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Abstract  

The aim of the present study was to investigate whether error detection and subsequent 

regulatory processes could be influenced by pre-familiarisation with task-relevant stimulus 

features. To this end, nineteen healthy adults performed a speeded Go/NoGo task with 

compound targets, involving two concurrent stimulus attributes, which were either pre-

familiarised or not, while high-density EEG was recorded. During the speeded Go/NoGo task, 

response errors clearly elicited an error-related negativity (ERN) and error positivity (Pe), but 

these error-related components were not modulated by familiarisation. By comparison, post-error 

adaptive processes were found to depend on familiarisation, as distinct topographic ERP effects 

were evidenced for familiarised vs. non-familiarised stimuli. Moreover, post-error slowing was 

abolished in the condition comprising familiarised attributes. These results suggest that pre-

familiarisation with a stimulus property leaves unaffected error detection mechanisms, while 

altering subsequent adaptive processes. Whereas error detection mechanisms may be generic, the 

automatic adaptive processes consecutive to error detection may be malleable, and influenced by 

pre-familiarisation of stimulus features. 
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1. Introduction 

The concept of cognitive control relates to our ability to monitor actions, such as errors, and to 

judge how (in)appropriate these are depending on contextual demands or personal goals. Upon 

detection of such an event, an increase in control enables us to adapt to the changing demands of 

the environment, and thus to regulate our behaviour. Error processing in particular has often been 

used to study cognitive control brain mechanisms and two distinct components have been 

described to be involved in error processing: an evaluative component, comprising the detection 

of an unexpected outcome and a regulative component involved in exerting top-down attentional 

control (Botvinick, Braver, Barch, Carter, & Cohen, 2001), whereby on detection of an error, the 

evaluative system swiftly signals the control system to heighten control as required.  

Event-related potential (ERP) studies have provided insight into the processes involved in 

the commission of errors and cognitive control (Falkenstein, Hoormann, Christ, & Hohnsbein, 

2000). In the response-locked averaged ERP, a fronto-central negativity emerges at a latency of 

about 0-100 ms when an error is committed that has been described as the error-related 

negativity (ERN; Gehring, Goss, Coles, Meyer, & Donchin, 1993) or error negativity (Ne; 

Falkenstein, Hohnsbein, Hoormanan, & Blanke, 1991). This component is followed by a more 

posterior positive deflection with a latency of around 150-600 ms following errors, the error 

positivity (Pe). The ERN primarily indexes an early (cognitive) mismatch process between the 

intended or desired and actual response (Coles, Scheffers, & Holroyd, 2001; Falkenstein et al., 

1991; Nieuwenhuis, Ridderinkhof, Blom, Band, & Kok, 2001). Alternative theoretical accounts 

suggested that the ERN reflects either mechanisms of reinforcement learning implicating 

dopaminergic midbrain structures (Holroyd & Coles, 2002; Nieuwenhuis, Holroyd, Mol, & 

Coles, 2004) or conflict monitoring processes (Carter et al., 1998; van Veen, Cohen, Botvinick, 
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Stenger, & Carter, 2001; Yeung, Botvinick, & Cohen, 2004). Hence, the ERN might reflect the 

early detection of a mismatch between motor representations, remaining unavailable to conscious 

awareness. By contrast, the Pe component may reflect a more elaborate (perhaps conscious) 

stage of error detection, such as previously suggested (Nieuwenhuis et al., 2001; Ridderinkhof, 

Ramautar, & Wijnen, 2009). Therefore, these components appear to reflect qualitatively different 

stages of evaluative error processing.  

 The dorsal Anterior Cingulate Cortex (dACC) has been identified as the main neural 

generator of the ERN (Debener et al., 2005; Dehaene, Posner, & Tucker, 1994; Miltner et al., 

2003; van Veen & Carter, 2002). This structure receives dopamine input from the basal ganglia 

that have an evaluative function and assist in action selection by allocating attention to 

behaviourally salient events (Redgrave, Gurney, & Reynolds, 2008). According to the 

reinforcement learning theory (Holroyd & Coles, 2002), the basal ganglia generate predictions 

for success or failure of an action. A response error typically leads to a phasic decrease of the 

mesencephalic dopamine signal that is readily transmitted to the dorsal ACC, which in turn 

elicits the ERN. Since the ERN may be generated in the absence of error awareness 

(Nieuwenhuis et al., 2001), early error detection brain mechanisms may not be all that sensitive 

to the magnitude or severity of response errors. These early action monitoring systems would 

primarily detect the presence of a mismatch between the actual and desired motor outcome, 

without coding the amount of perceived discrepancy between the two. Yet, this system may 

demonstrate some flexibility, as the ERN amplitude has been shown to be sensitive to the speed-

accuracy trade-off, with larger amplitudes occurring when accuracy is emphasised over speed 

(Falkenstein et al., 2000; Gehring et al., 1993). ERN amplitude was also found to be modulated 

by the saliency of errors, i.e. larger for more salient errors (Hajcak, Moser, Yeung, & Simons, 
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2005), and error magnitude, in that it was larger for more severe errors (Bernstein, Scheffers, & 

Coles, 1995). 

Behavioural adaptation after errors has typically been observed in the form of a 

systematic slowing of response latencies for correct trials immediately following an error 

(Rabbitt, 1966). However, there is some disagreement as to the mechanism causing post-error 

slowing. Some researchers have taken post-error slowing to reflect enhanced cognitive control, 

allowing for increased accuracy on the trial immediately following an error as a result of an 

augmented response threshold (Botvinick et al., 2001; Brewer & Smith, 1984). Jentzsch and 

Dudschig (2009) postulated that post-error adaptation depends on the amount of time available 

for behavioural adjustments before the next trial. When the response-stimulus interval (RSI) is 

short, little time is available for central processing, causing a bottleneck and consequently post-

error slowing, whereas when there is enough time to adjust behaviour before the next trial, post-

error adaptation is more effective and responses are slow because they are more controlled. 

