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ON ROMANOVSKI’S LEMMA

RICARDO ESTRADA AND JASSON VINDAS

Abstract. Romanovski introduced a procedure, the Romanovski’s
lemma, to construct the Denjoy integral without the use of trans-
finite induction. Here we give two versions of the Romanovski’s
lemma which hold in general topological spaces. We provide sev-
eral applications in various areas of mathematics.

1. Introduction

In an article published in 1932 [20], Romanovski introduced a pro-
cedure to construct the Denjoy integral without the use of transfinite
induction. The basic tool used in such a procedure is the following
result, known as Romanovski’s lemma.

Theorem 1.1. (Romanovski’s lemma) Let F be a family of open in-
tervals in (a, b) with the following four properties:

I. If (α, β) ∈ F and (β, γ) ∈ F, then (α, γ) ∈ F.
II. If (α, β) ∈ F and (γ, δ) ⊂ (α, β) then (γ, δ) ∈ F.
III. If (α, β) ∈ F for all [α, β] ⊂ (c, d) then (c, d) ∈ F.
IV. If all the intervals contiguous to a perfect closed set E ⊂ [a, b]

belong to F then there exists an interval I ∈ F with I ∩ E 6= ∅.
Then (a, b) ∈ F.

The proof is very simple, but most importantly, the use of this lemma
in several problems is also very simple, and many times provides rather
short and direct proofs of hard results. The book of Gordon [11] gives
several applications, such as the construction of the Denjoy integral we
mentioned before or the study of the functions of the Baire classes.

It should be mentioned that the construction of the Denjoy integral
by transfinite induction is also a very nice piece of mathematics. A
detailed presentation can be found in the book by Hobson [13]. It is
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a matter of taste, of course, whether one prefers one approach or the
other.

The aim of this article is to give versions of the Romanovski’s lemma
that are useful in problems involving several variables. These versions
are actually valid in general topological spaces. We present several ap-
plications to highlight the use of this rather powerful tool. The plan
of the article is as follows. We start by giving two versions of the
lemma that are valid in general spaces in Section 2. Our first appli-
cation is a proof of the well known Cantor-Baire stationary principle
by using the new versions of the lemma; this we present in Section 3.
In Section 4 we prove a rather interesting characterization of positive
measures in several variables in terms of the almost everywhere angular
boundary behavior of the distributional φ−transform, generalizing the
corresponding results for everywhere behavior [22]. We then employ
these ideas to prove that a function with a derivative that exists al-
most everywhere in a region Ω ⊂ C will in some cases be analytic in Ω.
In Section 5 we apply the Romanovski’s lemma in the study of analytic
functions with known radial behavior at the boundary of the unit disc,
a subject where many unexpected counterexamples exist.

Naturally, there are many other areas where the Romanovski’s lemma
would prove to be very helpful, and our purpose in writing this article
is to invite the reader to try it in such domains.

2. Versions of Romanovski’s lemma

Our first version applies to any topological space.

Theorem 2.1. Let X be a topological space. Let U be a non empty
family of open sets of X that satisfies the following four properties:

Iv1. U 6= {∅}.
IIv1. If U ∈ U, V ⊂ U, and V is open, then V ∈ U.
IIIv1. If Uα ∈ U ∀α ∈ A, then

⋃
α∈A Uα ∈ U.

IVv1. Whenever U ∈ U, U 6= X, then there exists V ∈ U such that
V ∩ (X \ U) 6= ∅.

Then U must be the class of all open subsets of X.

Proof. Let W =
⋃

U∈U U. Using Iv1 it follows that W 6= ∅, employing
IIIv1 we obtain that W ∈ U, while from IVv1 it follows that W = X. If
we now use IIv1 we obtain that all open subsets of X belong to U. �

The next version deals with local basis of neighborhoods.
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Theorem 2.2. Let X be a topological space. For each x ∈ X let Cx be a
local basis of non-empty open neighborhoods at x, and let C =

⋃
x∈X Cx.

Let B ⊂ C be a family that satisfies the following properties:
Iv2. B 6= ∅.
IIv2. If U ∈ B, V ⊂ U, and V ∈ C, then V ∈ B.
IIIv2. If U ∈ C and if for each x ∈ U there exists Vx ∈ B with

x ∈ Vx ⊂ U, then U ∈ B.
IVv2. If F is closed, F 6= ∅, and for each x ∈ X \ F there exists

Vx ∈ B with x ∈ Vx ⊂ X \ F, then ∃U0 ∈ B with U0 ∩ F 6= ∅.
Then B = C.

Proof. Let W =
⋃

U∈B U. Then W = X, since if not F = X \W would
satisfy the conditions of IVv2 , but this is not possible.

Let now V ∈ C. Since X =
⋃

U∈B U, for each x ∈ V there exists
Bx ∈ B with x ∈ Bx, and thus there is Cx ∈ C with x ∈ Cx ⊂ V ∩Bx.
Using IIv2 we obtain that Cx ∈ B, and thus we can use IIIv2 to conclude
that V ∈ B. �

This version, Theorem 2.2, applies to balls in a metric space. Indeed,
one can take C to be the family all of non-empty balls, or a suitable
subfamily, say Cx equal to the set of balls centered at x and radius
smaller than some given number rx > 0.

Observe that, as it is easy to see, the usual Romanovski’s lemma,
Theorem 1.1, follows from Theorem 2.2.

3. The Cantor-Baire stationary principle

In this section we shall show how the Romanovski’s lemma can be
used to give a proof of the well known and useful Cantor-Baire station-
ary principle [18]. The symbol Ω refers to the first uncountable ordinal
number.

Theorem 3.1. (Cantor-Baire Stationary Principle) Let {Fα}α<Ω be a
family of closed subsets of Rn, indexed by the countable ordinal numbers.
Suppose {Fα}α<Ω is decreasing, i.e., Fα ⊆ Fβ if α ≥ β. Then there
exists α∗ < Ω such that Fα = Fα∗ for α ≥ α∗.

Proof. Let X = Rn \
⋂

α<Ω Fα. Let B be the family of non-empty balls
B ⊂ X that satisfy that there exists α < Ω with B ∩Fα = ∅. We shall
show that B = C, the family of all non-empty balls of Rn contained in
X, using Theorem 2.2. Observe that Iv2 and IIv2 are clear. In order to
prove IIIv2 , let B =

⋃
σ∈Σ Bσ be an element of C that is an arbitrary

union of elements Bσ of B; since B is a ball in Rn, there exists a
sequence {σn}n∈N such that B =

⋃
n∈N Bσn . If αn < Ω is such that
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Bσn ∩ Fαn = ∅, and α̂ = supn∈N αn, then B ∩ Fbα = ∅, so that B ∈ B.
Condition IVv2 is easy because if x ∈ X then there exists α < Ω such
that x /∈ Fα and thus there exists a ball B with x ∈ B and B∩Fα = ∅,
which yields that B ∈ B. Finally, since we obtain that X =

⋃
B∈B B,

then X =
⋃

n∈N Bn, where {Bn}n∈N is an enumeration of the elements
of B with rational centers and rational radii; choosing αn < Ω with
Bn ∩ Fαn = ∅, and putting α∗ = supn∈N αn, we obtain α∗ < Ω with
X ∩ Fα∗ = ∅. It follows that Fα = Fα∗ for α ≥ α∗. �

4. Measures and the φ−transform

In this section we shall deal with real valued distributions and func-
tions. We shall use the standard spaces of test functions D (Rn) and
D′ (Rn) [10]. The φ−transform [6, 21, 22] is defined as follows. Let
φ ∈ D (Rn) be a fixed normalized test function, that is, one that satis-
fies

(4.1)

∫
Rn

φ (x) dx = 1 .

If f ∈ D′ (Rn) we introduce the function of n + 1 variables F = Fφ {f}
by the formula

(4.2) F (x, t) = 〈f (x + ty) , φ (y)〉 ,

where (x, t) ∈ H, the half space Rn × (0,∞) . Naturally the evaluation
in (4.2) is with respect to the variable y. We call F the φ−transform
of f. Whenever we consider φ−transforms we assume that φ satisfies
(4.1).

The definition of the φ−transform tell us that if the distributional
point value [14, 15] f (x0) exists and equals γ then F (x0, t) → γ as
t → 0+, but actually F (x, t) → γ as (x, t) → (x0, 0) in an angular or
non-tangential fashion, that is if |x− x0| ≤ Mt for some M > 0 (just
replace φ (y) by φ (y −Mω) where |ω| = 1).

The φ−transform converges to the distribution as t → 0+ : If φ ∈
D (Rn) and f ∈ D′ (Rn) , then

(4.3) lim
t→0+

F (x, t) = f (x) ,

distributionally in the space D′ (Rn) , that is, if ρ ∈ D (Rn) then

(4.4) lim
t→0+

〈F (x, t) , ρ (x)〉 = 〈f (x) , ρ (x)〉 .

We shall use the following nomenclature. A (Radon) measure would
mean a positive functional in the space of continuous functions, which
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would be denoted by integral notation such as dµ, or by distributional
notation, f = fµ, so that

(4.5) 〈f, φ〉 =

∫
Rn

φ (x) dµ ,

and 〈f, φ〉 ≥ 0 if φ ≥ 0. A signed measure is a real bounded functional
in the space of continuous functions, denoted as, say dν, or as g = gν .
Observe that any signed measure can be written as ν = ν+−ν−, where
ν± are measures concentrated on disjoint sets. We shall also use the
Lebesgue decomposition, according to which any signed measure ν can
be written as ν = νabs + νsig, where νabs is absolutely continuous with
respect to the Lebesgue measure, so that it corresponds to a regular
distribution, while νsig is a signed measure concentrated on a set of
Lebesgue measure zero. We shall also need to consider the measures
(νsig)± = (ν±)sig, the positive and negative singular parts of ν.

If x0 ∈ Rn we shall denote by Cx0,θ the cone in H starting at x0 of
angle θ,

(4.6) Cx0,θ = {(x, t) ∈ H : |x− x0| ≤ (tan θ)t} .

If f ∈ D′ (Rn) and x0 ∈ Rn then we consider the upper and lower
angular values of its φ−transform,

(4.7) f+
φ,θ (x0) = lim sup

(x,t)→(x0,0)
(x,t)∈Cx0,θ

F (x, t) ,

(4.8) f−φ,θ (x0) = lim inf
(x,t)→(x0,0)
(x,t)∈Cx0,θ

F (x, t) .

The quantities f±φ,θ (x0) are well defined at all points x0, but, of course,
they could be infinite.

The following result was proved in [22].

Theorem 4.1. Let f ∈ D′ (Rn) . Let U be an open set. Then f is a
measure in U if and only if its φ−transform F = Fφ {f} with respect
to a given normalized, positive test function φ ∈ D (Rn) satisfies

(4.9) f−φ,θ (x) ≥ 0 ∀x ∈ U ,

for all angles θ. Moreover, if the support of φ is contained in a ball of
radius R and center at the origin and if (4.9) holds for a single value
of θ > arctan R, then f is a measure in U.

It is easy to see that the result is not true if we use radial limits
instead of angular ones. An example is provided by taking f (x) =
−δ′ (x) and φ ∈ D (R) with φ′ (0) > 0. Actually this example shows
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that if (4.9) holds for a value of θ < arctan R, then f might not be a
measure. Furthermore, one needs the inequality (4.9) to be true at all
points of U, as the example f (x) = −δ (x− a) , for any a ∈ U, shows.

We should also point out that if there exists a constant M > 0 such
that f−φ,θ (x) ≥ −M, ∀x ∈ U, where θ > arctan R, then f is a signed
measure in U, whose singular part is positive [22].

Using the Romanovski’s lemma we can prove the ensuing stronger
result.

Theorem 4.2. Let f ∈ D′ (Rn) . Let U be an open set. If the φ−transform
F = Fφ {f} with respect to a given normalized, positive test function
φ ∈ D (Rn) with supp φ ⊂ {x ∈ Rn : |x| ≤ R} satisfies

(4.10) f+
φ,ϑ (x) ≥ 0 almost everywhere in U ,

for some ϑ, while for each x ∈ U there is a constant Mx > 0 such that

(4.11) f−φ,θ (x) ≥ −Mx ,

where θ > arctan R, then f is a measure in U.

Proof. Let U be the family of open subsets V of U such that the re-
striction f |V is a measure. Let us first show that U 6= ∅. Indeed, let
t0 ≥ 1 be fixed and let

(4.12) gn (x) = min
{
F (y, t) : |y − x| ≤ (tan θ)t, n−1 ≤ t ≤ t0

}
.

The functions gn are continuous and because of (4.11), for each x ∈ U
there exists a constant M

′
x > 0 such that gn (x) ≥ −M

′
x. If we now

employ the Baire theorem we obtain the existence of a non-empty open
set V ⊂ U and a constant M > 0 such that F (x, t) ≥ −M for all
(y, t) ∈ Cx,θ with x ∈ V and 0 < t ≤ t0, and hence f−φ,θ (x) ≥ −M for
x ∈ V. It follows that f |V is a signed measure ν = νabs + νsig, whose
singular part νsig is a measure; it thus follows using (4.10) that the
regular distribution fabs corresponding to νabs satisfies fabs (x) ≥ 0 a.e.
in V, and consequently the signed measure νabs is actually a measure.
Therefore ν ≥ 0.

It is clear that IIv1 and IIIv1 are satisfied.
In order to prove IVv1 , let V ∈ U, and suppose that U \V 6= ∅. Then

using the Baire theorem again, there exists a set Y open in U \V and a
constant M > 0 such that f−φ,θ (x) ≥ −M for all x ∈ Y. But if Y is open
in U\V, then we can find W open in U such that W∩U\V = Y. Observe
now that f |V is a measure, and thus f−φ,θ (x) ≥ 0 if x ∈ V, in particular,

if x ∈ W ∩ V. Therefore, f−φ,θ (x) ≥ −M for x ∈ W = Y ∪ (W ