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Abstract

Intriguing and tight sets of vertices of point-line geometries have recently been
studied in the literature. In this paper, we indicate a more general framework for
dealing with these notions. Indeed, we show that some of the results obtained earlier
can be generalized to larger classes of graphs. We also give some connections and
relations with other notions and results from algebraic graph theory. One of the
main tools in our study will be the Bose-Mesner algebra associated with the graph.
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1 Introduction

Suppose Γ = (X,R) is a finite connected regular graph of valency k and diameter d ≥ 2
and that Y ⊆ X is a set of vertices of Γ.

The set Y is said to be intriguing if there exist constants h1 and h2 such that every
vertex y ∈ Y is adjacent to precisely h1 vertices of Y and every vertex z 6∈ Y is adjacent to
precisely h2 vertices of Y . Clearly, ∅ and X are examples of intriguing sets. An intriguing
set is said to be nontrivial if it is a nonempty proper subset of X. The set Y is a nontrivial
intriguing set if and only if {Y,X \ Y } is a so-called regular or equitable partition of Γ.
Intriguing sets are called regular sets in [18].

If k = θ0 > θ1 > · · · > θs are the s+ 1 ≥ 3 distinct eigenvalues of Γ and if N denotes
the total number of ordered pairs of adjacent vertices of Y , then it can be shown (see
Proposition 3.8) that θs · |Y |+ k−θs

|X| · |Y |
2 ≤ N ≤ θ1 · |Y |+ k−θ1

|X| · |Y |
2. If the lower [resp.

upper] bound is attained, then Y is called a tight set of Type I [resp. tight set of Type II ].
A set Y of vertices is called tight if it is either a tight set of Type I or a tight set of Type II.
Clearly, ∅ and X are examples of tight sets. Since θs · |Y |+ k−θs

|X| · |Y |
2 = θ1 · |Y |+ k−θ1

|X| · |Y |
2

if and only if |Y | ∈ {0, |X|}, ∅ and X are the only tight sets of Γ which are both of Type
I and II. A tight set is said to be nontrivial if it is a nonempty proper subset of X.

Suppose C is a set of cliques of Γ such that any two adjacent vertices of Γ are contained
in a unique clique of C. Then the pair (X, C) is also called a point-line geometry. In this
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context, the elements of X are also called points, those of C lines, and Γ is called the
collinearity graph of (X, C).

Intriguing and tight sets of vertices have been studied for (the collinearity graphs of)
certain families of point-line geometries. These point-line geometries include the general-
ized quadrangles [5, 20, 21], the polar spaces [4, 11], certain half-spin geometries [10] and
the partial quadrangles [2]. These papers mainly deal with the construction and classifica-
tion (sometimes with the aid of a computer) of intriguing sets, as well as the derivation of
some of their properties (in the style of Propositions 3.4, 3.7, 3.8 and Corollaries 3.6, 3.12
below). An interesting class of intriguing sets of generalized quadrangles are provided by
the so-called hemisystems of generalized quadrangles of order (s2, s), s odd. Several new
classes of such hemisystems have recently been constructed, see [1, 3, 8, 9].

In this paper, we show that the theory of intriguing and tight sets can be developed
for a rather large class of graphs, namely the regular graphs. Several of the propositions
and corollaries which we will give are more general versions of earlier results. We will also
give some connections and relations with other notions and results from algebraic graph
theory. One of the main tools in our study will be the Bose-Mesner algebra associated
with the graph.

Remark. We would like to warn the reader that the notion “tight set” as it occurs in
[4, 5, 20, 21] is equivalent with the notion “tight set of Type II” as defined above. In
[4, 5] it was shown that every intriguing set of a finite generalized quadrangle, or (more
generally) of any finite nondegenerate polar space, is either a tight set (as defined in [4, 5])
or an m-ovoid (which is just a set of points intersecting each maximal singular subspace
in precisely m points). In [11, Proposition 2.1], it was shown that the notion “m-ovoid”
(of a polar space) is equivalent with the notion “tight set of Type I”. We will see later
(Corollary 3.9) that in any connected strongly regular graph, every intriguing set is indeed
a tight set of Type I or a tight set of Type II.

2 Basic notions regarding graphs

We will now explain some of the terminology regarding graphs which we will use through-
out this paper. All graphs considered in this paper are supposed to be finite.

Suppose Γ = (X,R) be a connected regular graph of valency k and diameter d. The
distance between two vertices x and y of Γ will be denoted by ∂(x, y). If x is a vertex of
Γ and i ∈ N, then Γi(x) denotes the set of vertices at distance i from x. The adjacency
matrix of Γ will be denoted by A. LetM = R[A] (i.e., the set of polynomials in A with real
coefficients) be the Bose-Mesner algebra of Γ. Clearly, every matrix of M is symmetric.
Let θ0, θ1, . . . , θs denote the distinct eigenvalues of Γ, where θ0 > θ1 > · · · > θs. Then
the eigenvalue θ0 is equal to k and has multiplicity 1. Since the matrices I, A, . . . , Ad are
linearly independent elements of R[A], we necessarily have s ≥ d. Let Ei, i ∈ {0, . . . , s},
denote the minimal idempotent corresponding to the eigenvalue θi. Then

• E0 = 1
|X|J ,
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• I = E0 + E1 + · · ·+ Es,

• A = θ0E0 + θ1E1 + · · ·+ θsEs = k
|X|J + θ1E1 + · · ·+ θsEs,

• EiEj = O for any two distinct i, j ∈ {0, . . . , s},

• Eij = 0 for every i ∈ {1, . . . , s},

• M = Span(I, A,A2, . . . As) = Span(E0, E1, . . . , Es).