Many researchers observed that post-error slowing was unrelated to ERN amplitude (Hajcak, 

McDonald, & Simons, 2003; Luu, Flaisch, & Tucker, 2000; Nieuwenhuis et al., 2001), although 

some did find a relationship between ERN and post-error slowing, with larger ERN amplitudes 

coinciding with longer post-error response times (Debener et al., 2005; Gehring et al., 1993). 

However, contrary to expectation, greater slowing is not always accompanied by greater post-

error accuracy (Hajcak & Simons, 2008; Hajcak, et al., 2003). An alternative account was 

proposed by Notebaert and colleagues (2009). In a recent study, they manipulated error 

frequency and studied the effect on post-error slowing. Response slowing was found not only 

following errors when they were infrequent, but also following correct trials when these were the 

infrequent stimulus. They concluded that post-error slowing was the result of an orienting 
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response to infrequent events (Barcelo, Escera, Corral, & Perianez, 2006; Bernstein, 1969; 

Sokolov, 1963).  

Few ERP studies have delved into the neural processing associated with regulatory 

functions subsequent to errors. However, recently Hikosaka and Isoda (2010) discussed two 

mechanisms by which individuals are able to rapidly switch their behaviour to adapt to a new 

context, namely proactive and retroactive behavioural switching. Proactive switching, controlled 

by the pre-supplementary motor area, refers to the exertion of top-down control to prevent errors. 

Conversely, retroactive switching is a reactive automatic form of switching that is mediated by 

the ACC. Building on this framework, Ullsperger and King (2010) suggested that the proactive-

retroactive framework would not only apply to switching of behaviour but to all adjustments in 

cognitive control. However, the electrophysiological correlates of the regulative processes upon 

commission of an error, such as post-error slowing, have not been studied in great detail. Still 

little is known about the ERP correlates of behavioural adaptation following errors, in 

comparison to a wealth of studies that have already shed light on brain systems implicated in 

early error detection mechanisms (ERN and Pe components).   

In this study, we were interested in the potential for modulation in evaluative and 

regulatory error processing systems. To address the question whether error detection and 

adaptation mechanisms after errors are equally flexible or not, we designed a simple experiment 

wherein we familiarised participants with a stimulus attribute in order to test how this factor 

could in turn modulate the size and expression of these error evaluation and regulation 

mechanisms. Familiarisation has previously been found to modulate top-down or executive 

control processes, suggesting that these monitoring systems may be differentially engaged or 

activated depending on the familiarity or relevance of the stimuli. For example, topographical 
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modulation of P3 has been found after familiarisation with a working memory task (Segalowitz, 

Wintink, & Cudmore, 2001). Similarly, cognitive control mechanisms engaged during the 

monitoring of response errors (and/or subsequent adaptation/slowing down) may also be flexible, 

and differentially influenced by how familiar or relevant the stimulus is, although this prediction 

has not been tested yet. To this end, we used a modified version of a speeded Go/NoGo task 

(Vocat, Pourtois, & Vuilleumier, 2008). In the present study, participants were pre-familiarised 

with either colour information or face information. In effect, a single stimulus feature was 

artificially made more important, hence potentially giving this stimulus feature a greater 

advantage for selection (Jagadeesh, Chelazzi, Mishkin, & Desimone, 2001). This process of 

familiarisation is automatic and does not require conscious effort (Davidson & Glisky, 2002). 

Subsequently, the participants performed two Go/NoGo tasks in which compound target stimuli 

(coloured faces) were presented encompassing both stimulus features (colour and emotional 

expression) simultaneously. In the colour Go/NoGo participants detected a predefined colour and 

in the face Go/NoGo they detected a certain facial expression. On a task as simple as a Go/NoGo 

task, participants generally commit very few response errors (i.e. false alarms on NoGo trials). 

Therefore, to ensure that errors would occur frequently, time pressure was introduced by means 

of a response deadline procedure enabling the collection of many response errors within a short 

period of time, without disrupting basic error monitoring functions and cognitive control (see 

Vocat et al., 2008). 

We tested whether the evaluative component of action monitoring, as reflected by the 

ERN and Pe components, would be modulated by stimulus familiarisation, or whether they 

would be stable, in line with a generic function of the ERN (Barch et al., 2001; Braver, Barch, 

Gray, Molfese, & Snyder, 2001; Miltner, Braun, & Coles, 1997). Moreover, we examined 
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whether we could detect a modulation of post-error adjustments in behaviour and in neural 

processing as a function of the familiarisation procedure.  

 

2. Materials and methods 

 

2.1 Participants 

 

Nineteen healthy right-handed university students (15 women) with a mean age of 21.9 (SD = 

2.08) participated in the experiment, for which they were required to give written informed 

consent. All reported normal or corrected-to-normal vision and none had a history of brain-

related illness. The study was approved by the local ethics committee. 

 

2.2 Design and stimuli  

 

We primarily sought to have compound stimuli, providing information concurrently on two 

orthogonal (lower-level) “categorical” dimensions, namely face expression and colour, for which 

there was no overtraining. This allowed us to use the exact same visual stimuli during our 

Go/NoGo task, with the visual processing of one of the two attributes/dimensions being reliably 

familiarised, while the other was not (counterbalanced across participants). Results of pilot 

testing enabled us to establish that facial expression and colour provided two distinct relevant 

visual attributes that could easily be merged and combined to create compound stimuli. 

Moreover, it was also important to have two dimensions being relatively orthogonal to one 

another, such that enhancing familiarisation with the processing of one attribute did not 
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immediately interfere with the visual processing of the other dimension. Only one of these two 

dimensions (either colour or emotional facial expression, counterbalanced across participants) 

was made more familiar to participants by the means of dedicated familiarisation blocks. These 

compound stimuli were then used during a Go/NoGo task. This task involved the inhibition of a 

prepotent response tendency toward either the pre-familiarised or non-familiarised stimulus 

dimension, enabling us to compare cognitive control effects for these two conditions.   

Familiarisation procedure. Preceding each Go/NoGo block of 100 trials, the familiarisation task, 

consisting of 20 trials, was always presented. The group was divided in two, so that half of the 

participants were administered four blocks of the colour-choice and the other half four blocks of 

the face-choice task. Each trial consisted of two stimuli presented in the left and right visual 

field. The trials were presented, counterbalancing the position of the target (left or right). As 

mentioned above, colours and facial expressions (by Ekman & Friesen, 1976) were employed as 

these could be easily contrasted (blue-turquoise and neutral-fearful). The participants were 

instructed to respond to the target (blue/fearful) stimulus with the left hand when it appeared on 

the left-hand side and with the right hand when it appeared to the right. After a delay of 500 ms, 

correct responses were followed by a green patch in the centre of the screen (positive feedback) 

and incorrect responses by a red patch (negative feedback), presented for 1000 ms. The interval 

from feedback offset to cue onset was set at 1000 ms.  

Speeded Go/NoGo task. Two versions of this task, a colour and a face task, were designed. A 

trial sequence of the colour task consisted of a centrally presented black and white face in an 

oval frame presented for a duration of 500 ms followed immediately by a blue face on 60% of 

the trials (Go) and a turquoise face on 40% of the trials (NoGo) for a duration of 1000 ms or until 

a response was given. Participants were required to respond as quickly and accurately as possible 
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to the target stimulus by pressing the spacebar with their right hand. Presentation of fearful and 

neutral expressions was balanced across conditions. Correspondingly, a trial sequence of the face 

task began with a centrally presented coloured blue or turquoise oval patch presented for 500 ms, 

followed by a fearful face on 60% of the trials (Go) and a neutral face on 40% of the trials for 

1000 ms or until a response was given. Blue or turquoise faces were presented evenly across 

conditions. Fearful and neutral expressions from six identities from the Ekman and Friesen series 

(3 men and 3 women) were used. These stimuli were cropped from the hairline. This 

experimental procedure ensured that imperative Go stimuli (as well as NoGo stimuli) were 

actually identical between the two versions of the task.    

 Time pressure was implemented by means of a response deadline. Feedback on task 

performance was presented on a trial-by-trial basis and consisted of a negative feedback (a small 

red patch) following correct but slow Go responses, as well as incorrect NoGo responses, 

whereas a positive feedback (a small green patch) was presented following correct Go responses 

falling within the time limit and correct inhibitions. For each participant, this limit was initially 

set to 300 ms on the very first trial and was subsequently adjusted and updated (higher or lower) 

for each trial using an algorithm that averaged the present reaction time (RT) with the block 

average RT to determine the threshold for the next trial. This procedure has been utilised 

extensively in previous studies (Aarts & Pourtois, in press; Koban, Pourtois, Vocat, & 

Vuilleumier, 2010; Vocat et al., 2008; Pourtois et al., 2010). If the current RT was slower than 

the current limit, the participant received negative feedback in the form of a red patch. If the RT 

was faster than the current limit, the participant received positive feedback (green patch). This 

procedure ensured that many false alarms could be obtained on NoGo trials despite fluctuations 

in speed on a trial-by-trial basis, because this arbitrary cut-off for correct responses was updated 
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and adjusted online after each trial, and it inevitably encouraged participants to be fast. Feedback 

stimuli appeared with a delay of 500 ms after the response and were presented centrally for a 

duration of 500 ms followed by a pause of 1000 ms before the next trial started. 

 Four blocks of the Go/NoGo task were administered – two colour blocks and two face 

blocks which were alternated – counterbalancing the order of colour and face blocks across 

participants.  

Errors on the Go/NoGo tasks were defined as incorrect responses (false alarms). Fast hits 

were hits (i.e. correct responses on go trials) that fell within the arbitrary (and updated) time limit 

on a particular trial. In this case participants received positive feedback. Slow hits were also 

correct responses on go trials, but that were slower than the arbitrary time limit for a particular 

trial. In this case, participants received negative feedback.  

Ratings. After each block, participants were asked to rate, on an 11-point Likert scale, the 

avoidability of errors (1 = highly avoidable to 11 = highly unavoidable), task difficulty (1 = very 

easy to 11 = very difficult), and how annoying they found each block (1 = not at all annoying to 

11 = very annoying).  

 Mean RTs of the familiarisation were submitted to repeated measures analyses of 

variance (ANOVA) with the within-subjects factor “block” (with four levels). Mean RTs for hits 

(fast and slow) and errors on the Go/NoGo task were submitted to repeated measures ANOVAs 

with the within-subjects factors “Familiarisation” (with two levels: familiarised vs. non-

familiarised) and “Accuracy” (with two levels: correct vs. incorrect). Accuracy on the Go/NoGo 

task and subjective rating scores of the familiarised and non-familiarised condition were 

submitted to pairwise comparisons, using Student paired t-tests. 
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2.3 ERP recording 

 

Continuous EEG was acquired at 512 Hz through a 128-channel Biosemi ActiveTwo system 

(Biosemi, Amsterdam, Netherlands) referenced to the CMS-DRL ground (which functions as a 

feedback loop driving the average potential across the montage as close as possible to the 

amplifier zero). Data were recalculated offline against the average reference. Vertical EOG was 

recorded from infraorbital and supraorbital electrodes placed in line with the pupil of the left eye. 

Horizontal EOG was not recorded as all stimuli were centrally presented. 

 Response-locked averages (ERP waveforms) were calculated by following a standard 

sequence of data transformations applied to the raw EEG data (Picton et al., 2000). First, a -200 

to 500 ms window from response onset was segmented. Subsequently, a baseline correction was 

performed using the pre-response interval of 200 ms and the Gratton and colleagues algorithm 

(Gratton, Coles, & Donchin, 1983) was used to correct vertical eye movements. For each 

participant, an amplitude threshold for artefact rejection was chosen that allowed 1/3 of the 

segments to be rejected and 2/3 to be kept. This method takes into account individual differences 

in amplitude and ensures that a similar number of trials are used across participants to compute 

the individual average waveforms, despite these amplitude variations. Epochs with an amplitude 

above or below this individually determined threshold were considered artefacts and were 

therefore rejected (M = -76.1/+76.1 mV, SD = 6.83). Bad or excessively noisy channels were 

interpolated using spherical splines. Individual epochs were averaged, and a 30 Hz low-pass 

filter was applied. We also computed ERP waveforms using a 0.5 Hz high pass digital filter 

applied to the raw EEG data, as well as waveforms without applying a 30 Hz low-pass digital 

filter. In both cases, very similar waveforms (amplitude, latency and morphology of the ERP 
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components) were obtained, ruling out the possibility that the filter settings used (i.e. 30 Hz low-

pass filter applied to the segmented data) created any substantial distortion or temporal drift in 

the ERP data. 

 

2.4 Mean amplitudes 

 

Following standard practice, the ERN was defined as a conspicuous fronto-central negativity 

(electrodes FCz and Cz) peaking early (0-60 ms) following response onset. The Pe was first 

described to be maximal at centro-parietal sites (Falkenstein et al., 1991). Yet, here the Pe was 

found to have a more central scalp distribution (electrode Cz) and was defined as the positive 

component (150-270 ms post-response onset) immediately following the ERN. Mean amplitudes 

of the CRN/ERN and Pe for hits and errors were submitted to repeated measures analyses of 

variance (ANOVAs) with the within-subjects factors “Familiarisation” (with two levels: 

familiarised vs. non-familiarised) and “Accuracy” (with two levels: correct vs. incorrect).  

 

2.5 Topographic analyses 

 

In order to capture more global ERP differences between familiarised and non-familiarised 

stimuli during the detection of errors and subsequent adaptation, a detailed topographic mapping 

analysis of the ERP data was next performed (Michel, Seeck, & Lantis, 1999; Michel et al., 

2001; Murray, Brunet, & Michel, 2008; Pourtois, 2010; Pourtois, Dan, Grandjean, Sander, 

Vuilleumier, 2005; Pourtois, Delplanque, Michel, Vuilleumier, 2008; Pourtois, Thut, Peralta, 

Michel, Vuilleumier, 2005). To precisely characterise topographic modulations over time and 



14 
 

conditions, we used a spatial cluster analysis. This pattern analysis efficiently summarises ERP 

data by a limited number of field configurations, previously referred to as functional microstates 

(Lehmann & Skrandies, 1980; Michel et al., 1999). These methods have been detailed elsewhere 

(Murray et al., 2008; Pourtois et al., 2008) and we provide only the essentials here. The rationale 

of the microstate segmentation is to isolate periods of temporal stability (and by extension 

changes) in the manner that the global electric field is distributed over the scalp surface and over 

time points, by using a formal statistical approach applied to the whole topography information 

rather than to values from single electrodes. This stems from the fact that different map 

topographies reflect different configurations of electric sources in the brain, that is, different 

neural networks. The spatio-temporal segmentation algorithm is derived from a k-mean spatial 

cluster analysis (Pascual-Marqui, Michel, & Lehmann, 1995) and identifies the most dominant 

scalp topographies appearing in the group-averaged ERPs of each condition and over time.  

The optimal number of topographic maps explaining the whole data set is determined 

objectively by cross validation. Finally, to statistically assess the validity of the hypothesis that 

emerges from the clustering algorithm, a back-fitting is performed. The template maps that were 

identified by the clustering algorithm applied to the group-averaged ERPs are fitted back to the 

individual participant ERP data to provide estimates of their representation across time and 

conditions. This back-fitting is performed by calculating the spatial correlation between single-

participant ERPs and template maps. 

Here, we performed two distinct topographic pattern analyses. (i) First, we analysed 

response-locked ERPs and compared error processing for familiarised and non-familiarised 

stimuli. (ii) Next, we analysed post-error correct hits, and again compared the processing of 

familiarised and non-familiarised stimuli. For each analysis, the topographic segmentation was 
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applied on group-averaged data from -100 ms until 500 ms after response onset. Map duration 

was entered in repeated-measures analyses of variance (ANOVA) with two within-subject 

factors, familiarisation (familiarised vs. non-familiarised) and map configuration (i.e. the 

dominant electric field distributions previously identified by the spatial cluster analysis). These 

analyses were carried out using CARTOOL software (Version 3.34; developed by D. Brunet, 

Functional Brain Mapping Laboratory, Geneva, Switzerland). 

 

2.6 Source localisation 

 

Finally, to estimate the likely neural sources underlying the electrical field configurations 

identified by the previous analyses, we used a specific distributed linear inverse solution, namely 

standardised low-resolution brain electromagnetic tomography (sLORETA, Pascual-Marqui, 

2002). sLORETA is based on the neurophysiological assumption of coherent coactivation of 

neighbouring cortical areas (known to have highly synchronised activity, see Silva, Amitai, & 

Connors, 1991) and, accordingly, it computes the “smoothest” of all possible activity 

distributions (i.e. no a priori assumption is made on the number and locations of the sources). 

Mathematical validation of this distributed source localisation technique has been recently 

demonstrated (Sekihara, Sahani, & Nagarajan, 2005). sLORETA solutions are computed within 

a three-shell spherical head model co-registered to the MNI152 template (Mazziotta et al., 2001). 

The source locations were therefore given as (x, y, z) coordinates (x from left to right; y from 

posterior to anterior; z from inferior to superior). sLORETA estimates the 3-dimensional 

intracerebral current density distribution in 6239 voxels (5 mm resolution). 
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3. Results 

 

3.1 Behavioural results and subjective ratings 

 

For calculation of mean RTs, trials for which RTs fell below or above 3 SDs from each 

participant’s mean were considered invalid and were thus removed. These trials were also 

rejected from the ERP analyses. Accuracy on the familiarisation was high with participants 

reaching a mean accuracy of 95.2% (SD = 0.05). Mean RTs from block 1 to block 4 were: 719 

ms (SD = 336), 521 ms (SD = 182), 481 ms (SD = 153), and 475 ms (SD = 163). For RT, a main 

effect was found for block (F(3,16) = 25.53, p < .001), consistent with an improved performance 

as a function of time. This result suggests that the familiarisation procedure was efficient to 

induce learning, and presumably to strengthen the mental representation of the pre-selected 

stimulus feature.  

 Analysis of the subjective ratings indicated that familiarisation had no effect on how 

annoying the task was perceived to be (t(18) = -0.9, p = ns). Mean ratings were 8.74 (SD = 1.96) 

in the familiarised condition and 9.13 (SD = 1.76) in the non-familiarised condition. However, 

errors were judged to be reliably less avoidable in the non-familiarised condition (M = 9.21, SD 

= 1.56) than in the familiarised condition (M = 8.32, SD = 1.59; t(18) = -2.36, p = .03), 

confirming a differential influence of familiarisation on the processing of the pre-familiarised vs. 

non-familiarised stimuli during the Go/NoGo task. In addition, there was a marginally significant 

effect of familiarisation on ratings of task difficulty (t(18) = 2.06, p = .054), with the pre-

familiarised condition (M = 4.97, SD = 2.8) being judged as slightly more difficult compared to 

the non-familiarised condition (M = 4.29, SD = 2.77).  
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Mean accuracy and mean hit and error RTs for the familiarised and non-familiarised 

condition during the Go/NoGo task are presented in Table 1. No difference between conditions 

was found for mean accuracy (t(18) = 0.13, p = ns) with the mean number of false alarms being 

26 in both the familiarised and the non-familiarised condition, and number of misses being 

marginal (familiarised: 1.68 misses and non-familiarised: 3.16 misses). For RT, a significant 

interaction was found between familiarisation and accuracy (F(1,18) = 6.54, p = .02), indicating 

that error RT was shorter for pre-familiarised stimuli compared to unfamiliar stimuli (t(18) = -

3.46, p = .003), whereas there was no significant RT difference for hits in the two conditions 

(t(18) = -1.0, p = ns). These results suggest that participants committed more impulsive response 

errors with the pre-familiarised, relative to the non-familiarised stimulus attribute. This effect 

underscores the differential impact of the pre-familiarised vs. non-familiarised stimulus feature 

during the Go/NoGo task.  

We also found that the magnitude of the post-error slowing effect, defined as the 

difference between RT on correct after correct trials (RTcc) and RT on correct after error trials 

(RTec), did not differ between the two conditions, since there was no interaction between 

familiarisation and accuracy (F(1,18) = 2.2, p = ns). However, a possible confound may have 

arisen in this analysis, due to the mixed feedback on correct trials prior to hits, as in the RTcc 

condition the feedback could be either positive (for fast hits) or negative (for slow hits). So, to 

obtain a better comparison with RTec, for the RTcc condition fast hits were omitted from the 

analysis in order to control for feedback after hits and therefore hits could be preceded by only 

negative feedback, as was also the case for post-error hits. This analysis yielded a significant 

interaction between familiarisation and accuracy (F(1,18) = 6.59, p = .019), the post-error 

slowing effect being significant for the non-familiarised condition (t(18) = -3.68, p = .002), but 
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not for the familiarised condition (t(18) = -0.30, p = ns). Mean familiarised RTcc was 325 ms (SD 

= 45) and RTec was 322 ms (SD = 68). Mean non-familiarised  RTcc was 311 ms (SD = 38) and 

RTec was 336 ms (SD = 44). In other words, we found that the post-error slowing adaptation 

effect was reliably blunted in the condition with pre-familiarised stimulus features, further 

confirming a differential impact of the familiarisation procedure on the regulative component of 

action monitoring. Fig. 1 depicts the post-error slowing effect separately for the familiarised and 

the non-familiarised condition as computed in this latter analysis. 

 

[Insert Figure 1 and Table 1] 

 

3.2 ERP results 

Errors elicited conspicuous ERN and Pe components, relative to correct hits. However, the 

familiarisation did not change the amplitude of these error-related ERP components, as verified 

by standard peak analyses. Fig. 2 shows the response-locked ERPs separately for the familiarised 

and non-familiarised condition at electrodes FCz (2a and b) and Cz (2c and d). Mean ERN 

amplitude was larger for errors, relative to correct hits, for electrode Cz (F(1,18) = 10.7, p = 

.005), but not for FCz (F(1,18) = 2.96, p = ns). This effect of accuracy was not modulated by 

familiarisation, either for electrode FCz (F(1,18) = 0.02, p = ns) or Cz (F(1,18) = 0.19, p = ns). 

These results suggest that the early detection of response errors (ERN) was immune to the 

relative familiarity of these response errors. Similar to the ERN, the amplitude of the Pe 

component was not influenced by the familiarisation procedure (electrode Cz: F(1,18) = 1.69, p 

= ns), although, as expected, this positive component had a much larger amplitude for errors 

compared to hits (electrode Cz: F(1,18) = 23.37, p < .001).  
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Given the blunted post-error slowing effect seen with the pre-familiarised stimulus 

attribute, an additional analysis was performed to investigate whether there was any significant 

effect of familiarisation on the correct-related negativity (CRN) (Coles et al., 2001; Vidal, 

Hasbroucq, Grapperon, & Bonnet, 2000) recorded for correct hits immediately following errors. 

Fig. 3a depicts the response-locked grand average ERPs for post-error hits and post-slow hits at 

electrode FCz. Similarly to the analysis of the post-error RT data (see here above), post-error hits 

were therefore compared to post-slow hits (separately in the familiarised and non-familiarised 

condition), ensuring that the immediately preceding feedback was balanced in these two 

conditions. Included are the topographic maps of the CRN in the 0 - 60 ms interval (Fig. 3b), 

showing that the CRN in the familiarised and non-familiarised condition shared a similar 

topography. We found that the amplitude of the CRN for hits following errors was smaller for 

the familiarised attribute, compared to the non-familiarised attribute, although this effect did not 

reach statistical significance (FCz; t(18) = 1.9, p = .075; Cz: t(18) = 1.2, p = ns). Fig. 3a also 

suggests some difference between the two post-error hits conditions, but at a later time interval 

following the CRN time-course (i.e. an additional negativity following the CRN in the interval 

from approximately 110 to 170 ms, demarcated in Fig. 3a by vertical bars, was seen only for the 

familiarised attribute). However, for these two pre-selected electrode positions, the difference 

between the conditions was not significant in this interval on correct trials after errors (FCz: t(18) 

= -1.03, p = ns; Cz: t(18) = -1.21, p = ns). Yet, the topographical maps (i.e. the spatial 

configuration of the electric field, as computed when taking all 128 channels into account) for 

the familiarised and non-familiarised condition corresponding to this interval turned out to be 

different, as displayed in Fig. 3c. A frontal negativity, somewhat lateralised to the right, and a 

central positivity could be distinguished in the map for the familiarised condition. For the non-
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familiarised condition, again a central positivity could be observed, yet the frontal negativity was 

somewhat left-lateralised. To verify the presence of a significant change in the distribution of the 

electric field across conditions, we therefore used a topographic mapping technique to better 

characterise any reliable electrophysiological differences between these two conditions for ERPs 

time-locked to the onset of the response, and corresponding here to the immediate post-error 

processing. The second goal of this alternative data analysis was to verify whether the 

topography of early-error related ERP components (ERN and Pe, as measured at a few electrode 

positions) were actually not altered as a function of the familiarisation procedure, a question that 

could not be fully resolved using only the classical peak analyses reported here above. Using 

these alternative topographic analyses, we aimed to test whether familiarisation, rather than 

merely changing local amplitude at a few electrode positions, might also disrupt the electric field 

configuration of ERPs generated during the processing of errors, as well as the 

adaptation/corrective processes following their occurrences (post-error slowing).  

 

[Insert Figures 2 and 3] 

 

3.3 Topographic results 

 

We first performed a topographic analysis on the response-locked ERPs corresponding to errors 

and hits separately for the familiarised and non-familiarised condition, using a broad temporal 

window encompassing both the ERN and Pe component (from -100 until 500 ms after response 

onset). A solution with 10 maps was found to explain 98.7% of the variance. However, this 

analysis did not reveal any reliable topographic differences between familiarised and non-
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familiarised attributes (ERN: t(18) = -1.43, p = ns; CRN: t(18) = 0.69, p = ns; Pe: t(18) = 0.98, p 

= ns). Thus, the ERN, CRN, and Pe components all had the same scalp distribution for these two 

conditions, further corroborating the results of the mean amplitude analyses described above.  

We then performed a similar topographic analysis, but on the response-locked ERPs 

corresponding to hits immediately following errors. This analysis again encompassed the 

prominent ERP deflections found following response onset (from -100 until 500 ms post-

response onset). A solution with 10 maps was found to explain 97.3% of the variance. 

Interestingly, we found that familiarisation actually affected the sequence of dominant scalp 

maps. During the 110-170 ms time interval following response onset, the topographic analysis 

disclosed a significant change of the electric field configuration as a function of familiarisation. 

The dominant map during this interval in the familiarised condition showed a qualitatively 

different distribution of the electric field compared to the dominant map found during the same 

time interval in the non-familiarised condition (Fig. 3c). These two maps were then fitted back to 

the individual data. The result of this analysis is shown in Fig. 4, depicting the duration of these 

two maps in the familiarised and non-familiarised condition. A significant map x familiarisation 

interaction was found (F(1,18) = 6.35, p = .021), indicating that in each condition a different 

topographic map was predominant. This was confirmed by directly testing the difference 

between the conditions for the duration of the dominant map. The dominant map in the 

familiarised condition had a significantly longer duration in this condition (t(18) = 2.52, p = 

.021), whereas the dominant map in the non-familiarised condition was significantly longer 

lasting in the non-familiarised condition (t(18) = -2.52, p = .021). These results suggest that 

familiarising participants with a stimulus attribute had a reliable influence on the expression of 

regulatory brain processes at stake early on following response onset. Because this topographic 
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change necessarily denotes a change in the underlying configuration of intracranial generators, 

we next used sLORETA to corroborate this assumption and gain insight into the putative neural 

generators of these two different topographic maps.   

   

[Insert Figures 4] 

 

3.4 Source localisation results 

 

We used sLORETA (Fig. 5) to shed light on the configuration of intracranial generators 

underlying the dominant topographies revealed by the previous analysis. For the distinctive scalp 

map identified for the familiarised attribute (post-error hits), sLORETA disclosed a solution 

comprising Brodmann area 6 of the medial frontal lobe (MFL; maximum: X = -5, Y = -20, Z = 

70), as depicted in Fig. 5a. This area corresponds to the supplementary motor area (SMA), which 

is known to be responsible for initiating motor responses, including from memory (Tanji, 1994). 

Noteworthy is the fact that this medial frontal cortex activation also included more ventral sites, 

including the dorsal ACC Brodmann area 24 (X = 5, Y = -20, Z = 45). For the scalp map 

identified for unfamiliar stimuli, and being reliably different from pre-familiarised stimuli, 

sLORETA revealed main sources within the medial frontal cortex (Fig. 5b), also corresponding 

to Brodmann area 24 within the ACC (maximum: X = 3, Y = -24, Z = 39), an area associated 

with behavioural adjustments (Kerns et al., 2004). These results suggest a shift in the network 

that was recruited during the period after an error was committed, for pre-familiarised stimuli. 

Whereas the dorsal ACC seems to be shared in both conditions, the involvement of more dorsal 

regions, including the SMA, is specific to the condition with familiarised attributes.  Next, a 



23 
 

paired t-test was performed in sLORETA comparing the source reconstructions of the 

familiarised to the non-familiarised condition in the interval from 110 to 170 ms post-response 

onset (post-error conditions). Based on the descriptive sLORETA results presented here above, 

we expected that more dorsal frontal regions (including the SMA) would be activated during the 

monitoring of correct post-error actions performed with familiarised stimuli, whereas more 

ventral medial frontal regions (including the dorsal ACC) would be shared across the two 

conditions. The results of the t-test are presented in Fig. 5c. The scale indicates the t-value 

ranging from -2.55 to 2.55.  In the SMA/Brodmann area 6 (maximum effect found at X = 10, Y 

= -30, Z = 55) there was a significantly greater activation in the familiarised condition compared 

to the non-familiarised condition (t(18) = 2.3, p < .05). The reversed contrast did not yield any 

significant suprathreshold node, indicating that although both conditions shared activation of the 

dorsal ACC, the SMA activation was specific to the familiarised condition. 

 

 [Insert Figure 5] 

 

4. Discussion 

 

In the current study we trained participants with a single stimulus feature, and evaluated potential 

effects on performance and cognitive control during an unrelated Go/NoGo task. More 

specifically, we aimed to test whether the evaluative or regulative component of cognitive 

control may react in a flexible way, according to slight changes in stimulus representation, 

artificially induced here using a dedicated familiarisation procedure. The main results of this 

study show that the regulative, but not the evaluative component of cognitive control was 
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affected by familiarisation. The latter process may be somewhat immune to effects of the 

familiarisation, whereas the former seems more malleable by influences of cognitive or 

motivational factors, further emphasising the distinct contributions of these two processes during 

action monitoring and cognitive control (Botvinick et al., 2001).  

The familiarisation procedure was quite successful to induce a substantial learning, 

reflected by faster RTs during the course of the experiment. Strikingly, we found that this 

procedure actually had a differential impact on the processing of familiarised vs. non-

familiarised stimulus attributes during the main (and completely unrelated) Go/NoGo task. The 

classical post-error slowing effect was abolished for familiarised, relative to non-familiarised 

attributes. It is possible that learning a stimulus feature during the familiarisation task caused 

interference when performing the Go/NoGo task when the learned feature was irrelevant to the 

task (Nelson, Reuter-Lorenz, Sylvester, Jonides, & Smith, 2003). Although error rates were 

equal in the two familiarisation conditions, participants rated errors to non-familiarised stimuli to 

be less avoidable than errors to familiarised stimuli, indicating a differential effect of the 

familiarisation procedure on perceived performance. Moreover, participants made more 

impulsive response errors during the Go/NoGo task with stimuli that had been pre-familiarised, 

as evidenced by shorter error RTs in this condition. This effect might indicate a decreased 

inhibition or impulse control over the experimentally familiarised stimulus feature (Greene, 

1999). Yet, a similar number of errors were committed for familiarised and non-familiarised 

attributes, therefore allowing for a neat comparison of ERP measures in the two conditions of the 

Go/NoGo task, without extra noise being introduced by uneven trial numbers. Altogether, these 

behavioural results demonstrated an effect of the familiarisation on performance during the 

Go/NoGo task.   
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Importantly, despite differential effects of familiarisation on the regulative component of 

cognitive control and subjective ratings, there was no modulation of error detection brain 

mechanisms, as neither the ERN nor the Pe was modified. More specifically, neither the 

amplitude nor the topography of these two error-related ERP components was influenced by pre-

familiarising participants with a specific stimulus feature. Imaging studies have repeatedly 

shown a pattern of activation in medial prefrontal cortices during error commission that does not 

appear to vary depending on the task that is performed (e.g. Carter et al., 1998; Dehaene et al., 

1994; Menon, Adleman, White, Glover, & Reiss, 2001; Ullsperger & von Cramon, 2001), 

supporting the idea that the ERN may reflect a singular error detection mechanism (Hester, 

Fassbender, & Garavan, 2004; Miltner et al., 1997). The results of the present study are in line 

with the assumption that early error detection brain mechanisms are somehow generic. Note that 

a relatively large CRN was observed in response to hits in this study. This amplification of the 

CRN is likely to be due to the nature of the speeded task used here, more specifically to the 

prompt response deadline (Gehring et al., 1993; Luu et al., 2000; Pailing & Segalowitz, 2004; 

Vidal, Burle, Bonnet, Grapperon, & Hasbroucq, 2003).  

Although the ERN and Pe were not influenced by familiarisation, a selective impact was 

found on early adaptation processes consecutive to the commission of errors, as observed for the 

post-error slowing and ERP activity to post-error hits in the interval shortly after the CRN. In the 

non-familiarised condition the typical post-error slowing was still present, whereas in the pre-

familiarised condition the normal adaptation after an error was abolished. It seems that 

familiarisation increased early adaptation to errors only for the pre-familiarised condition, as 

participants were able to adjust their behaviour rapidly. Also, the amplitude of the CRN on 

correct trials following errors was marginally smaller in this condition. Consistent with these 
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findings, the source localisation results revealed distinct sources of activity for early adaptation 

effects on correct trials after errors. In the familiarised condition, post-error hits were mainly 

processed in the SMA, a pattern of activation that was associated with decreased adaptation in 

the familiarised condition, i.e. a suppression of post-error slowing. In the non-familiarised 

condition, the post-error activity was greatest in the ACC and this activation was accompanied 

by typical post-error slowing. The dissociation in the locus of maximal activity may have a 

functional significance. Behavioural adjustments after errors have been described to take two 

different forms, so-called retroactive adaptation governed by the ACC and proactive adaptation 

handled by the pre-SMA (Hikosaka & Isoda, 2010; Ullsperger & King, 2010). Proactive 

adaptation refers to the active enhancement of cognitive control processes and implies an 

attentional component that reduces interference from irrelevant contextual information. 

Retroactive adaptation occurs as the result of a negative outcome and is considered to be a 

general reactive form of adjustment. These two functionally distinct modes of control may act to 

produce a balance between effort and efficiency (Ullsperger & King, 2010). Taking into account 

the diminished post-error slowing in addition to impulsive errors and SMA activation for post-

error hits for the pre-familiarised stimuli, the results may be suggestive of a more automatic style 

of adaptation, possibly facilitated by the familiarity of the relevant stimulus attribute in this 

condition. For the non-familiarised stimuli, greater post-error slowing along with slower error 

RTs and ACC activity (although not significantly stronger than in the familiarised condition) was 

observed, possibly indicative of a more controlled style of error adaptation. This conclusion 

would be in line with the findings of Hester et al. (2004), who observed that increased pre-SMA 

activation on a Go/NoGo task was associated with fast responding, while increased ACC 

activation was associated with slow responding, which was more attentive and controlled. 
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Alternatively, because the dorsal ACC is usually considered to be the main generator of the ERN 

as well as the CRN component (see Roger, Bénar, Vidal, Hasbroucq, & Burle, 2010), while the 

SMA may be related to proactive behavioural adjustments (Hikosaka & Isoda, 2010; Ullsperger 

& King, 2010), our new ERP results (110-170 ms post-response onset) suggest that a prolonged 

CRN/action monitoring effect may be at stake in the non-familiarised condition. By contrast, in 

the familiarised condition, there is likely a rapid transition following response onset from dorsal 

ACC (CRN) to more dorsal frontal regions (including the SMA), consistent with the involvement 

of a differential proactive behavioural control mechanism when monitoring the adequacy of 

actions performed with pre-familiarised stimulus attributes.   

  Our results raise the question how it is possible that transient familiarisation had an 

effect on adaptive processing but not error detection itself, if we assume that one is a necessary 

precursor of the other (Botvinick et al., 2001). One possible explanation would be that the two 

functions operate independently of each other. In line with this reasoning some investigators 

have found that the ERN and measures of post-error adaptation are not directly related (Castellar, 

Kühn, Fias, & Notebaert, 2010; Dudschig & Jentzsch, 2009; Hajcak et al., 2003; Nieuwenhuis et 

al., 2001), while others found evidence to the contrary (Gehring et el., 1993). Further research 

will have to be conducted to shed more light on this matter in order to establish under which 

circumstances adaptive and regulative components of cognitive control are separate processes. 

  In conclusion, error detection was found to be unaffected by familiarisation, consistent 

with the notion that this mechanism is generic, whereas post-error adaptation was altered, with 

dissociable regions being recruited depending on the familiarisation condition, suggesting that 

there is some malleability in adaptive processing brought about by top-down processes.  
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Captions 

 

Fig. 1: Post-error slowing (RT) effect for the familiarised and non-familiarised condition. Error 

bars represent the S.E.M. 

Fig. 2: Response-locked grand average ERPs at FCz (a and b) and Cz (c and d) for the 

familiarised and non-familiarised hits vs. errors. Topographic maps corresponding to the 

ERN/CRN time interval (0 - 60 ms) and Pe time interval (150 – 270 ms) are presented. 

Fig. 3: Response-locked grand average ERPs for post-error hits and post-slow hits (post-fast hits 

were not included in this analysis) in the familiarised and non-familiarised condition at 

FCz (a), topographic maps of the CRN in the 0 - 60 ms interval (b) and topographic maps 

during the 110 – 170 ms interval (c) for post-error hits are presented for the familiarised 

and non-familiarised condition. Vertical bars in Fig. 3a demarcate the 110-170 ms 

interval. 

Fig.4: Results of the fitting procedure (see methods). The duration (in time frames) of the two 

dominant maps (see results) is depicted for the familiarised and non-familiarised 

condition, with error bars representing S.E.M. 

Fig.5: From left to right: horizontal, sagittal, and coronal views of the source localisation 

obtained using sLORETA. Main generators of the dominant topographic map found for 

the familiarised (a) and non-familiarised (b) condition (see results section) were found to 

involve non-overlapping regions of the medial frontal cortex. These generators were 

clearly located more ventral and deeper within the dorsal ACC for the non-familiarised 

condition, relative to the familiarised condition. A: anterior; P: posterior; L: left; R: right. 

Results of the t-test between the conditions familiarised – non familiarised (c). Positive 
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T-values indicate significantly greater activity in the familiarised compared to non-

familiarised condition in dorsal frontal cortex, including the SMA (p < .05).    
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