embedding of Γ,
see [15]. The embedding e/Re is called a minimal full polarized embedding of Γ.

Now, let Γ be a dense near polygon with three points on each line. Then Γ has a full
embedding, see e.g. [15], and hence admits the absolutely universal embedding ẽ : Γ → Σ̃
by Ronan [28]. The embedding ē := ẽ/Rẽ is the unique minimal full polarized embedding of
Γ: we have e′ ≥ ē for any full polarized embedding e′ of Γ. By Ronan [28], every hyperplane
of Γ arises from ẽ. The set H(Γ) of all hyperplanes of Γ carries the structure of a projective

space isomorphic to (the dual of) Σ̃ if one takes the sets {H1, H2, H1 ∗ H2}, H1, H2 ∈ H(Γ)
with H1 6= H2, as lines. Let H′(Γ) denote the subspace of H(Γ) generated by all singular
hyperplanes. Then H′(Γ) coincides with the set of all hyperplanes arising from the minimal
full polarized embedding ē.

Remark. If Γ is a dense near polygon with three points per line, then the minimal full polarized
embedding ē is sometimes also called the near polygon embedding.

1.2 The results

Classification results for hyperplanes have been obtained for several classes of dense near poly-
gons with three points per line, see [4] for the M24 near hexagon E2, [27] (see also [14, Section
9]) for the dual polar space DW (5, 2), [16, 17] for the dual polar space DH(5, 4) and [18] for the
near hexagon H3 on the 2-factors of the complete graph K8. The aim of the present paper is to
give a classification of the hyperplanes of another dense near hexagon with three points per line,
namely the U4(3) near hexagon E3. There are still three dense near hexagons with three points
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per line whose hyperplane classification is still open (namely E1, G3 and Q(5, 2)⊗Q(5, 2)). In
a sequel paper [19] we will deal with the classification of the hyperplanes of the near hexagon
E1 which is related to the extended ternary Golay code. We start by giving a model for the
near hexagon under consideration in the present paper.

Consider in PG(6, 3) a nonsingular parabolic quadricQ(6, 3) and a non-tangent hyperplane π
intersecting Q(6, 3) in a nonsingular elliptic quadric Q−(5, 3) of π. There is a polarity associated
with Q(6, 3) and we call two points of PG(6, 3) orthogonal when one of them is contained in
the polar hyperplane of the other. Let N denote the set of 126 internal points of Q(6, 3) which
are contained in π, i.e. the set of all 126 points in π for which the polar hyperplane intersects
Q(6, 3) in a nonsingular elliptic quadric. Let E3 be the following point-line geometry:
• the points of E3 are the 6-tuples of mutually orthogonal points of N ;
• the lines of E3 are the pairs of mutually orthogonal points of N ;
• incidence is reverse containment.

The incidence structure E3 is a dense near hexagon with three points on each line. The above
description of the near hexagon has been taken from Brouwer & Wilbrink [5] and Brouwer et
al. [3]. Other descriptions of this near hexagon can be found in Aschbacher [1, p. 31], De
Bruyn [13], Kantor [23, p. 240], Pasini & Shpectorov [25, p. 279], and Ronan & Smith [29,
p. 285]. The automorphism group Aut(E3) of E3 is isomorphic to PO−6 (3) and contains U4(3)
as a subgroup of index 4. Every quad of E3 is isomorphic to either W (2) or Q(5, 2). Here,
W (2) denotes the unique GQ with three points per line and three lines through each point, and
Q(5, 2) denotes the unique GQ with three points per line and 5 lines through each point.

The aim of this paper is to enumerate the isomorphism classes of hyperplanes of the near
hexagon E3, to give at least one explicit construction of a representative of each isomorphism
class and to list several combinatorial properties of such a representative. For some isomorphism
classes, we will indeed give more than one construction for a representative, thus obtaining
distinct constructions for the same hyperplane. The following is the main result of this paper.

Main Theorem. The U4(3) near hexagon E3 has 27 isomorphism classes of hyperplanes.
Among these 27 isomorphism classes, there are 17 classes whose hyperplanes arise from the
minimal full polarized embedding of E3.

By Ronan [28], every hyperplane of E3 arises from the absolutely universal embedding of E3.
Yoshiara [31] showed that this absolutely universal embedding has vector dimension 21, see
also Bardoe [2] or De Bruyn [10] for alternative proofs. This implies that E3 has precisely
|H(E3)| = 221 − 1 = 2097151 hyperplanes. We will show in Section 2 (Proposition 2.1) that
the minimal full polarized embedding of E3 has vector dimension 20. This implies that H′(E3)
is a hyperplane of H(E3). So, H′(E3) is the subspace of H(E3) generated by all singular
hyperplanes of E3, and the whole space H(E3) is generated by all singular hyperplanes +
one extra hyperplane of H(E3) \ H′(E3). We will call the hyperplanes of H′(E3) the Type A
hyperplanes and the hyperplanes of H(E3) \ H′(E3) the Type B hyperplanes.
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A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17

A1 30 – 96 – 120 320 – – – – – – – – – – –
A2 – – – – 15 – 360 192 – – – – – – – – –
A3 12 – 15 – – 240 180 – 90 30 – – – – – – –
A4 – – – 21 – – – – – – 210 336 – – – – –
A5 8 1 – – 6 192 72 – 96 – – – 64 128 – – –
A6 2 – 12 – 18 87 108 – 72 12 – – 12 72 36 1 135
A7 – 1 4 – 3 48 131 8 52 – 8 64 8 80 64 – 96
A8 – 12 – – – – 180 45 – – – – 30 120 180 – –
A9 – – 4 – 8 64 104 – 53 22 8 48 – 96 – – 160
A10 – – 12 – – 96 – – 198 53 – 48 – – – 16 144
A11 – – – 6 – – 144 – 72 – 9 240 – 96 – – –
A12 – – – 1 – – 120 – 45 5 25 91 – 100 60 – 120
A13 – – – – 28 56 84 14 – – – – 21 168 28 – 168
A14 – – – – 6 36 90 6 54 – 6 60 18 123 60 – 108
A15 – – – – – 36 144 18 – – – 72 6 120 63 – 108
A16 – – – – – 108 – – – 216 – – – – – – 243
A17 – – – – – 60 96 – 80 8 – 64 16 96 48 1 98

Table 1: The “action” of the singular hyperplanes on a Type A hyperplane

In the computer algebra package GAP ([22]), we have implemented the absolutely universal

embedding space Σ̃ of E3 and its dual space Σ̃∗, together with the action of Aut(E3) on these

spaces. Notice that there exists a natural bijective correspondence between the points of Σ̃∗ and
the hyperplanes of E3. We have randomly chosen points in the dual space Σ̃∗ and calculated
their orbits. We have repeated this process till the union of all orbits did coincide with the
whole point set of Σ̃∗. We found that there are 27 distinct orbits, i.e. 27 distinct isomorphism
classes of hyperplanes of E3.

To obtain all isomorphism classes of Type A hyperplanes one can also proceed as follows.
Start with a given singular hyperplane H. The hyperplane orbit containing H has size 567
(= the total number of points of E3). Construct all hyperplanes of the form H ∗ Hx, where
x ranges over all points of E3. For each new hyperplane H ′ arising, calculate the size of its
orbit, construct all hyperplanes of the form H ′ ∗Hx and determine once again the sizes of the
orbits of the new hyperplanes which arise. Repeat this until the sum of the sizes of all found
hyperplane orbits equals |H′(E3)| = 220 − 1. A priori, it might be possible that we need 20
singular hyperplanes to generate all Type A hyperplanes. It turns out however that at most
5 singular hyperplanes suffice. The results of this method for constructing the isomorphism
classes of Type A hyperplanes are listed in Table 1. There are 17 orbits of Type A hyperplanes
which we label by A1, A2, . . ., A17. In Sections 3 and 5, we will give an explicit construction
of a representative of each orbit. We have labeled the hyperplane orbits in accordance with the
order in which we will describe these representatives. The Type A1 hyperplanes are precisely
the singular hyperplanes. The number 192 in entry (A5,A6) of Table 1 means that for a
given hyperplane H of Type A5, there are 192 singular hyperplanes Hx such that H ∗Hx is a
hyperplane of Type A6. Notice that the sum of all entries in a given row distinct from “row
A1” equals 567. The sum of the entries in “row A1” is equal to 566 since we need to combine
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B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

B1 – 405 162 – – – – – – –
B2 1 80 6 – 36 48 144 – 72 180
B3 7 105 35 – – – – – 210 210
B4 – – – – – 105 252 210 – –
B5 – 36 – – 36 72 252 48 9 114
B6 – 8 – 1 12 160 204 26 12 144
B7 – 20 – 2 35 170 195 20 15 110
B8 – – – 15 60 195 180 57 – 60
B9 – 72 12 – 9 72 108 – 24 270
B10 – 30 2 – 19 144 132 8 45 187

Table 2: The “action” of the singular hyperplanes on a Type B hyperplane

two distinct singular hyperplanes. Some of the Type A hyperplanes can easily be constructed
without giving explicitly a generating set of singular hyperplanes. This is the case for the
hyperplanes of Type A2, A3 and A4. We call the hyperplanes of Type A1, A2, A3 and A4 the
basic hyperplanes of Type A and show how all the remaining hyperplanes of Type A can be
constructed from them. For some hyperplane classes we will give more than one construction
for a representative. The hyperplanes of Type A16 turn out to have a nice structure. In Section
6 we will give an alternative construction for these hyperplanes and discuss their structure.

A hyperplane of E3 on 405 points was constructed in [10, Section 3]. This hyperplane is
isomorphic to the hyperplane of Type B on 405 points which we will describe in Proposition
3.2. We will refer to this particular hyperplane as a Type B1 hyperplane. The points and
lines contained in a Type B1 hyperplane define a dense near hexagon which is isomorphic to
the near hexagon G3 which we will define in Section 2. To obtain all isomorphism classes
of Type B hyperplanes one can proceed in a similar way as above by starting from a given
hyperplane of Type B1 and combining it with singular hyperplanes. The results of this method
for constructing the isomorphism classes of Type B hyperplanes are listed in Table 2. There are
10 distinct orbits of Type B hyperplanes which we label by B1, B2, . . ., B10. In Section 5.8, we
will give an explicit construction for a representative of each orbit. Again, we have labeled the
hyperplane orbits in accordance with the order in which we will describe these representatives.

In Table 3 we list the sizes of the hyperplane orbits and several combinatorial properties
of the hyperplanes. This information is obtained by means of computer computations. From
Table 3 we observe the following: (i) if H is a Type A hyperplane, then 8 | v − 7 and every
point of H is incident with either 3, 5, 7, 9, 11 or 15 lines which are contained in H; (ii) if H
is a Type B hyperplane, then 16 | v − 5 and every point of H is incident with either 4, 6, 8, 10
or 12 lines which are contained in H. Some of the hyperplanes of E3 carry the structure of a
near hexagon.
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N v l line distribution DE SU SI de su si ov

A1 567 247 435 31205961531 6 0 120 15 0 360 192
A2 567 375 1395 113601515 30 96 0 127 320 120 0
A3 4536 327 1035 512730918011901515 16 80 30 57 240 270 0
A4 324 231 315 32101521 0 0 126 21 0 210 336
A5 8505 311 915 3874892241124157 6 96 24 55 192 256 64
A6 90720 271 615 3185667120958119 0 60 66 6 144 297 120
A7 204120 279 675 31056871029761122151 2 64 60 11 176 268 112
A8 9072 255 495 33051801145 0 36 90 0 120 255 192
A9 102060 295 795 3252471329881148151 4 80 42 29 192 266 80
A10 11340 263 555 31851447489161136151 0 48 78 9 96 318 144
A11 11340 327 1035 3692401172159 12 96 18 65 256 198 48
A12 108864 271 615 32056671209501115 0 60 66 6 160 265 136
A13 19440 287 735 31471689841121 0 84 42 28 168 259 112
A14 181440 279 675 395547117990119 0 72 54 15 168 264 120
A15 90720 303 855 518710891141163 6 84 36 34 224 237 72
A16 840 351 1215 910811243 18 108 0 108 216 243 0
A17 204120 287 735 55679691161119 2 76 48 20 184 267 96

B1 112 405 1620 12405 45 81 0 162 405 0 0
B2 45360 277 660 46064881441225 3 57 66 6 189 252 120
B3 2592 245 420 42101235 0 21 105 0 105 210 252
B4 2592 357 1260 1025212105 21 105 0 112 245 210 0
B5 45360 309 900 648814410721245 9 81 36 38 229 252 48
B6 272160 293 780 412664814410601213 3 81 42 28 189 262 88
B7 326592 277 660 44068081201032125 1 65 60 10 165 280 112
B8 36288 261 540 490612010361215 0 45 81 6 105 300 156
B9 45360 309 900 412819210721233 7 89 30 42 237 216 72
B10 272160 277 660 44266481441024123 0 69 57 12 169 262 124

The number N denotes the total number of hyperplanes in the relevant orbit, v and l denote the
number of points and lines which are contained in the hyperplane H. The notation tn1

1 tn2
2 · · · t

nk
k

means that there are precisely ni, i ∈ {1, . . . , k}, points of H which are incident with precisely ti
lines that are contained H. The numbers DE, SU, respectively SI, denote the number of Q(5, 2)-
quads which are deep, subquadrangular, respectively singular, with respect to H. (Notice that the
GQ Q(5, 2) has no ovoids, see Payne and Thas [26, 3.4.1].) The numbers de, su, si, respectively ov,
denote the number of W (2)-quads which are deep, subquadrangular, singular, respectively ovoidal,
with respect to H.

Table 3: Some combinatorial properties of the hyperplanes
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Theorem 1.1 If H is a hyperplane of E3 without ovoidal W (2)-quads, then the point-line
geometry Γ induced on H is a near hexagon.

Proof. We show that Γ is isometrically embedded into E3. Let x1 and x2 be two points of Γ
which lie at distance δ in Γ and at distance d in E3. Obviously, δ ≥ d. We need to show that
δ = d.

If d ≤ 1, then δ = d since H is a subspace.
Suppose d = 2. Since the quad 〈x1, x2〉 is either deep, singular or subquadrangular, there

exists a point in x⊥1 ∩ x⊥2 ∩H. Hence, δ = 2.
Suppose d = 3. Let Q be an arbitrary quad through x1. Since Q is either deep, singular

or subquadrangular, there exists a line L ⊆ Q ∩ H through x1. This line L contains a point
y which lies at distance 2 from x2 in the near hexagon E3. By the previous paragraph, the
distance between y and x2 in Γ is also equal to 2. It follows that δ = 3.

Since Γ is isometrically embedded into E3 and E3 is a near polygon, also Γ must be a near
polygon. We show that the diameter of Γ is equal to 3. Let x be an arbitrary point of H. If
H ⊆ Hx, then since H is a maximal subspace, we must have H = Hx, contradicting the fact
that every singular hyperplane of E3 admits ovoidal W (2)-quads. Hence, there exists a point
in Γ3(x) ∩H, proving the claim. 2

From Theorem 1.1 and Table 3, we obtain

Corollary 1.2 Let H be a hyperplane of Type A2, A3, A16, B1 or B4. Then the point-line
geometry induced on Γ is a near hexagon.

Remark. As we have already mentioned above, the point-line geometry induced on a Type
B1 hyperplane is a near hexagon isomorphic to G3.

2 Dense near polygons

In this section, we will recall some of the more advanced notions and properties of dense near
polygons which we will need later.

A proper convex subspace F of a dense near polygon Γ is called big in Γ if every point x of
Γ not contained in F is collinear with a unique point πF (x) of F . If F is big in Γ and if HF is
a hyperplane of F , then the set H := HF ∪ Γ1(HF ) = F ∪ (Γ1(HF )∩ Γ1(F )) is a hyperplane of
Γ. We call H the extension of HF .

Suppose F is a big convex subspace of a dense near polygon Γ which has three points on
each line. If x ∈ F , then we define RF (x) := x. If x 6∈ F , then RF (x) denotes the unique point
of the line xπF (x) different from x and πF (x). The map RF is an automorphism of Γ and is
called the reflection about F .

Let Γ = (P ,L, I) be a dense near polygon. A function f : P → N is called a valuation of Γ
if it satisfies the following properties (we call f(x) the value of x):
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(V1) there exists a point with value 0;
(V2) every line L of Γ contains a unique point xL with smallest value and f(x) = f(xL) + 1

for every point x of L different from xL;
(V3) every point x of Γ is contained in a (necessarily unique) convex subspace Fx such that

the following properties are satisfied for every y ∈ Fx: (i) f(y) ≤ f(x); (ii) if z is a point
collinear with y such that f(z) = f(y)− 1, then z ∈ Fx.
Valuations of dense near polygons were introduced in De Bruyn and Vandecasteele [20]. If f
is a valuation of a dense near polygon Γ, then Of denotes the set of points of Γ with value 0
and Gf denotes the point-line geometry with point-set Of , with line-set the set of all quads
containing at least two points of Of (each such quad intersects Of necessarily in an ovoid), and
with natural incidence. If y is a point of a dense near polygon Γ = (P ,L, I), then the map
f : P → N;x 7→ d(x, y) is a valuation of Γ. We call any such valuation a classical valuation of
Γ. If f is a valuation of a dense near polygon Γ, then the set of points with non-maximal value
is a hyperplane of Γ.

Let Γ be a dense near hexagon and let Q be a quad of Γ. If x ∈ Γ1(Q), then x is collinear
with a unique point πQ(x) of Q. If x ∈ Γ2(Q), then O := Γ2(x) ∩ Q is an ovoid of Q and
〈x, x1〉 ∩ 〈x, x2〉 = {x} for any two distinct points x1 and x2 of O. We will say that the point
x is ovoidal with respect to Q. If L is a line through x contained in one of the quads 〈x, xi〉,
xi ∈ O, then L contains a unique point of Γ1(Q) and the remaining points of L are contained
in Γ2(Q). If L is a line through x not contained in

⋃
xi∈O〈x, xi〉, then L ⊆ Γ2(Q).

If A is a set of points of a near polygon Γ, then we define A⊥ :=
⋂

x∈A x
⊥ and A⊥⊥ := (A⊥)⊥.

If B is a set of lines of a near polygon Γ, then B⊥ denotes the set of lines of Γ meeting each line
of B and B⊥⊥ := (B⊥)⊥. A spread of a near polygon is a set of lines partitioning the point-set.
A spread S of a generalized quadrangle Q is called regular if for every two distinct lines K and
L of S, (i) {K,L}⊥ and {K,L}⊥⊥ cover the same set of points of Q, and (ii) {K,L}⊥⊥ ⊆ S.

If x and y are two noncollinear points of the generalized quadrangle W (2), then {x, y}⊥⊥
is a set of 3 points containing x and y. {x, y}⊥⊥ is called the hyperbolic line through x and
y. Every point of W (2) \ {x, y}⊥⊥ is collinear with either 1 or 3 points of {x, y}⊥⊥ and every
ovoid of W (2) intersects {x, y}⊥⊥ in either 0 or 2 points.

Let Q be a generalized quadrangle isomorphic to Q(5, 2). If G is a (3 × 3)-subgrid of Q,
then there exists a unique pair {G1, G2} of (3 × 3)-subgrids of Q such that {G,G1, G2} is a
partition of Q(5, 2) in (3× 3)-subgrids.

If L1, L2, L3 and L4 are four mutually disjoint lines of Q(5, 2) such that L1, L2 and L3 are
contained in a (3× 3)-grid, then L1, L2, L3 and L4 are contained in a unique regular spread of
Q(5, 2).

We now mention some properties of the near hexagon E3. The near hexagon E3 has 567
points, 3 points on each line and 15 lines through each point. Every quad is isomorphic to
either Q(5, 2) or W (2). There are 126 Q(5, 2)-quads and 567 W (2)-quads. Every Q(5, 2)-quad
is big. If a quad meets a Q(5, 2)-quad Q, then it intersects Q in either Q or a line of Q. For
every point x of E3, let Lx (respectively L′x) denote the point-line geometry whose points are
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the lines through x and whose lines are the quads (respectively W (2)-quads) through x, with
incidence being containment. Then Lx

∼= W (2) and L′x ∼= W (2). Here, W (2) denotes the linear
space obtained from W (2) by adding its ovoids as extra lines.

We now define 3 additional classes of dense near hexagons with three points on each line.

(1) Let H(5, 4) denote a nonsingular Hermitian variety in PG(5, 4) and let DH(5, 4) be the
point-line geometry whose points, respectively lines, are the planes, respectively lines, contained
in H(5, 4) (natural incidence). The point-line geometry DH(5, 4) is a dense near hexagon with
three points on each line. It is an example of a so-called dual polar space (Cameron [6]). All
quads of DH(5, 4) are isomorphic to Q(5, 2) and are big in DH(5, 4). By Pasini and Shpectorov
[25], the near hexagon E3 can be isometrically embedded as a hyperplane in DH(5, 4).

(2) Again, let H(5, 4) denote a nonsingular Hermitian variety in PG(5, 4). We choose a
reference system in PG(5, 4) in such a way that X3

0 + X3
1 + . . . + X3

5 = 0 is the equation
describing H(5, 4). The weight of a point of PG(5, 4) is defined as the number of its nonzero
coordinates (with respect to the chosen reference system). Let X denote the set of all planes
of H(5, 4) which contain a point with weight 2. Then X is a subspace of the dual polar space
DH(5, 4) associated with H(5, 4). By Brouwer et al. [3], the point-line geometry induced on
that subspace is a dense near hexagon with three points on each line and 12 lines through
each point. We will denote this near hexagon by G3. The above description yields an isometric
embedding of G3 into DH(5, 4). Every quad of G3 is isomorphic to either the (3×3)-grid, W (2)
or Q(5, 2). G3 has 405 points, 405 grid-quads, 243 W (2)-quads and 45 Q(5, 2)-quads. Every
Q(5, 2)-quad is big. The automorphism group of G3 has two orbits on the set of lines. A line
of G3 is called special if it is contained in 2 Q(5, 2)-quads, 0 W (2)-quads and 3 grid-quads. A
line of G3 is called ordinary if it is contained in 1 Q(5, 2)-quad, 3 W (2)-quads and 1 grid-quad.
Every point of G3 is contained in 3 special lines and 9 ordinary lines.

(3) The near hexagon Q(5, 2) ⊗ Q(5, 2) is an example of a so-called glued near hexagon
([9]). It is a dense near hexagon with three points per line and 9 lines through each point.
There are 243 vertices and every quad is isomorphic to either the (3× 3)-grid or Q(5, 2). Every
Q(5, 2)-quad is big. The set of 18 Q(5, 2)-quads can be partitioned into two families F1 and F2

such that
(i) every quad of F1 intersects every quad of F2 in a line;
(ii) the set S∗ = {Q1 ∩Q2 |Q1 ∈ F1, Q2 ∈ F2} is a spread of Q(5, 2)⊗Q(5, 2);
(iii) every line of Q(5, 2)⊗Q(5, 2) is contained in a quad of F1 ∪ F2;
(iv) for a given Q ∈ Fi, i ∈ {1, 2}, the set SQ := {Q∩Q3−i |Q3−i ∈ F3−i} is a regular spread

of Q.
Conversely, every dense near hexagon with three points per line admitting two partitions F1

and F2 in Q(5, 2)-quads satisfying (i), (ii), (iii), (iv) above is isomorphic to Q(5, 2)⊗Q(5, 2).

By Cooperstein [8] and De Bruyn [12], there exists a nice full polarized embedding e′ of the
dual polar space DH(5, 4) into the projective space PG(19, 2). We refer to this particular
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embedding as the Grassmann-embedding of DH(5, 4). Now, suppose E3 is (isometrically) em-
bedded as a hyperplane in DH(5, 4). De Bruyn and Pralle [17], [16] showed that E3 cannot
arise from e′. Hence, 〈e′(E3)〉 = PG(19, 2) and e′ induces a full polarized embedding ē of E3 into
PG(19, 2). For every point x of E3, let Hx (respectively H ′x) denote the singular hyperplane of
E3 (respectively DH(5, 4)) with deepest point x. Then Hx = H ′x ∩ E3.

Proposition 2.1 The embedding ē is the minimal full polarized embedding of E3.

Proof. Let x1, x2, . . . , x20 be 20 points of E3 such that 〈e′(x1), . . . , e′(x20)〉 = PG(19, 2).
By Cardinali, De Bruyn and Pasini [7, Section 4.2], k ≥ 2 points e′(y1), e′(y2), . . . , e′(yk) of
PG(19, 2) are linearly independent if and only if the hyperplanes 〈e′(H ′y1

)〉, 〈e′(H ′y2
)〉, . . .,

〈e′(H ′yk
)〉 of PG(19, 2) are linearly independent. It follows that

⋂
1≤i≤20〈e′(H ′xi

)〉 = ∅. Now,
for every i ∈ {1, . . . , 20}, 〈ē(Hxi

)〉 = 〈e′(H ′xi
)〉. Hence,

⋂
x∈E3
〈ē(Hx)〉 = ∅, implying that ē is

the minimal full polarized embedding of E3. 2

3 The basic hyperplane classes of E3

The aim of this section is to define five classes of hyperplanes of E3. These classes are called
the basic hyperplane classes of E3. We will construct all the remaining hyperplane classes
from them. It is straightforward to calculate some combinatorial properties of a representative
of each of these five classes (like N , v, DE). In this way we were able to identify the five
hyperplane classes with five orbits found in our computer search.

Definition. A hyperplane of E3 is said to be of Type A1 if it is a singular hyperplane of E3.
As said before, if x is a point of E3, then we denote by Hx the singular hyperplane of E3 with
deepest point x.

Proposition 3.1 If W is a W (2)-quad of E3, then W ∪ Γ1(W ) is a hyperplane of E3.

Proof. Let x be an arbitrary point of Γ2(W ) and let L be an arbitrary line through x. The 5
W (2)-quads through x which meet W in a point of the ovoid Γ2(x)∩W of W partition the set
of 15 lines through x. Hence L, which is contained in precisely one of these quads, contains a
unique point of Γ1(W ). This proves that W ∪ Γ1(W ) is a hyperplane of E3. 2

Definitions. • A hyperplane H of E3 is said to be of Type A2 if H = W ∪ Γ1(W ) for some
W (2)-quad W of E3. We will denote such a hyperplane by HW .
• A hyperplane of E3 is said to be of Type A3 if it is the extension of a W (2)-subquadrangle

W of a Q(5, 2)-quad Q. We will also denote such a hyperplane by HW . Notice that also in this
case HW = W ∪ Γ1(W ).

By De Bruyn and Vandecasteele [21, Section 7.3], the near hexagon E3 has up to isomorphism
a unique non-classical valuation. Any such valuation can be obtained as follows. Let W
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be a W (2)-quad of E3 and let z ∈ Γ2(W ). Put Γ2(z) ∩ W = {z1, z2, z3, z4, z5} and let Oi,
i ∈ {1, 2, 3, 4, 5}, denote the unique ovoid of the W (2)-quad 〈z, zi〉 containing the points z and
zi. Put Z := O1 ∪ O2 ∪ · · · ∪ O5 and f(x) := d(x, Z) for every point x of E3. Then f is a
non-classical valuation of E3 with Of = Z and Gf

∼= PG(2, 4). A non-classical valuation of E3

has 21 points with value 0, 210 points with value 1 and 336 points with value 2. The points
with value 0 and 1 define a hyperplane Hf of E3.

Definition. A hyperplane H of E3 is said to be of Type A4 if H = Hf for some non-classical
valuation f of E3.

The hyperplane Hf can also be obtained as follows, see [21, Section 7.3]. Embed E3 isometrically
into the dual polar space DH(5, 4). Then there exists a unique point x in DH(5, 4) \ E3 such
that x⊥ ∩ E3 = Of and Hf = H ′x ∩ E3, where H ′x denotes the singular hyperplane of DH(5, 4)
with deepest point x.

Proposition 3.2 The near hexagon G3 can be embedded as a hyperplane into E3.

Proof. By Brouwer et al. [3], the near hexagon G3 can be isometrically embedded into
the dual polar space DH(5, 4). The absolutely universal embedding of DH(5, 4) has vector
dimension 22, see e.g. Yoshiara [31] or Li [24]. If ẽ′ denotes the absolutely universal embedding
of DH(5, 4) into PG(21, 2), then ẽ′ induces an embedding e of G3 into the subspace 〈ẽ′(G3)〉 of
PG(21, 2). Since ẽ′ is polarized and the embedding of G3 into DH(5, 4) is isometric, also e has
to be polarized. In De Bruyn [11], it has been shown that there exists a unique full polarized
embedding of G3. This embedding has vector dimension 20. So, dim〈ẽ′(G3)〉 = 19. Now, let
Π be one of the three hyperplanes of PG(21, 2) through 〈ẽ′(G3)〉 and let H be the hyperplane
of DH(5, 4) arising from Π. Now, for every quad Q of G3, there exists a unique quad Q in
DH(5, 4) such that Q∩G3 = Q (Q is the smallest convex subspace of DH(5, 4) containing Q).
Since both G3 and DH(5, 4) have precisely 693 quads, every quad of DH(5, 4) intersects G3 in
a quad. Now, if Q is a quad of DH(5, 4), then Q∩H contains the quad Q∩G3 of G3. It follows
that H is a locally subquadrangular hyperplane of DH(5, 4). By Pasini and Shpectorov [25],
there exists up to isomorphism a unique locally subquadrangular hyperplane in DH(5, 4). The
point-line geometry induced on such a locally subquadrangular hyperplane is a near hexagon
isomorphic to E3. Since 〈ẽ′(G3)〉 is a hyperplane of Π, every line of H meets G3, proving the
lemma. 2

Definition. Every hyperplane of E3 carrying the structure of a G3 near hexagon is called a
hyperplane of Type B1.

A direct construction of the hyperplanes of Type B1 in the near hexagon E3 can be given by
relying on De Bruyn [10, Section 3]. Let Q1 and Q2 be two disjoint Q(5, 2)-quads of E3, put
Q3 := RQ1(Q2) = RQ2(Q1) and let V denote the set of all Q(5, 2)-quads meeting Q1 and Q2.
Then |V| = 18. Moreover, the quad Q1 can be partitioned into 3 subgrids G1, G2 and G3 such
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that every line Q1 ∩ Q with Q ∈ V is contained in either G1, G2 or G3. In [10, Lemma 5] it
was shown that Q1 ∪ Q2 ∪ Q3 ∪

⋃
Q∈V Q is a hyperplane of E3. The hyperplanes of E3 which

can be obtained in this way are precisely the Type B1 hyperplanes.

4 The mutual position of two W (2)-quads

In this section, we study the mutual position of two distinct W (2)-quads W1 and W2. In almost
all possible cases, we give an alternative description of the hyperplane HW1 ∗HW2 . We will need
some of these alternative descriptions in Section 5.

Proposition 4.1 One of the following 5 cases occurs for two W (2)-quads W1 and W2 of E3:
(1) W1 = W2;
(2) W1 ∩W2 is a line;
(3) W1 ∩W2 is a point;
(4) W2 ⊆ Γ1(W1) and there exists a unique Q(5, 2)-quad Q such that W2 = RQ(W1);
(5) W1∩W2 = ∅, W2∩Γ1(W1) is a (3×3)-subgrid of W2 and W1∩Γ1(W2) is a (3×3)-subgrid

of W1.

Proof. If W1 ∩ W2 6= ∅, then obviously one of the cases (1), (2), (3) occurs. So, suppose
W1 ∩ W2 = ∅. Since W1 ∪ Γ1(W1) is a hyperplane of E3, Γ1(W1) ∩ W2 is either W2 or a
hyperplane of W2.

Suppose the former case occurs. Then we show that there exists at most 1 Q(5, 2)-quad Q
such that W2 = RQ(W1). For, consider all 15 lines which meet W1 and W2 and let W3 denote
the set of all 15 points outside W1∪W2 which are contained in one of these lines. Then W3 is a
subspace which carries the structure of a generalized quadrangle isomorphic to W (2). So, either
W3 is a W (2)-quad or is properly contained in a Q(5, 2)-quad which then necessarily coincides
with 〈W3〉. It follows that if Q is a Q(5, 2)-quad such that W2 = RQ(W1), then Q = 〈W3〉.

Suppose the latter case occurs. Let x be an arbitrary point of W2∩Γ1(W1) and let x′ denote
the unique point of W1 collinear with x. There are two Q(5, 2)-quads through the line xx′. If
Q is such a Q(5, 2)-quad, then Q ∩W1 and Q ∩W2 are lines. Moreover, every point of Q ∩W2

has distance 1 from a unique point of Q ∩W1. It follows that every point of Γ1(W1) ∩W2 is
contained in at least 2 lines which are contained in Γ1(W1) ∩W2. This is only possible when
the hyperplane Γ1(W1) ∩W2 of W2 is a (3× 3)-subgrid.

Now, fix W1 and let W2 range over all 567 W (2)-quads of E3. Let Ni, i ∈ {1, 2, 3, 4, 5},
denote the number of times case (i) of the lemma occurs. We calculate the Ni’s. Obviously,
N1 = 1. Through each of the 15 lines of W1, there are 2 W (2)-quads which intersect W1 in a
line. Hence, N2 = 15 · 2 = 30. Through each of the 15 points of W1, there are 8 W (2)-quads
which intersect W1 in a unique point. Hence, N3 = 15 · 8 = 120. The W (2)-quads W2 of E3

such that (W1,W2) satisfies property (4) of the lemma are in bijective correspondence with
the Q(5, 2)-quads disjoint from W1. Since there are 96 such Q(5, 2)-quads, we have N4 = 96.
In order to calculate N5, we count in two different ways the pairs (x,W2) where x ∈ Γ2(W1)
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and W2 is a W (2)-quad through x disjoint from W1. There are |Γ2(W1)| = 192 possibilities
for x, and for given x, there are 10 (= 15 − |Γ2(x) ∩W1|) possibilities for W2. On the other
hand, there are N5 possibilities for W2 and for given W2 there are 6 possibilities for x. Hence,
N5 = 192·10

6
= 320.

The lemma now follows from the fact that N1+N2+N3+N4+N5 = 1+30+120+96+320 =
567 equals the total number of W (2)-quads of E3. 2

Proposition 4.2 Let W1, W2 and W3 denote the three W (2)-quads of E3 through a given line
L of E3. Then HW1 ∗HW2 = HW3.

Proof. Since hyperplanes are maximal subspaces it suffices to show that HW3 ⊆ HW1 ∗HW2 .
Since W3 ⊆ HW1∩HW2 , W3 ⊆ HW1∗HW2 . Now, let x denote an arbitrary point of Γ1(W3) and let
x′ denote the unique point of W3 collinear with x. If x′ ∈ L, then x ∈ HW1 ∩HW2 ⊆ HW1 ∗HW2 .
So, suppose x′ 6∈ L. Let x′′ denote the unique point of L collinear with x′. We distinguish two
cases:

(1) Suppose Q := 〈x′′x′, x′x〉 is a Q(5, 2)-quad. Then Q ∩W1 and Q ∩W2 are lines. Every
point of xx′ has distance 1 from a unique point of Q∩W1 and a unique point of Q∩W2. Hence,
x ∈ HW1 ∩HW2 ⊆ HW1 ∗HW2 .

(2) Suppose Q := 〈x′′x′, x′x〉 is a W (2)-quad. Since L′x′′
∼= W (2), Q intersects both W1 and

W2 in only the point x′′. It follows that x 6∈ HW1 and x 6∈ HW2 . Hence, x ∈ HW1 ∗HW2 . 2

Proposition 4.3 Let W1 and W2 denote two W (2)-quads of E3 intersecting in a unique point
x. Let W3 denote the unique W (2)-quad of E3 through x such that (i) W3∩W1 = W3∩W2 = {x};
(ii) every W (2)-quad intersecting each of W1, W2 in a line also intersects W3 in a line. (W3 is
the unique element of the set {W1,W2}⊥⊥ \ {W1,W2}, where W1 and W2 are regarded as lines
of the generalized quadrangle L′x ∼= W (2).) Then HW1 ∗HW2 = HW3 ∗Hx.

Proof. We show that HW1 ∗HW2 ∗HW3 ∗Hx coincides with the whole point-set of E3. Let y
be a point of E3.

If d(x, y) ≤ 1, then y ∈ HW1 ∩HW2 ∩HW3 ∩Hx and hence y ∈ HW1 ∗HW2 ∗HW3 ∗Hx.
Suppose d(x, y) = 2. We distinguish four cases:
(1) y is contained in one of W1,W2,W3. Without loss of generality, we may suppose that

y is contained in W1. Then y ∈ HW1 ∩ Hx and y 6∈ HW2 ∪ HW3 . This implies that y ∈
HW1 ∗HW2 ∗HW3 ∗Hx.

(2) 〈x, y〉 is a W (2)-quad which intersects each of W1, W2, W3 in a line. Then y ∈ HW1 ∩
HW2 ∩HW3 ∩Hx ⊆ HW1 ∗HW2 ∗HW3 ∗Hx.

(3) 〈x, y〉 is a W (2)-quad which intersects precisely 1 of W1, W2, W3 in a line and the two
others in the point x. Without loss of generality, we may suppose that 〈x, y〉 ∩W1 is a line and
〈x, y〉 ∩W2 = 〈x, y〉 ∩W3 = {x}. Then y ∈ HW1 ∩ Hx and y 6∈ HW2 ∪ HW3 . It follows that
y ∈ HW1 ∗HW2 ∗HW3 ∗Hx.

(4) 〈x, y〉 is a Q(5, 2)-quad. Then 〈x, y〉 ∩ Wi is a line for every i ∈ {1, 2, 3}. Hence,
y ∈ HW1 ∩HW2 ∩HW3 ∩Hx ⊆ HW1 ∗HW2 ∗HW3 ∗Hx.
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From the above discussion it follows that the singular hyperplane Hx with deepest point x is
contained in HW1 ∗HW2 ∗HW3 ∗Hx. Since Hx is a maximal subspace of E3, it suffices to show
that there exists a point z at distance 3 from x which is contained in HW1 ∗HW2 ∗HW3 ∗Hx.

Let y1 be an arbitrary point of W1 at distance 2 from x. Then y1 is ovoidal with respect to
W2. Let y2 denote an arbitrary point of Γ2(y1) ∩W2 \ {x}. Let W be the quad 〈y1, y2〉. The
point x is ovoidal with respect to W . Put Γ2(x)∩W = {y1, y2, y3, y4, y5}. For every i ∈ {3, 4, 5},
put Ri := 〈x, yi〉. The quad Ri intersects W3 in a line. Hence, y3, y4, y5 ∈ Γ1(W3). Now, since
y1 6∈ Γ1(W3), Γ1(W3) ∩W is a (3× 3)-subgrid G of W and Γ1(W ) ∩W3 is a (3× 3)-subgrid G′

of W3. Clearly, {y3, y4, y5} is an ovoid of G. Now, let z be an arbitrary point of W collinear
with y1 and y2. Then z ∈ HW1 ∩ HW2 and z 6∈ Hx. Since {y1, y2, y3, y4, y5} is an ovoid of W ,
z is collinear with precisely one point of {y3, y4, y5}. Hence z 6∈ G, i.e. z 6∈ Γ1(W3). Since
z ∈ HW1 ∩ HW2 and z 6∈ HW3 ∪ Hx, the point z belongs to HW1 ∗ HW2 ∗ HW3 ∗ Hz. As said
before, this implies that HW1 ∗ HW2 ∗ HW3 ∗ Hz coincides with the whole point-set of E3. So,
we have that HW1 ∗HW2 = HW3 ∗Hx. 2

Proposition 4.4 Let Q be a Q(5, 2)-quad of E3 and let W1 be a W (2)-quad disjoint from Q.
Put W2 := RQ(W1) and W3 := πQ(W1) = πQ(W2). Then HW1 ∗HW2 = HW3.

Proof. Since W3 ⊆ HW1 ∩HW2 , W3 ⊆ HW1 ∗HW2 .
Let x be an arbitrary point of Q \W3. Since x 6∈ HW1 ∪HW2 , we have x ∈ HW1 ∗HW2 .
Let L be an arbitrary line of E3 which intersects Q in a point belonging to W3. If L meets

W1 and W2, then L ⊆ HW1 ∩HW2 and hence L ⊆ HW1 ∗HW2 . Suppose therefore that L does
not meet W1 ∪W2. Then L 6= L′, where L′ is the unique line through L ∩ Q meeting W1 and
W2. The quad 〈L,L′〉 intersects Q in a line. If this line is contained in W3, then L ⊆ HW1∩HW2

and hence L ⊆ HW1 ∗HW2 . If this line is not contained in W3, then no point of L \Q belongs
to HW1 ∪HW2 and hence also in this case we have L ⊆ HW1 ∗HW2 .

From the above we know that HW3 ⊆ HW1 ∗HW2 . Now, HW3 is a maximal subspace of E3

and HW1 ∗HW2 is a proper subspace of E3 since HW1 6= HW2 . Hence, HW3 = HW1 ∗HW2 . 2

5 Explicit constructions of a representative of the re-

maining hyperplane classes

5.1 Two lemmas

We leave the proofs of the following two lemmas as straightforward exercises to the reader.

Lemma 5.1 Let G1 and G2 be two distinct hyperplanes of Q(5, 2).
(i) If G1 and G2 are two singular hyperplanes whose respective deepest points x1 and x2 lie

on a line L, then G1 ∗G2 is the singular hyperplane whose deepest point is the unique point in
L \ {x1, x2}.
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(ii) If G1 and G2 are two singular hyperplanes whose deepest points lie at distance 2 from
each other, then G1 ∗G2 is a W (2)-subquadrangle of Q(5, 2).

(iii) If G1 is a W (2)-subquadrangle of Q(5, 2) and if G2 is a singular hyperplane of Q(5, 2)
whose deepest point lies in G1, then G1 ∗G2 is a W (2)-subquadrangle of Q(5, 2).

(iv) If G1 is a W (2)-subquadrangle of Q(5, 2) and if G2 is a singular hyperplane of Q(5, 2)
whose deepest point x2 lies outside G1, then G1 ∗G2 is a singular hyperplane of Q(5, 2) whose
deepest point lies in Γ2(x2) \G1.

(v) If G1 and G2 are two W (2)-subquadrangles of Q(5, 2) intersecting in a (3 × 3)-subgrid
of both G1 and G2, then G1 ∗G2 is a W (2)-subquadrangle of Q(5, 2).

(vi) If G1 and G2 are two W (2)-subquadrangles intersecting in the union of three lines
through a point x, then G1 ∗G2 is the singular hyperplane of Q(5, 2) with deepest point x.

Lemma 5.2 Let Q be a Q(5, 2)-quad of E3 and let G1 and G2 be two distinct hyperplanes of Q.
Let Hi, i ∈ {1, 2}, be the hyperplane of E3 obtained by extending Gi. Then H1 ∗H2 coincides
with the extension of the hyperplane G1 ∗G2 of Q.

5.2 Hyperplanes of the form Hx1
∗Hx2

In this subsection, we give an interpretation to the entries occurring in line “A1” of Table 1.
This allows us to identify two extra classes of hyperplanes (A5 and A6).

Proposition 5.3 Let x1 and x2 be two points of E3.
(i) If d(x1, x2) = 1, then Hx1 ∗Hx2 = Hx3, where x3 is the third point of the line x1x2.
(ii) If d(x1, x2) = 2 and 〈x1, x2〉 is a Q(5, 2)-quad, then Hx1 ∗ Hx2 is the extension of a

W (2)-subquadrangle of 〈x1, x2〉.

Proof. This follows from Lemmas 5.1 and 5.2. (For case (i), take an arbitrary Q(5, 2)-quad
through the line x1x2.) 2

For a given point x1, there are 30 points at distance 1 from x1, 120 points x2 ∈ Γ2(x1) for which
〈x1, x2〉 is a W (2)-quad, 96 points x′2 ∈ Γ2(x1) for which 〈x1, x

′
2〉 is a Q(5, 2)-quad and 320 points

at distance 3 from x1. If x2 ∈ Γ2(x1) such that 〈x1, x2〉 is a W (2)-quad and x ∈ Γ1(x1)∩Γ1(x2),
then each line through x is contained in Hx1 ∗Hx2 . Line “A1” of Table 1, the line distribution
mentioned in Table 3 and Proposition 5.3 now allow us to identify the two extra hyperplane
classes.

Definitions. • A hyperplane of E3 is said to be of Type A5 if it is of the form Hx1 ∗Hx2 , where
x1 and x2 are two points of E3 satisfying d(x1, x2) = 2 and 〈x1, x2〉 is a W (2)-quad.
• A hyperplane of E3 is said to be of Type A6 if it is of the form Hx1 ∗Hx2 where x1 and x2

are two points of E3 at distance 3 from each other.
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Two other easy constructions for a Type A5 hyperplane will be given in Corollary 5.5. We will
meet other constructions for a Type A6 hyperplane. The description mentioned in Proposition
5.6(iii) can compete in simplicity with the one given above.

5.3 Hyperplanes of the form Hx ∗HW , W a W (2)-quad

In this subsection, we give an interpretation to the entries occurring in line “A2” of Table 1.
This allows us to identify two extra classes of hyperplanes (A7 and A8).

Proposition 5.4 If {x1, x2, x3} is a hyperbolic line of a W (2)-quad W , then Hx1 ∗Hx2 ∗Hx3 =
HW .

Proof. Since W ⊆ Hx1 ∩Hx2 ∩Hx3 , W ⊆ Hx1 ∗Hx2 ∗Hx3 .
Let x be an arbitrary point of Γ1(W ) and let x′ denote the unique point of W collinear

with x. If x′ ∈ {x1, x2, x3}, then x has distance 1 from x′ and distance 3 from each point of
{x1, x2, x3} \ {x′}, implying that x ∈ Hx1 ∗Hx2 ∗Hx3 . If x′ 6∈ {x1, x2, x3}, then x′ has distance
1 from either 1 or 3 points of {x1, x2, x3}. Hence, x has distance 2 from either 1 or 3 points
of {x1, x2, x3} and distance 3 from the other points of {x1, x2, x3}. This again implies that
x ∈ Hx1 ∗Hx2 ∗Hx3 .

Let x be an arbitrary point of Γ2(W ). Then the ovoid Γ2(x) ∩W of W and the hyperbolic
line {x1, x2, x3} of W intersect in either 0 or 2 points. In either case, we have x 6∈ Hx1∗Hx2∗Hx3 .

2

Corollary 5.5 (i) If W is a W (2)-quad of E3 and x ∈ W , then Hx ∗ HW is a hyperplane of
Type A5.

(ii) If W1 and W2 are two W (2)-quads meeting in a singleton {x}, then HW1 ∗ HW2 is a
hyperplane of Type A5.

Proof. Part (i) follows from the fact that the equality Hx1 ∗Hx2 ∗Hx3 = HW of Proposition
5.4 can also be written as Hx1 ∗HW = Hx2 ∗Hx3 . Part (ii) follows from part (i) and Proposition
4.3. 2

Now, for a given W (2)-quad W , there are 15 points contained in W , 360 points contained in
Γ1(W ) and 192 points contained in Γ2(W ). If x ∈ Γ1(W ), then every line through πW (x) is
contained in HW ∗ Hx. Line “A2” of Table 1, the line distribution mentioned in Table 3 and
Corollary 5.5(i) now allow us to identify the two extra hyperplane classes.

Definitions. • A hyperplane of E3 is said to be of Type A7 if it is of the form HW ∗Hx, where
W is a W (2)-quad and x ∈ Γ1(W ).
• A hyperplane of E3 is said to be of Type A8 if it is of the form HW ∗ Hx, where W is a

W (2)-quad and x ∈ Γ2(W ).
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5.4 Hyperplanes of the form Hx ∗HW , W a W (2)-subquadrangle of a
Q(5, 2)-quad

In this subsection, we give an interpretation to the entries occurring in line “A3” of Table 1.
This allows us to identify two extra classes of hyperplanes (A9 and A10).

Proposition 5.6 Let W be a W (2)-subquadrangle of a Q(5, 2)-quad Q and let x be a point of
E3.

(i) If x ∈ W , then Hx ∗HW is a hyperplane of Type A3.
(ii) If x ∈ Q \W , then Hx ∗ HW is a singular hyperplane whose deepest point belongs to

(Q \W ) ∩ Γ2(x).
(iii) If x 6∈ HW , then Hx ∗HW is a hyperplane of Type A6.
(iv) If x ∈ Γ1(Q) ∩ Γ1(W ) such that precisely one of the two Q(5, 2)-quads through the line

xπQ(x) intersects W in a line, then Hx ∗HW is a hyperplane of Type A7.

Proof. Claims (i) and (ii) follow from Lemmas 5.1 and 5.2.
We prove Claim (iii). Suppose that x 6∈ HW . Let x1 denote the unique point of Q collinear

with x. By (ii), HW ∗ Hx1 is a singular hyperplane whose deepest point x2 is contained in
(Q \W ) ∩ Γ2(x1). Now, Hx ∗HW = Hx ∗ (Hx1 ∗Hx2) = Hy ∗Hx2 , where y denotes the unique
point of the line xx1 different from x and x1. Since d(y, x2) = d(y, x1) + d(x1, x2) = 1 + 2 = 3,
Hx ∗HW = Hy ∗Hx2 is a hyperplane of Type A6.

We prove Claim (iv). Suppose x is a point of Γ1(Q) ∩ Γ1(W ) such that precisely one
of the two Q(5, 2)-quads through the line xπQ(x) intersects W in a line. Let Q′ denote the
unique Q(5, 2)-quad through xπQ(x) which intersects Q in a line which is not contained in
W . Let W1 denote the other quad through xπQ(x) which intersects Q in a line not belonging
to W . Then W1

∼= W (2). Let y1 denote an arbitrary point of (W1 ∩ Q) \ {πQ(x)} and put
{y1, x}⊥⊥ = {x, y1, y3}. Now, Hy1 ∗HW is a singular hyperplane whose deepest point y2 belongs
to (Q \W ) ∩ Γ2(y1). Since πQ(x) ∈ y⊥1 ∩W , πQ(x) ∈ y⊥2 . This implies that y2 is contained
in (Q′ ∩ Q) \ {πQ(x)}. Now, there are 3 quads through πQ(x)y2 which intersect W1 in a
line. Two of these, namely Q′ and Q, are isomorphic to Q(5, 2). The remaining quad W2 :=
〈πQ(x)y2, πQ(x)y3〉 is isomorphic to W (2). Put {y2, y3}⊥⊥ = {y2, y3, y4} and let W3 denote the
unique third W (2)-quad through the line W1 ∩W2 = πQ(x)y3. By Propositions 4.2 and 5.4,
Hx∗HW = Hx∗Hy1∗Hy2 = (Hx∗Hy1∗Hy3)∗(Hy3∗Hy4∗Hy2)∗Hy4 = HW1∗HW2∗Hy4 = HW3∗Hy4 .
This is a hyperplane of Type A7 since d(y4,W3) = 1. 2

Now, for a given W (2)-subquadrangle in a Q(5, 2)-quad Q, there are 15 points in W , 12 points
in Q \W , 240 points in Γ2(W ) and 180/90/30 points x ∈ Γ1(Q) ∩ Γ1(W ) such that precisely
1/2/0 of the two Q(5, 2)-quads through xπQ(x) meet W in a line. Observe also that if x is a
point of Γ1(Q)∩Γ1(W ) such that the two Q(5, 2)-quads through xπQ(x) meet W in a line, then
Q1 and Q2 are contained in Hx ∗HW . Proposition 5.6, line “A3” of Table 1 and the values of
DE mentioned in Table 3 now allow is to identify the two extra hyperplane classes.
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Definitions. • A hyperplane of E3 is said to be of Type A9 if it is of the form Hx ∗HW , where
W is a W (2)-subquadrangle of a Q(5, 2)-quad Q and x ∈ Γ1(Q)∩ Γ1(W ) such that each of the
two Q(5, 2)-quads through the line xπQ(x) intersects W in a line.
• A hyperplane of E3 is said to be of Type A10 if it is of the from Hx ∗ HW , where W is

a W (2)-subquadrangle of a Q(5, 2)-quad Q and x ∈ Γ1(Q) ∩ Γ1(W ) such that none of the two
Q(5, 2)-quads through the line xπQ(x) intersects W in a line.

An alternative construction for the hyperplanes of Type A9 will be given in Proposition 5.8(vii).

5.5 Hyperplanes of the form Hx ∗Hf , f a non-classical valuation of
E3

In this subsection, we give an interpretation to the entries occurring in line “A4” of Table 1.
This allows us to identify two extra classes of hyperplanes (A11 and A12).

Proposition 5.7 Let f be a non-classical valuation of E3 and let x be a point with value 0.
Then Hx ∗Hf = Hf ′ for some non-classical valuation f ′ of E3.

Proof. Let the near hexagon E3 be isometrically embedded into the dual polar space DH(5, 4)
and let y denote the unique point of DH(5, 4)\E3 such that y⊥∩E3 = Of . Notice that x and y
are collinear since x ∈ Of . Let z denote the third point on the line xy. Let H ′x (H ′y, respectively
H ′z) denote the singular hyperplane of DH(5, 4) with deepest point x (y, respectively z). Then
H ′z = H ′x∗H ′y and hence (H ′z∩E3) = (H ′x∩E3)∗(H ′y∩E3). Now, H ′x∩E3 = Hx and H ′y∩E3 = Hf .
Now, for every point u of E3, define f ′(u) = d(u, z)− 1. Then f ′ is a non-classical valuation of
E3 and H ′z ∩ E3 = Hf ′ . Hence, Hx ∗Hf = Hf ′ . 2

Now, for a given non-classical valuation f of E3, there are 21 points with value 0, 210 points
with value 1 and 336 points with value 2. If x is a point with value 1 and y ∈ Of ∩Γ1(x), then
every line through y is contained in Hx ∗Hf . Proposition 5.7, line “A4” of Table 1 and the line
distribution mentioned in Table 3 now allows us to identify the two extra hyperplane classes.

Definitions. • A hyperplane of E3 is said to be of Type A11 if it is of the form Hx ∗Hf where
f is a non-classical valuation of E3 and x is a point such that f(x) = 1.
• A hyperplane of E3 is said to be of Type A12 if it is of the form Hx ∗ Hf where f is a

non-classical valuation of E3 and x is a point such that f(x) = 2.

5.6 The hyperplanes of the form HW ∗Hx1
∗Hx2

, W a W (2)-quad and
x1 ∈ W

In this subsection, we give an interpretation to the entries occurring in line “A5” of Table 1.
This allows us to identify two extra classes of hyperplanes (A13 and A14). Recall that every
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hyperplane of Type A5 is of the form Hx ∗HW , where W is a W (2)-quad and x ∈ W (Corollary
5.5(i)).

Proposition 5.8 Let W be a W (2)-quad of E3 and let x1, x2 be points of E3 such that x1 ∈ W .
(i) If x1 = x2, then HW ∗Hx1 ∗Hx2 = HW .
(ii) If x2 ∈ x⊥1 ∩W , then HW ∗Hx1 ∗Hx2 = HW ∗Hx3, where x3 is the unique point of the

line x1x2 different from x1 and x2.
(iii) If x2 ∈ W \ x⊥1 and {x1, x2}⊥⊥ = {x1, x2, x3}, then HW ∗Hx1 ∗Hx2 = Hx3.
(iv) If x2 ∈ x⊥1 \W , then HW ∗Hx1 ∗Hx2 = HW ∗Hx3, where x3 is the unique point on the

line x1x2 different from x1 and x2.
(v) If x2 ∈ Γ1(W ) ∩ Γ3(x1), then HW ∗Hx1 ∗Hx2 is a hyperplane of Type A6.
(vi) If x2 ∈ Γ1(W ) ∩ Γ2(x1) such that 〈x1, x2〉 is a W (2)-quad, then HW ∗ Hx1 ∗ Hx2 is a

hyperplane of Type A7.
(vii) If x2 ∈ Γ1(W ) ∩ Γ2(x1) such that 〈x1, x2〉 is a Q(5, 2)-quad, then HW ∗Hx1 ∗Hx2 is a

hyperplane of Type A9.

Proof. In case (i), HW ∗ Hx1 ∗ Hx2 = HW ∗ (Hx1 ∗ Hx2) = HW ∗ E3 = HW . In cases (ii)
and (iv), HW ∗ Hx1 ∗ Hx2 = HW ∗ (Hx1 ∗ Hx2) = HW ∗ Hx3 . In case (iii), HW ∗ Hx1 ∗ Hx2 =
(Hx1 ∗Hx2 ∗Hx3) ∗Hx1 ∗Hx2 = Hx3 (cf. Proposition 5.4).

Suppose now that x2 ∈ Γ1(W )∩Γ3(x1). Let x′2 denote the unique point of W collinear with
x2, let x′′2 denote the unique third point on the line x2x

′
2 and put {x1, x

′
2}⊥⊥ = {x1, x

′
2, x3}.

Then HW ∗ Hx1 ∗ Hx2 = (Hx1 ∗ Hx3 ∗ Hx′
2
) ∗ Hx1 ∗ Hx2 = Hx3 ∗ Hx′′

2
. This is a hyperplane of

Type A6 since d(x3, x
′′
2) = d(x3, x

′
2) + d(x′2, x

′′
2) = 2 + 1 = 3.

Suppose now that x2 ∈ Γ1(W ) ∩ Γ2(x1) such that 〈x1, x2〉 is a W (2)-quad. Let x′2 denote
the unique point of W collinear with x2, let x3 ∈ Γ2(x1) ∩ Γ1(x′2) ∩W and put {x1, x3}⊥⊥ =
{x1, x3, x4}. Then HW ∗ Hx1 ∗ Hx2 = (Hx1 ∗ Hx3 ∗ Hx4) ∗ Hx1 ∗ Hx2 = (Hx2 ∗ Hx3) ∗ Hx4 .
The two Q(5, 2)-quads through the line x2x

′
2 intersect W in lines and hence coincide with

〈x2, x3〉 and 〈x2, x4〉. It follows that Hx2 ∗ Hx3 = HW ′ , where W ′ is a W (2)-subquadrangle of
〈x2, x3〉 containing the point x′2 ∈ x⊥2 ∩ x⊥3 , but not the lines x′2x2 and x′2x3. Since d(x4,W

′) =
d(x4, x

′
2) = 1, 〈x4, x2〉 ∼= Q(5, 2) and 〈x4, x3〉 ∼= W (2), HW ∗ Hx1 ∗ Hx2 = HW ′ ∗ Hx4 is a

hyperplane of Type A7 by Proposition 5.6 (iv).
Suppose now that x2 ∈ Γ1(W ) ∩ Γ2(x1) such that 〈x1, x2〉 is a Q(5, 2)-quad. Let x′2 denote

the unique point of W collinear with x2, let x3 ∈ Γ2(x1)∩Γ1(x′2)∩W such that 〈x2, x3〉 ∼= Q(5, 2)
and put {x1, x3}⊥⊥ = {x1, x3, x4}. Then HW ∗ Hx1 ∗ Hx2 = (Hx1 ∗ Hx3 ∗ Hx4) ∗ Hx1 ∗ Hx2 =
(Hx2 ∗Hx3) ∗Hx4 = HW ′ ∗Hx4 , where W ′ is a W (2)-subquadrangle of 〈x2, x3〉 containing the
point x′2 ∈ x⊥2 ∩ x⊥3 , but not the lines x′2x2 and x′2x3. Since d(x4,W

′) = d(x4, x
′
2) = 1 and

〈x4, x2〉 ∼= W (2) ∼= 〈x4, x3〉, HW ∗Hx1 ∗Hx2 = HW ′ ∗Hx4 is a hyperplane of Type A9. 2

Now, for every W (2)-quad W and every point x1 ∈ W , there is 1 point coinciding with x1, 6
points in x⊥1 ∩W , 8 points in W \x⊥1 , 24 points in x⊥1 \W , 192 points in Γ1(W )∩Γ3(x1), 48 points
x2 ∈ Γ1(W ) ∩ Γ2(x1) such that 〈x1, x2〉 is a W (2)-quad, 96 points x′2 ∈ Γ1(W ) ∩ Γ2(x1) such
that 〈x1, x

′
2〉 is a Q(5, 2)-quad, 64 points in Γ2(x1) ∩ Γ2(W ) and 128 points in Γ3(x1) ∩ Γ2(W ).
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If x2 ∈ Γ3(x1)∩Γ2(W ) and Q is a Q(5, 2)-quad through x2 (necessarily disjoint from W ), then
the unique point y of Q collinear with x1 belongs to Γ1(x1) ∩ Γ1(W ) ∩ Γ2(x2) and there are
precisely 5 lines through y which are completely contained in Hx1 ∗HW ∗Hx2 . Proposition 5.8,
line “A5” of Table 1 and the line distribution mentioned in Table 3 now allow us to identify
the two extra hyperplane classes.

Definitions. • A hyperplane of E3 is said to be of Type A13 if it is of the form HW ∗Hx1 ∗Hx2 ,
where W is a W (2)-quad, x1 ∈ W and x2 ∈ Γ2(x1) ∩ Γ2(W ).
• A hyperplane of E3 is said to be of Type A14 if it is of the form HW ∗Hx1 ∗Hx2 , where

W is a W (2)-quad, x1 ∈ W and x2 ∈ Γ3(x1) ∩ Γ2(W ).

5.7 The remaining hyperplanes of Type A

We still need to define three extra classes of Type A hyperplanes. In Section 4, we studied the
possible configurations of two distinct W (2)-quads W1 and W2, and determined which kind of
hyperplane HW1 ∗HW2 is. There was however one case which we did not consider. If W1 and
W2 are two W (2)-quads satisfying condition (5) of Proposition 4.1, then by counting we find
that |HW1 ∩HW2 | = 243. Hence, |HW1 ∗HW2| = 567− |HW1 | − |HW2|+ 2 · |HW1 ∩HW2| = 303.
Table 3 now allows us to identify an extra class of hyperplanes.

Definition. • A hyperplane of E3 is said to be of Type A15 if it is of the form HW1 ∗ HW2 ,
where W1 and W2 are two W (2)-quads satisfying W1∩W2 = ∅, W2∩Γ1(W1) is a (3×3)-subgrid
of W2 and W1 ∩ Γ1(W2) is a (3× 3)-subgrid of W1.

In order to define the hyperplanes of Type A16 and A17, we need to define a certain config-
uration of two W (2)-subquadrangles. Let Q and Q′ be two disjoint Q(5, 2)-quads of E3. Let
{G1, G2, G3} be the partition of Q in three (3 × 3)-subgrids such that for every line L of Gi,
i ∈ {1, 2, 3}, the quad 〈L, πQ′(L)〉 is isomorphic to Q(5, 2). Put G′i := πQ′(Gi), i ∈ {1, 2, 3}.
Let W denote a W (2)-subquadrangle of Q through G1, let W ′ be a W (2)-subquadrangle of
Q′ through G′1 such that W ′ 6= πQ′(W ) and let x be an arbitrary point of G1. By count-
ing, we find that |HW ∩ HW ′| = 219. (One can consider all the quads which meet Q and
Q′ in lines. These determine a partition of the points outside Q ∪ Q′ ∪ RQ(Q′).) Hence,
|HW ∗HW ′| = 567− |HW | − |HW ′| + 2 · |HW ∩HW ′ | = 351. Table 3 now allows us to identify
an extra class of hyperplanes.

Definition. • A hyperplane of E3 is said to be of Type A16 if it is of the form HW ∗HW ′ , where
W and W ′ are two W (2)-subquadrangles which are obtained in the way described above. In
Section 6, we will discuss the structure of the hyperplanes of Type A16.

The two Q(5, 2)-quads through x which meet G1 and G′1 in lines are contained in HW ∗HW ′∗Hx.
Line “A16” of Table 1 and the values of DE mentioned in Table 3 now allow us to identify the
last class of Type A hyperplanes.
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Definition. • A hyperplane of E3 is said to be of Type Type A17 if it is of the formHW∗HW ′∗Hx

where W and W ′ are two W (2)-subquadrangles and x is a point obtained in the way described
above.

5.8 The hyperplanes of Type B

The aim of this subsection is to give explicit constructions for the Type B hyperplanes.

Lemma 5.9 Let the near hexagon G3 be isometrically embedded as a hyperplane into the near
hexagon E3. Then every quad of E3 intersects G3 in a quad of G3.

Proof. If Q is a quad of G3, then there exists a unique quad Q in E3 such that Q = Q ∩G3.
The quad Q is the smallest convex subspace of E3 containing Q. The lemma now follows from
the fact that both the near hexagons G3 and E3 contain precisely 693 quads. 2

So, with respect to an isometric embedding of G3 into E3, there are two types of Q(5, 2)-quads
in E3. There are Q(5, 2)-quads which are contained in G3 and there are Q(5, 2)-quads which
intersect G3 in a W (2)-quad of G3. Similarly, there are two types of W (2)-quads in E3. There
are W (2)-quads which are contained in G3 and there are W (2)-quad which intersect G3 in a
grid-quad of G3.

Recall that a hyperplane H of E3 is said to be of Type B1 if it carries the structure of a near
hexagon isomorphic to G3. A line of E3 contained in a Type B1 hyperplane H is said to be a
special line (respectively an ordinary line) of H if it is a special (respectively ordinary) line of
the G3 near hexagon associated with H. (Recall the definitions given in Section 2.) We now
give explicit constructions of the remaining Type B hyperplanes occurring in Table 2.

Definitions. • A hyperplane of E3 is said to be of Type B2 if it is of the form H ∗Hx where
H is a hyperplane of Type B1 and where x is a point of H.
• A hyperplane of E3 is said to be of Type B3 if it is of the form H ∗ Hx where H is a

hyperplane of Type B1 and x is a point not belonging to H.
• A hyperplane of E3 is said to be of Type B4 if it is of the form H ∗ HW where H is a

hyperplane of Type B1 and W is a W (2)-quad contained in H.
• A hyperplane of E3 is said to be of Type B5 if it is of the form H ∗ HW where H is a

hyperplane of Type B1 and W is a W (2)-quad not contained in H.
• A hyperplane of E3 is said to be of Type B6 if it is of the from H ∗HW ∗Hx, where H is

a hyperplane of Type B1, W is a W (2)-quad contained in H and x ∈ W .
• A hyperplane of E3 is said to be of Type B7 if it is of the form H ∗HW ∗Hx, where H is

a hyperplane of Type B1, W is a W (2)-quad contained in H and x ∈ Γ1(W )∩H such that the
unique line through x meeting W is an ordinary line of H.
• A hyperplane of E3 is said to be of Type B8 if it is of the form H ∗HW ∗Hx, where H is

a hyperplane of Type B1, W is a W (2)-quad contained in H and x ∈ Γ2(W ) ∩H.
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• A hyperplane of E3 is said to be of Type B9 if it is of the form H ∗HW ∗Hx, where H is
a hyperplane of Type B1, W is a W (2)-quad not contained in H and x is one of the 9 points
of W ∩H.
• A hyperplane of E3 is said to be of Type B10 if it is of the form H ∗HW ∗Hx, where H is

a hyperplane of Type B1, W is a W (2)-quad not contained in H and x is one of the 6 points
in W \H.

We have verified with the aid of a computer that the hyperplanes of Type Bi (i ∈ {2, . . . , 10})
as defined above agree with those which occur in Tables 2 and 3. It is also possible (with some
effort) to derive this only from the information provided by these tables. Let us do this for
the hyperplanes of Type B6 and B7, since the reasoning will also provide information on the
hyperplanes of the form H ∗ HW ∗ Hx, where H is a Type B1 hyperplane, W a W (2)-quad
contained in H and x ∈ Γ1(W ) ∩H such that xπW (x) is a special line.

Suppose H is a Type B1 hyperplane, W a W (2)-quad contained in H and y a point. Recall
that every Q(5, 2)-quad which meets W intersects W in a line. Assume that we already know
that H ∗HW is a Type B4 hyperplane (as occurring in Tables 2 and 3). By Table 2, H ∗HW ∗Hy

is of Type B6, B7 or B8. If y is one of the 15 points of W , then H ∗ HW ∗ Hy is of type B6,
since the three Q(5, 2)-quads through y contained in H are deep with respect to H ∗HW ∗Hy

(observe the values of DE in Table 3). If y is one of the 90 points of Γ1(W ) ∩H such that the
line yπW (y) is special, then H ∗ HW ∗ Hy is of Type B6, since the two Q(5, 2)-quads through
yπW (y) are deep. So, we have located all 105 = 90 + 15 points y for which H ∗HW ∗Hy is of
Type B6. Now, if y is a point of Γ1(W ) ∩ H for which the line yπW (y) is ordinary, then the
unique Q(5, 2)-quad through yπW (y) contained in H is deep and hence H ∗HW ∗Hy must be
of Type B7 by Table 3.

6 The structure of the hyperplanes of Type A16

Besides the basic hyperplane classes, there is one additional class whose hyperplanes seem to
have a “nice structure”, namely the Type A16 hyperplanes. Indeed, looking at Table 3, we
observe that every point of such a hyperplane H is incident with either 9 or 11 lines which are
contained in H. The aim of this section is to discuss the structure of the hyperplanes of Type
A16 by means of an alternative construction we will give for these hyperplanes.

Let Q1 and Q2 be two disjoint Q(5, 2)-quads of E3 and put Q3 := RQ1(Q2) = RQ2(Q1). Let
V denote the set of all 18 Q(5, 2)-quads of E3 which intersect each of Q1, Q2, Q3 in a line. The
quad Q1 can be partitioned into 3 grids G1, G2 and G3 such that if L is a line of Gi, i ∈ {1, 2, 3},
then 〈L, πQ2(L)〉 ∈ V . Let W denote the set of all 18 lines of the form Q1 ∩ Q where Q ∈ V .
Let S be a regular spread of Q1 such that every line of S is contained inW . Let R1, R2, . . . , R9

be the 9 Q(5, 2)-quads of V such that Ri ∩ Q1 ∈ S for every i ∈ {1, . . . , 9}. Without loss of
generality, we may suppose that (i) R1∩Q1, R2∩Q1, R3∩Q1 are lines of G1; (ii) R4∩Q1, R5∩Q1,
R6 ∩Q1 are lines of G2; (iii) R7 ∩Q1, R8 ∩Q1, R9 ∩Q1 are lines of G3. The set Q1 ∪Q2 ∪Q3
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intersects R1 in a (3× 3)-grid G′1. Let G′2 and G′3 denote the (3× 3)-subgrids of R1 such that
{G′1, G′2, G′3} is a partition of R1 into 3 subgrids. Now, let x denote an arbitrary point of G′2.
Let L1 denote the unique line through x meeting R2 and R3 and let L2 denote the unique line
through x meeting R4. The quad 〈L1, L2〉 intersects each of the quads R1, R2, R3, R4 in a line
since these quads are isomorphic to Q(5, 2). There are two possibilities for the line 〈L1, L2〉∩R1.
Either this line is contained in G′2 or this line meets G′1. Suppose the latter case occurs. Then
without loss of generality, we may suppose that 〈L1, L2〉 meets Q1 (necessarily in a line). Then
πQ1(〈L1, L2〉) is a line. But this is impossible since πQ1(〈L1, L2〉) contains the point πQ1(L1∩R1)
of R1 ∩Q1, the point πQ1(L1 ∩R2) of R2 ∩Q1, the point πQ1(L1 ∩R3) of R3 ∩Q1 and the point
πQ1(L2∩R4) of R4∩Q1. Hence, 〈L1, L2〉 is disjoint from Q1∪Q2∪Q3 and 〈L1, L2〉∩R1 is a line
belonging to G′2. Put Q4 := 〈L1, L2〉. Then πQ1(Q4) contains the lines πQ1(Q4∩R1) = R1∩Q1,
πQ1(Q4 ∩R2) = R2 ∩Q1, πQ1(Q4 ∩R3) = R3 ∩Q1 and πQ1(Q4 ∩R4) = R4 ∩Q1. The smallest
subspace of Q1 containing (R1∩Q1)∪(R2∩Q1)∪(R3∩Q1)∪(R4∩Q1) = G1∪(R4∩Q1) coincides
with Q1. Hence, πQ1(Q4) = Q1 and Q4 is a Q(5, 2)-quad. Since Q4 intersects each of R1, R2, R3,
R4 in a line, it also intersects each of RR4(R1), RR4(R2), RR4(R3), i.e. each of R7, R8, R9, in a
line. In a similar way one shows that Q4 intersects each of R5, R6 in a line. Now, let S ′ denote
the unique regular spread of R1 containing the lines Q1∩R1, Q2∩R1, Q3∩R1, Q4∩R1 and let
Q5, Q6, Q7, Q8, Q9 denote the Q(5, 2)-quads of E3 such that {Qi | 1 ≤ i ≤ 9} are all the 9 Q(5, 2)-
quads of E3 which intersects R1 in a line of S ′. Without loss of generality, we may suppose that
Q5∩R1 ⊆ G′2, Q6∩R1 ⊆ G′2, Q7∩R1 ⊆ G′3, Q8∩R1 ⊆ G′3, Q9∩R ⊆ G′3. Since Q1, Q2, Q3, Q4 are
Q(5, 2)-quads which intersect each quad Ri, i ∈ {1, 2, . . . , 9}, in a line, also RQ1(Q4), RQ2(Q4)
and RQ3(Q4) intersect each quad Ri, i ∈ {1, 2, . . . , 9}, in a line. In other words, Q7, Q8, Q9

intersect each quad Ri, i ∈ {1, 2, . . . , 9} in a line. With a similar reasoning, one shows that
also Q5, Q6 ∈ {RQ1(Q7),RQ1(Q8),RQ1(Q9)} intersect each quad Ri, i ∈ {1, 2, . . . , 9}, in a line.
It is now easily seen that the set X := Q1 ∪ Q2 ∪ · · · ∪ Q9 = R1 ∪ R2 ∪ · · · ∪ R9 carries the
structure of a Q(5, 2)⊗Q(5, 2) near hexagon. Put S∗ := {Qi ∩Rj | 1 ≤ i, j ≤ 9}.

Now, let E3 be isometrically embedded into the dual polar space DH(5, 4). By De Bruyn
and Pralle [17, Section 4.6], there are 3 hyperplanes of DH(5, 4) which contain X and which
arise from the Grassmann-embedding of DH(5, 4). If H is one of these three hyperplanes, then
H satisfies the following properties:
• Through every point x ∈ H \ X, there are 9 lines which are contained in H. These are

precisely the 9 lines through x meeting one of the quads Q1, Q2, . . . , Q9, or equivalently, the 9
lines through x meeting one of the quads R1, R2, . . . , R9.
• If Q is a Q(5, 2)-quad through one of the lines of S∗ such that Q 6∈ {Q1, Q2, . . . , Q9, R1, R2,

. . . , R9}, then Q is singular with respect to H.
• Through every point x ∈ X, there are 13 lines which are contained in H.

It is now clear that the hyperplane H ∩ E3 of E3 satisfies the following properties:
• Through every point x ∈ H \ X, there are 9 lines which are contained in H. These are

precisely the 9 lines through x meeting one of the quads Q1, Q2, . . . , Q9, or equivalently, the 9
lines through x meeting one of the quads R1, R2, . . . , R9.
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• Let Q be a Q(5, 2)-quad of DH(5, 4) through one of the lines of S∗ such that Q 6∈
{Q1, Q2, . . . , Q9, R1, R2, . . . , R9}. Then Q intersects E3 in a W (2)-quad of E3. (Notice that
there are already two Q(5, 2)-quads of the set {Q1, . . . , Q9, R1, . . . , R9} through that line of
S∗.) The W (2)-quad Q ∩ E3 of E3 is singular with respect to the hyperplane H ∩ E3 of E3.
• Through every point x ∈ X, there are 11 lines which are contained in H.

By Table 3, the hyperplane H∩E3 of E3 must be a hyperplane of Type A16. If x is an arbitrary
point of X, then Hx∗(H∩E3) is a hyperplane of Type A17, since the two Q(5, 2)-quads through
x contained in X are deep with respect to Hx ∗ (H ∩E3). (Recall line “A16” of Table 1 and the
values of DE in Table 3.) So, we have located all 243 = |X| points x for which Hx ∗ (H ∩ E3)
is a hyperplane of Type A17.
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