Here, I, O and J are |X| × |X| matrices which are respectively equal to the identity
matrix, the zero matrix and the matrix with all entries equal to 1. We denote by j ∈ RX

[resp. 0 ∈ RX ] the |X| × 1 matrix with all entries equal to 1 [resp. equal to 0]. For every
set Y of vertices of Γ, we denote by jY ∈ RX the characteristic vector of Y . The number
r(Y ) := |{i | EijY 6= 0}| − 1 is called the dual degree of Y . Since EiEj = O for any
two distinct i, j ∈ {0, . . . , s}, the vectors E0jY , E1jY , . . . , EsjY are mutually orthogonal
and hence the space MjY = Span(E0jY , E1jY , . . . , EsjY ) has dimension r(Y ) + 1. In
was Delsarte who introduced the notion of dual degree for association schemes (see note
right above Theorem 11.1.1 of [6]). The above definition of dual degree is an obvious
generalization to regular graphs.

A connected graph Γ = (X,R) of diameter d ≥ 2 is called distance-regular if there
exist integers ai, bi, ci (i ∈ {0, . . . , d}) such that for any two vertices x and y at distance
i = ∂(x, y) from each other, there are precisely ai neighbors of y in Γi(x), bi neighbors of
y in Γi+1(y) and ci neighbors of y in Γi−1(x). Clearly, a0 = c0 = bd = 0 and c1 = 1. If
Γ is distance-regular, then Γ is regular with valency k = a0 + b0 + c0 = a1 + b1 + c1 =
· · · = ad + bd + cd. Moreover, the total number of distinct eigenvalues of Γ is equal to
s+ 1 = d+ 1.

The distance-regular graphs of diameter 2 are precisely the connected strongly regular
graphs. In this case, we will denote a1 also by λ and c2 by µ and we will say that the
distance-regular graph Γ is strongly regular with parameters (v, k, λ, µ). Here, v denotes
the total number of vertices of Γ and (as usual) k denotes the valency of Γ. These
parameters must satisfy the condition µ(v − 1 − k) = k(k − λ − 1). The connected
strongly regular graph Γ has three distinct eigenvalues θ0 = k, θ1 ≥ 0 and θ2 < −1, where
θ1 and θ2 are the roots of the following quadratic polynomial

X2 + (µ− λ)X + (µ− k).

Hence,

θ1 + θ2 = λ− µ, (1)

θ1 · θ2 = µ− k. (2)

The connected strongly regular graphs are precisely the connected regular graphs having
precisely three distinct eigenvalues.

More information on (strongly) regular graphs and distance-regular graphs can be
found in the books [6], [13] and [14].
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3 Intriguing and tight sets

Definition. Let Γ = (X,R) be a connected graph of diameter d. A code in Γ is a
nonempty subset Y of X. The distance between a vertex x ∈ X to Y is defined as
∂(x, Y ) := min{∂(x, y) | y ∈ Y } and the number t(Y ) := max{∂(x, Y ) |x ∈ X} is called
the covering radius of Y . Y is called completely regular if there exist constants Bij,
i ∈ {0, . . . , t(Y )} and j ∈ {0, . . . , d}, such that |Γj(x) ∩ Y | = Bij for every j ∈ {0, . . . , d}
and every vertex x at distance i from Y . More information on completely regular codes
can be found in [6, Section 11.1], [12], [13, Section 11.7] and [19].

The following is a special case of a known result, see e.g. [13, Theorem 7.1].

Proposition 3.1 Let Γ = (X,R) be a distance regular graph of diameter d ≥ 2. Then
the nontrivial intriguing sets of Γ are precisely the completely regular codes of covering
radius 1.

We will meet completely regular codes again in Section 4 and in the remarks following
Corollary 3.9. The examples given in Section 4 show that the conclusion of Proposition
3.1 is not valid for arbitrary regular graphs.

Proposition 3.2 Let Γ = (X,R) be a connected regular graph of diameter d ≥ 2 and
valency k. Let Y be a nonempty set of vertices of Γ and put Z = X \ Y . Then
Span(jY , jZ) ⊆ MjY with equality if and only if Y is an intriguing set of vertices of
Γ.

Proof. Since I and J = |X| · E0 belong to M, the vectors jY = IjY and |Y | · j = JjY
belong to MjY . Hence, also the vector jZ = j − jY belongs to MjY , proving that
Span(jY , jZ) ⊆MjY .

Suppose now that Span(jY , jZ) = MjY . Then since AjY belongs to MjY , there
exists real numbers h1 and h2 such that AjY = h1 · jY + h2 · jZ . This implies that every
vertex of Y is adjacent to precisely h1 vertices of Y and that every vertex of Z is adjacent
to precisely h2 vertices of Y . So, Y is an intriguing set of vertices of Γ.

Conversely, suppose that Y is an intriguing set of vertices of Γ. Then there exist
constants h1 and h2 such that every vertex of Y is adjacent to precisely h1 vertices of Y and
that every vertex of Z is adjacent to precisely h2 vertices of Y . This implies that AjY =
h1 ·jY +h2 ·jZ and AjZ = A(j−jY ) = k ·j−h1 ·jY −h2 ·jZ = (k−h1) ·jY +(k−h2) ·jZ .
Hence, MjY ⊆ Span(jY , jZ). As a consequence, Span(jY , jZ) =MjY . �

Proposition 3.3 Let Γ = (X,R) be a connected regular graph of diameter d ≥ 2 and
valency k and let Y be a nonempty proper subset of X. Then Y is intriguing if and only
if r(Y ) = 1.

Proof. Let Z = X \ Y . By Proposition 3.2, Span(jY , jZ) ⊆ MjY with equality if and
only if Y is intriguing. So, the dimension r(Y ) + 1 of MjY is equal to 2 if and only if
Span(jY , jZ) =MjY , i.e. if and only if Y is intriguing. �
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Definition. Let Γ = (X,R) be a connected regular graph, let θ0 > θ1 > · · · > θs denote
the distinct eigenvalues of Γ and let E0, E1, . . . , Es denote the corresponding minimal
idempotents. An intriguing set of vertices of Γ is said to be of index i ∈ {1, . . . , s} if
EjjY = 0 for every j ∈ {1, . . . , s} \ {i}. The sets ∅ and X are intriguing sets of index
i for every i ∈ {1, . . . , s}. By Proposition 3.3, the index of a nontrivial intriguing set is
uniquely determined.

Proposition 3.4 Let Γ = (X,R) be a connected regular graph of diameter d ≥ 2 with
s+ 1 eigenvalues. Let Y1 and Y2 be two intriguing sets of vertices of Γ of the same index
i ∈ {1, . . . , s}.

(i) If Y1 ⊆ Y2, then Z = Y2 \ Y1 is an intriguing set of index i.
(ii) If Y1 ∩ Y2 = ∅, then Z = Y1 ∪ Y2 is an intriguing set of index i.

Proof. We have jZ = jY2
− jY1

(case (i)) or jZ = jY2
+ jY1

(case (ii)). In any case, the
fact that EjjY1

= EjjY2
= 0 for every j ∈ {1, . . . , s}\{i} implies that EjjZ = 0 for every

j ∈ {1, . . . , s} \ {i}. So, Z is an intriguing set of index i. �

Proposition 3.5 Let Γ = (X,R) be a connected regular graph of diameter d ≥ 2, let
θ0 > θ1 > · · · > θs denote the distinct eigenvalues of Γ and let E0, E1, . . . , Es denote the
corresponding idempotents. Suppose Y and Z are sets of vertices of Γ such that EijY = 0

or EijZ = 0 for every i ∈ {1, . . . , s}. Then |Y ∩ Z| = |Y |·|Z|
|X| .

Proof. Since I = E0 + E1 + · · ·+ Es and E0 = 1
|X|J , we have

|Y ∩ Z| = jTY · jZ = jTY (E0 + E1 + · · ·+ Es)jZ =
1

|X|
jTY JjZ =

|Y | · |Z|
|X|

.

�

The following is an immediate corollary of Proposition 3.5.

Corollary 3.6 Let Γ = (X,R) be a connected regular graph of diameter d ≥ 2 having
s+ 1 distinct eigenvalues. Let i1, i2 ∈ {1, . . . , s} with i1 6= i2. If Y1 is an intriguing set of

index i1 and Y2 is an intriguing set of index i2, then |Y1 ∩ Y2| = |Y1|·|Y2|
|X| .

Proposition 3.7 Let Γ = (X,R) be a connected regular graph of diameter d ≥ 2 and
valency k. Let k = θ0 > θ1 > · · · > θs be the distinct eigenvalues of Γ. Let Y be a subset
of X and let N be the total number of ordered pairs of adjacent vertices of Y . If Y is an
intriguing set of index i ∈ {1, . . . , s}, then N = θi · |Y |+ k−θi

|X| · |Y |
2. Moreover, every vertex

of Y is adjacent to precisely θi + k−θi

|X| · |Y | vertices of Y and every vertex not contained

in Y is adjacent to precisely k−θi

|X| · |Y | vertices of Y .

Proof. We may suppose that ∅ 6= Y 6= X. Then EijY 6= 0 and EjjY = 0 for every
j ∈ {1, . . . , s} \ {i}. Put Z := X \ Y . By Proposition 3.2, EijY = h′ · jY + h · j for some
real numbers h′ and h. Since 0 6= EijY = E2

i jY = h′ · EijY + h · Eij = h′ · EijY , we
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necessarily have h′ = 1. Now, since Y is an intriguing set AjY = h1 · jY + h2 · jZ , where
h1 and h2 are integers such that every vertex of Y is adjacent to precisely h1 vertices
of Y and every vertex of Z is adjacent to precisely h2 vertices of Y . Standard counting
yields |Y | · (k − h1) = (|X| − |Y |) · h2. Since A = k

|X|J + θ1E1 + · · · + θsEs, we have

(h1 − h2) · jY + h2j = AjY = k·|Y |
|X| j + θi · EijY = k·|Y |

|X| j + θi · jY + θih · j. We find

that h1 − h2 = θi. Together with |Y | · (k − h1) = (|X| − |Y |) · h2, this implies that
h1 = θi + k−θi

|X| · |Y |, h2 = k−θi

|X| · |Y | and N = θi · |Y |+ k−θi

|X| · |Y |
2. �

Definition. Let λ1 ≥ λ2 ≥ · · · ≥ λn and µ1 ≥ µ2 ≥ · · · ≥ µm be two sequences of real
numbers, with n > m. The second sequence is said to interlace the first one whenever
λi ≥ µi ≥ λn−m+i for every i ∈ {1, . . . ,m}. The interlacing is called tight if there exists
an integer k ∈ {0, . . . ,m} such that λi = µi for every i ∈ {1, . . . , k} and λn−m+i = µi for
every i ∈ {k + 1, . . . ,m}.

The following result follows from [16, Theorem 3.5]. For reasons of completeness, we give
a sketch of the proof.

Proposition 3.8 Let Γ = (X,R) be a connected regular graph of diameter d ≥ 2 and
valency k. Let k = θ0 > θ1 > · · · > θs be the distinct eigenvalues of Γ. Let Y be a subset
of X and let N be the total number of ordered pairs of adjacent vertices of Y . Then

θs · |Y |+
k − θs
|X|

· |Y |2 ≤ N ≤ θ1 · |Y |+
k − θ1

|X|
· |Y |2.

Moreover, if equality holds in one of the inequalities above, then Y is intriguing.

Proof. We may assume that ∅ 6= Y 6= X. For subsets S and T of X, let e(S, T ) =
|{(s, t) | {s, t} ∈ R, s ∈ S, t ∈ T}|. Then N = e(Y, Y ). Put X0 := Y , X1 := X \ Y and
α := N

|Y | . Let A be the adjacency matrix of Γ and let B be the following 2 × 2 matrix:

B =

[
1
|X0|e(X0, X0)

1
|X0|e(X0, X1)

1
|X1|e(X1, X0)

1
|X1|e(X1, X1)

]
=

[
α k − α

|Y |(k−α)
|X|−|Y | k − |Y |(k−α)

|X|−|Y |

]
.

Since k is an eigenvalue of B, the other eigenvalue λ is

λ = tr(B)− k = α− |Y |(k − α)

|X| − |Y |
.

By [6, Corollary 3.3.3] or [15, Theorem 1.2.3], the eigenvalues of B interlace those of A.
So, we have

θs ≤ α− |Y |(k − α)

|X| − |Y |
≤ θ1.

Therefore

θs · |Y |+
k − θs
|X|

· |Y |2 ≤ N ≤ θ1 · |Y |+
k − θ1

|X|
· |Y |2
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as desired.
Moreover, if equality holds in one of the inequalities, then the interlacing is tight and

{Y, Z} is a regular partition of Γ by [6, Corollary 3.3.3] or [15, Theorem 1.2.3]. So, in this
case Y is an intriguing set of vertices of Γ. �

We recall that if the lower [resp. upper] bound in Proposition 3.8 is attained then Y is
called a tight set of Type I [resp. tight set of Type II].

Examples. We will now give two special cases of Proposition 3.8. As before, let Γ =
(X,R) be a connected regular graph of diameter d ≥ 2 and valency k. Let k = θ0 > θ1 >
· · · > θs be the distinct eigenvalues of Γ. Let Y be a subset of X.

(1) If the induced subgraph on Y is regular with valency α, then by Proposition 3.8,

(α− θ1) · |X|k−θ1 ≤ |Y | ≤ (α− θs) · |X|k−θs
(notice that N = α · |Y |). If the upper [resp. lower]

bound is attained, then Y is a tight set of Type I [resp. Type II].
(2) If Y is a coclique of a connected graph Γ of valency k, then the lower bound in

Proposition 3.8 implies that |Y | ≤ (1 + k
−θs

)−1 · |X|. (Alternatively, one can put α = 0
in the upper bound mentioned in (1).) This bound is known as the Hoffman’s coclique
bound, see [6, Propositions 1.3.2 and 3.7.2].

In the following corollary we collect some properties of tight sets which immediately follow
from earlier results.

Corollary 3.9 Let Γ = (X,R) be a connected regular graph of diameter d ≥ 2 having
precisely s+ 1 eigenvalues. Then the following hold:

(i) A set of vertices of Γ is a tight set of Type I if and only if it is an intriguing set of
index s.

(ii) A set of vertices of Γ is a tight set of Type II if and only if it is an intriguing set
of index 1.

(iii) Suppose Γ is a strongly regular graph. Then a set of vertices of Γ is tight if and
only if it is intriguing.

(iv) If Y1 is a tight set of Type I and Y2 is a tight set of Type II, then |Y1∩Y2| = |Y1|·|Y2|
|X| .

Proof. Claims (i) and (ii) are corollaries of Propositions 3.7 and 3.8. Claim (iii) is a
corollary of Claims (i) and (ii) and the fact that every connected strongly regular graph
has precisely 3 distinct eigenvalues. Claim (iv) follows from Corollary 3.6 and Claims (i)
and (ii). �

Remarks. (1) The result mentioned in Corollary 3.9(iii) also follows from [18, Proposition
2]. The conclusion of Corollary 3.9(iii) may not be valid for connected regular graphs
which are not strongly regular (i.e. for connected regular graphs with more than three
eigenvalues), see Section 4.

(2) For the Johnson graph J(v, d) and the Hamming graph H(d, q), all completely
regular codes of strength zero, i.e., all regular codes Y for which E1jY 6= 0, are classified
in [7, 17]. In particular all tight sets of Type II are classified.
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(3) In [23], Tanaka classified completely regular codes of strength zero with extra
conditions in various classical distance-regular graphs.

Definition. Let Γ = (X,R) be a distance-regular graph of diameter d ≥ 2. Let k = θ0 >
θ1 > · · · > θd denote the d+ 1 distinct eigenvalues of Γ and let E0, E1, . . . , Ed denote the
corresponding idempotents. Let T be a subset of {1, 2, . . . , d}. A T-design of Γ is defined
to be a subset Y of X such that EijY = 0 for all i ∈ T . An anti-T -design of Γ is a subset
Z of X such that EijZ = 0 for all j ∈ {1, 2, . . . , d} \ T . The notion of T -design and
anti-T -design is due to Delsarte [12].

The following is an immediate corollary of Proposition 3.5.

Corollary 3.10 Let Γ = (X,R) be a distance-regular graph of diameter d ≥ 2, let T be a
subset of {1, 2, . . . , d}, let Y be a T -design of Γ and let Z be an anti-T -design of Γ. Then

|Y ∩ Z| = |Y |·|Z|
|X| .

Proposition 3.11 Let Γ = (X,R) be a distance-regular graph of diameter d ≥ 2, let
k = θ0 > θ1 > · · · > θd denote the d + 1 distinct eigenvalues of Γ and let E0, E1, . . . , Ed
denote the corresponding idempotents. Let T be a subset of {1, 2, . . . , d}, let Y be a set of
vertices of Γ and let F be a nonempty family of T -designs of Γ satisfying the following
properties:

(i) all elements of F have the same number of vertices;

(ii) there exist constants αi, i ∈ {0, 1, . . . , d}, such that if x and y are two vertices of Γ
at distance i from each other, then αi = |{Z ∈ F | {x, y} ⊂ Z}|;

(iii) for every i ∈ T ′ := {1, . . . , d} \ T , there exists some Z ∈ F such that EijZ 6= 0.

Then the following are equivalent:

(a) Y is an anti-T -design;

(b) every element of F intersects Y in a constant number of vertices.

Proof. That (a) implies (b) follows directly from Corollary 3.10. We will now also prove
that (b) implies (a). So, suppose that every element of F intersects Y in a constant
number of vertices, say m. For every i ∈ {0, 1, . . . , d}, let Ai denote the |X| × |X| matrix
whose rows and columns are indexed by X defined by

(Ai)x,y =

{
1 if ∂(x, y) = i,
0 otherwise.

Then A0 = I and A1 = A. It is well-known that M = Span(I, A,A2, . . . , Ad) =
Span(E0, E1, . . . , Ed) = Span(A0, A1, . . . , Ad).
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Let H be an |X| × |F| matrix whose rows are indexed by X and columns are indexed
by F defined by

Hx,Z =

{
1 if x ∈ Z,
0 otherwise.

Then
M := HHT = α0A0 + α1A1 + · · ·+ αdAd.

Since Span(E0, E1, . . . , Ed) = Span(A0, A1, . . . , Ad), there exist real numbers β0, β1, . . . , βd
such that

M = HHT = β0E0 + β1E1 + · · ·+ βdEd.

Suppose j ∈ T . Then for every Z ∈ F , EjjZ = 0. So, EjH = O since the Z-th
column of H is jZ . Since βjEj = EjM = EjHH

T = O, we have βj = 0.
Suppose j ∈ T ′. Then there is some Z ∈ F such that EjjZ 6= 0. Hence, EjH 6= O

and EjMEj = (EjH)(EjH)T 6= O. So, EjM = βjEj 6= O and βj 6= 0.
Since every element of F intersects Y in precisely m vertices, we have

β0E0jY +
∑
j∈T ′

βjEjjY = MjY = HHTjY = α0 ·mj.

Recall that E0jY = |Y |
|X|j and βj 6= 0 for every j ∈ T ′. The fact that the column matrices

EjjY , j ∈ T ′∪{0}, are mutually orthogonal then implies that EjjY = 0 for every j ∈ T ′.
So, Y is an anti-T -design, proving that (b) also implies (a). �

Remark. We continue with the notation introduced in the statement of Proposition
3.11. Suppose G is a group of automorphisms of Γ such that for any vertices x1, y1, x2, y2

satisfying ∂(x1, y1) = ∂(x2, y2), there exists an element of G mapping {x1, y1} to {x2, y2}.
(Such a group exists if Γ is distance-transitive.) Suppose also that Z∗ is a T -design such
that EijZ∗ 6= 0 for every i ∈ T ′. If F denotes the orbit of Z∗ under the action of the
group G, then the conditions (i), (ii) and (iii) of Proposition 3.11 are satisfied. So, in
this case, the anti-T -designs of Γ can be characterized as those sets of vertices of Γ which
intersect each element of F in a constant number of vertices.

The following is the special case d = 2 of Proposition 3.11.

Corollary 3.12 Let Γ = (X,R) be a connected strongly regular graph. Put {A,B} =
{I, II}. Let Y be a set of vertices of Γ and let F be a nonempty family of nontrivial tight
sets of Type A of Γ satisfying the following properties:

(i) all elements of F have the same number of vertices;

(ii) there exist constants αi, i ∈ {0, 1, 2}, such that if x and y are two vertices of Γ at
distance i from each other, then αi = |{Z ∈ F | {x, y} ⊂ Z}|.

Then the following are equivalent:

(a) Y is a tight set of Type B;
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(b) every element of F intersects Y in a constant number of vertices.

Unlike in many of the other results of this section, we suppose in Corollary 3.12 that
the regular graph is strongly regular. In Appendix A, we will prove that if a connected
regular graph Γ of diameter 2 has a nonempty family F of nontrivial intriguing sets of
a given index satisfying conditions (i) and (ii) of Corollary 3.12, then Γ necessarily is a
strongly regular graph.

Corollary 3.12 is especially interesting in the case the strongly regular graph Γ has
some natural family of nontrivial tight sets of Type A which satisfies the conditions (i)
and (ii) of the corollary. In this case, Corollary 3.12 provides a natural characterization
for tight sets of Type B of Γ. Strongly regular graphs which have such a natural family
of tight sets (of a certain type) include the polar spaces and the half dual polar graphs of
diameter 2, see [10] and [11]. In fact, these papers already contain a proof of Corollary
3.12 for these particular graphs. The methods of proof used in these papers are different
from the ones we used above, but they work as well for arbitrary connected strongly
regular graphs. In Appendix B we will use these methods to give a combinatorial proof
for Corollary 3.12.

We conclude this section by giving a result, taken from [11, Corollary 1.4], which
can be proved by means of Corollary 3.12. This result is stated in terms of quadrics
and Hermitian varieties of projective spaces, but with each of these sets of points there
naturally corresponds a polar space. Proposition 3.13 characterizes tight sets of these polar
spaces in terms of their intersections with certain hyperplanes of the projective spaces
(namely those hyperplanes whose intersection with the quadric or Hermitian variety is of
a certain type). Observe here also that the notions “ovoidal set” and “tight set” which
occur in the statement of Corollary 1.4 of [11] are respectively equivalent with the notions
“tight sets of Type I” and “tight sets of Type II” of the present paper (see [11, Proposition
2.1]).

Proposition 3.13 ([11]) (1) A set of points of a nonsingular quadric Q(2r, q) of Witt
index r ≥ 2 of the projective space PG(2r, q) is a tight set of Type II if and only if it
intersects every Q−(2r − 1, q) ⊆ Q(2r, q) in a constant number of points.

(2) A set of points of a nonsingular quadric Q(2r, q) of Witt index r ≥ 2 of the
projective space PG(2r, q) is a tight set of Type I if and only if it intersects every Q+(2r−
1, q) ⊆ Q(2r, q) in a constant number of points.

(3) A set of points of a nonsingular quadric Q+(2r − 1, q) of Witt index r ≥ 2 of the
projective space PG(2r − 1, q) is a tight set of Type II if and only if it intersects every
Q(2r − 2, q) ⊆ Q+(2r − 1, q) in a constant number of points.

(4) A set of points of a nonsingular quadric Q−(2r + 1, q) of Witt index r ≥ 2 of the
projective space PG(2r + 1, q) is a tight set of Type I if and only if it intersects every
Q(2r, q) ⊆ Q−(2r + 1, q) in a constant number of points.

(5) A set of points of a nonsingular Hermitian variety H(2r−1, q) of Witt index r ≥ 2
of the projective space PG(2r − 1, q) is a tight set of Type II if and only if it intersects
every H(2r − 2, q) ⊆ H(2r − 1, q) in a constant number of points.
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(6) A set of points of a nonsingular Hermitian variety H(2r, q) of Witt index r ≥ 2
of the projective space PG(2r, q) is a tight set of Type I if and only if it intersects every
H(2r − 1, q) ⊆ H(2r, q) in a constant number of points.

4 Some examples of intriguing sets in small graphs

As mentioned before, the references [2], [4], [5], [10], [20] and [21] contain plenty of ex-
amples of nontrivial intriguing sets of vertices. The graphs considered in these papers
are all strongly regular. So, each of these intriguing sets is also tight (Corollary 3.9(iii))
and a completely regular code (Proposition 3.1). The aim of this section is to give some
examples of intriguing sets in connected regular graphs which are not strongly regular.
These examples show that not all intriguing sets are tight and that not all of them are
completely regular codes. We consider a particular class of graphs, namely the regular
graphs of valency 3 on 8 vertices.

By Read and Wilson [22, p. 127], there are 5 isomorphism classes of connected regular
graphs of valency 3 on 8 vertices. For each such graph Γ = (X,R), we give up to
isomorphism all nontrivial intriguing sets of vertices. These sets are easily determined
with the aid of a computer or even by hand. For each intriguing set Y , we also mention
whether Y is a tight set and whether Y is a completely regular code. As usual we denote
by 3 = θ0 > θ1 > · · · > θs the distinct eigenvalues of Γ. If Y is an intriguing set of vertices
of index i ∈ {1, . . . , s} of Γ, then by Proposition 3.7, θi = h1 − h2 where h1 and h2 are
constants such that every vertex of Y is adjacent to precisely h1 vertices of Y and every
vertex outside Y is adjacent to precisely h2 vertices of Y .

(I) Suppose Γ = (X,R) is the cube whose vertices are labeled in the following way.

u7

u1

u
5

u3
u

6

u4

u8

u2

�
�
�

�
�
�@

@
@

@
@
@

The eigenvalues of Γ are θ0 = 3, θ1 = 1, θ2 = −1 and θ3 = −3. Up to isomorphism, the
cube Γ has the following nontrivial intriguing sets of vertices. Notice that by Proposition
3.1 all these intriguing sets are also completely regular codes.

Intriguing set h1 h2 index tight compl. reg. code

Y1 = {1, 6} 0 1 2 NO YES
Y2 = {1, 4, 5, 8} 0 3 3 Type I YES
Y3 = {1, 2, 5, 6} 1 2 2 NO YES
Y4 = {1, 2, 3, 4} 2 1 1 Type II YES

Y5 = X \ Y1 = {2, 3, 4, 5, 7, 8} 2 3 2 NO YES
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(II) Let Γ = (X,R) be the following regular graph of valency 3.

u7

u1
u4 u

5

u2
u6

u8

u3

�
�
�

�
�
�@

@
@

@
@
@

The eigenvalues of Γ are θ0 = 3, θ1 =
√

3, θ2 = 1, θ3 = −1 +
√

2, θ4 = −1, θ5 = −
√

3
and θ6 = −1 −

√
2. Up to isomorphism, Γ has the following nontrivial intriguing sets of

vertices.

Intriguing set h1 h2 index tight compl. reg. code

Y1 = {1, 6} 0 1 4 NO YES
Y2 = {1, 3, 4, 6} 1 2 4 NO YES

Y3 = X \ Y2 = {2, 5, 7, 8} 1 2 4 NO YES
Y4 = X \ Y1 = {2, 3, 4, 5, 7, 8} 2 3 4 NO NO∗

(∗) Notice that Γ3(2)∩ Y4 = ∅ and Γ3(3)∩ Y4 = {4}. So, the complement of a completely
regular code is not necessarily completely regular.

(III) Let Γ = (X,R) be the following regular graph of valency 3.

u1 u2
u3 u4 u5 u6

u
7

u
8

�
�
�

�
�
�

�
�
�

�
�
�

A
A
A

A
A
A

A
A
A

A
A
A

The eigenvalues of Γ are θ0 = 3, θ1 =
√

5, θ2 = 1, θ3 = −1 and θ4 = −
√

5. Up to
isomorphism, Γ has the following nontrivial intriguing sets of vertices.

Intriguing set h1 h2 index tight compl. reg. code

Y1 = {1, 8} 0 1 3 NO YES
Y2 = {3, 5} 0 1 3 NO NO∗

Y3 = {1, 2, 7, 8} 1 2 3 NO YES
Y4 = {1, 3, 5, 8} 1 2 3 NO NO∗

Y5 = X \ Y3 = {3, 4, 5, 6} 1 2 3 NO YES
Y6 = X \ Y1 = {2, 3, 4, 5, 6, 7} 2 3 3 NO NO∗

Y7 = X \ Y2 = {1, 2, 4, 6, 7, 8} 2 3 3 NO YES

(∗) Notice that Γ3(1) ∩ Y2 = ∅, Γ3(4) ∩ Y2 = {5}, Γ3(2) ∩ Y4 = ∅, Γ3(4) ∩ Y4 = {5},
Γ3(2) ∩ Y6 = {7} and Γ3(3) ∩ Y6 = {5, 6}.

(IV) Let Γ = (X,R) be the following regular graph of valency 3.

12
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The eigenvalues of Γ are θ0 = 3, θ1 = 1, θ2 = −1 +
√

2, θ3 = −1 and θ4 = −1−
√

2. Up
to isomorphism, Γ has the following nontrivial intriguing sets of vertices.

Intriguing set h1 h2 index tight compl. reg. code

Y1 = {1, 3, 7, 8} 1 2 3 NO YES
Y2 = {1, 2, 3, 5} 2 1 1 Type II YES

(V) Let Γ = (X,R) be the following regular graph of valency 3.
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The eigenvalues of Γ are θ0 = 3, θ1 = −1
2

+ 1
2

√
17, θ2 = −1

2
+ 1

2

√
5, θ3 = 0, θ4 = −1

2
− 1

2

√
5

and θ5 = −1
2
− 1

2

√
17. There are no nontrivial intriguing sets.

A Regular graphs of diameter 2 with a nice family

of intriguing sets

We continue with the notations introduced in Section 2.

Lemma A.1 Let Γ = (X,R) be a connected regular graph of diameter d ≥ 2. Let E,E ′

be two nonzero mutually orthogonal idempotents in M. If the adjacency matrix A can
be written as a linear combination of E,E ′ and the identity matrix I, then Γ is strongly
regular.

Proof. Let E ′′ = I − E − E ′. Then E,E ′, E ′′ are mutually orthogonal idempotents
in M. By assumption there exist c, c′, c′′ ∈ R such that A = cE + c′E ′ + c′′E ′′. Since
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A` = c`E+c′`E ′+c′′`E ′′, every power of A can be written as a linear combination of these
idempotents and hence M = R[A] = Span(E,E ′, E ′′). Since

3 ≤ d+ 1 ≤ s+ 1 = dimM = dim Span(E,E ′, E ′′) ≤ 3,

Γ has precisely s+ 1 = 3 distinct eigenvalues. The lemma then follows from the fact that
every connected regular graph with three distinct eigenvalues is strongly regular (see e.g.
[14, Lemma 10.2.1]). �

Proposition A.2 Let Γ = (X,R) be a connected regular graph of diameter 2 and let
θ0 > θ1 > · · · > θs denote the s+ 1 distinct eigenvalues of Γ. Let F be a nonempty family
of nontrivial intriguing sets of fixed index j of Γ satisfying the following properties:

(i) all elements of F have the same number of vertices;

(ii) there exist constants αi, i ∈ {0, 1, 2}, such that if x and y are two vertices of Γ at
distance i from each other, then αi = |{Z ∈ F | {x, y} ⊂ Z}|.

Then Γ is strongly regular.

Proof. We recycle some of the arguments of the proof of Proposition 3.11.
For every i ∈ {0, 1, 2}, let Ai denote the |X| × |X| matrix whose rows and columns

are indexed by X defined by

(Ai)x,y =

{
1 if ∂(x, y) = i,
0 otherwise.

Let M = R[A] be the Bose-Mesner algebra of Γ and let E0, E1, . . . , Es be the primitive
idempotents of M corresponding to the eigenvalues θ0, θ1, . . . , θs. Recall that E0 = 1

|X|J .
Clearly, A0 = I, A1 = A and A2 = J − I − A are all elements of M.

Let H be an |X| × |F| matrix whose rows are indexed by X and columns are indexed
by F defined by

Hx,Z =

{
1 if x ∈ Z,
0 otherwise.

Then
M = HHT = α0A0 + α1A1 + α2A2 ∈M.

Hence there exist real numbers β0, β1, . . . , βs such that

M = HHT = β0E0 + β1E1 + · · ·+ βsEs.

Suppose i ∈ {1, 2, . . . s} \ {j}. Then for every Z ∈ F , EijZ = 0. So, EiH = O since
the Z-th column of H is jZ . Since βiEi = EiM = EiHH

T = O, we have βi = 0.
Moreover since every Z ∈ F is a nontrivial intriguing set of index j, EjjZ 6= 0 and

EjH 6= O. Note that since EjH is a real matrix, EjH 6= O implies O 6= EjHH
TET

j and
hence βjEj = EjM 6= O. Therefore βj 6= 0 and

M = α0I + α1A+ α2(J − I − A) = β0
1

|X|
J + βjEj.
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Hence Ej ∈ Span(I, A, J). Since Ej 6∈ Span(I, J),

A ∈ Span(I, Ej, J) = Span(E0, Ej, I).

Since E0, Ej are nonzero mutually orthogonal idempotents, Γ is strongly regular by
Lemma A.1. �

B A combinatorial proof for Corollary 3.12

The aim of this appendix is to give a combinatorial proof for Corollary 3.12. We continue
with the notation introduced in the statement of that corollary. Suppose Γ is a connected
strongly regular graph with parameters (v, k, λ, µ) and distinct eigenvalues k = θ0 > θ1 >
θ2.

Put (h, h′) = (2, 1) if (A = I and B = II) and (h, h′) = (1, 2) if (A = II and B = I).
Let N1 denote the total number of ordered pairs of adjacent vertices of Y .

Suppose that every element of F contains precisely δ vertices and put N ′1 := δ
(
θh +

k−θh

v
δ
)

. Then for every Z ∈ F , the total number of ordered pairs of adjacent vertices of

Z is equal to N ′1 (recall Proposition 3.8). Also, put N ′2 := δ(δ − 1) − N ′1 = δ(δ − 1) −
δ
(
θh + k−θh

v
δ
)

. Then for every Z ∈ F , the total number of ordered pairs of nonadjacent

vertices of Z is equal to N ′2. An obvious counting argument yields

α0 = |F| · δ
v
, α1 = |F| · N

′
1

v · k
, α2 = |F| · N ′2

v(v − k − 1)
.

For every Z ∈ F , put kZ := |Y ∩ Z|. Summing over all Z ∈ F , we obtain∑
1 = |F|,∑
kZ = |Y | · α0,∑

kZ(kZ − 1) = N1 · α1 +
(
|Y | · (|Y | − 1)−N1

)
· α2,∑

kZ(kZ − 1) = N1(α1 − α2) + |Y |2 · α2 − |Y | · α2,∑
k2
Z = N1(α1 − α2) + |Y |2 · α2 + |Y | · (α0 − α2).

From the Cauchy-Schwartz inequality (
∑

1) · (
∑
k2
Z) ≥ (

∑
kZ)2, we find

N1 · (α1 · |F| − α2 · |F|) + |Y |2 · (α2 · |F| − α2
0) + |Y | · (α0 · |F| − α2 · |F|) ≥ 0. (3)

One calculates that

α1 · |F| − α2 · |F| =
|F|2

vk(v − k − 1)

(
N ′1(v − k − 1)−N ′2k

)
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=
|F|2

vk(v − k − 1)

(
N ′1(v − 1)− (N ′1 +N ′2)k

)
=

|F|2 · δ
vk(v − k − 1)

(
θh(v − 1) +

(v − 1)(k − θh)
v

δ − (δ − 1)k
)

=
|F|2 · δ(v − δ)
v2k(v − k − 1)

(
θh(v − 1) + k

)
.

In a similar way, one shows that

α2 · |F| − α2
0 =

|F|2

v2(v − k − 1)
(vN ′2 − (v − k − 1)δ2)

= −|F|
2 · δ(v − δ)

v2(v − k − 1)
(1 + θh),

and that

α0 · |F| − α2 · |F| =
|F|2

v(v − k − 1)

(
δ(v − k − 1)−N ′2

)
=
|F|2 · δ(v − δ)
v2(v − k − 1)

(v − k + θh).

Consider now the two expressions

N1 · (α1 · |F| − α2 · |F|) + |Y |2 · (α2 · |F| − α2
0) + |Y | · (α0 · |F| − α2 · |F|), (4)

N1 −
k − θh′
v
|Y |2 − |Y | · θh′ . (5)

In each of these expressions, there are nonzero coefficients accompanying at least one of
N1, |Y |2, |Y |. In the latter expression, the coefficient of N1 is equal to 1. Suppose that in
the former expression α2 · |F| − α2

0 = α0 · |F| − α2 · |F| = 0. Then since δ 6= 0 6= v − δ,
1 + θh = 0 = v − k + θh, implying that v = k + 1, which is impossible.

We now show that any of the expressions (4), (5) is a multiple of the other. In order
to achieve this goal, we must show that 3 determinants are equal to 0. The determinant∣∣∣∣ θh(v − 1) + k −k(1 + θh)

v θh′ − k

∣∣∣∣
is equal to θhθh′(v−1)+kθh′−k(v−1)θh−k2+vk+vkθh = θhθh′(v−1)+k(θh+θh′)−k2+vk,
the determinant ∣∣∣∣ θh(v − 1) + k k(v − k + θh)

1 −θh′

∣∣∣∣
is equal to −θhθh′(v − 1)− kθh′ − k(v − k)− kθh = −θhθh′(v − 1)− k(θh + θh′)− kv + k2

and the determinant ∣∣∣∣ −(1 + θh) v − k + θh
θh′ − k −vθh′

∣∣∣∣
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is equal to vθh′+vθhθh′−(v−k)θ′h+k(v−k)−θhθh′+kθh = (v−1)θhθh′+k(θh+θh′)+kv−k2.
By equations (1) and (2), (v − 1)θhθh′ + k(θh + θh′) + kv − k2 = (v − 1)(µ − k) + k(λ −
µ)− k2 + vk = µ(v − 1− k)− k(k − λ− 1) = 0. So, each of these three determinants is
indeed equal to 0.

Now, every element of F intersects Y in a constant number of vertices (i.e. kZ is constant)
if and only if the inequality (3) is an equality. By the above calculations, we know that
this happens if and only if the expression (5) is equal to 0. But expression (5) is equal to
0 if and only if Y is a tight set of Type B (recall Proposition 3.8). �
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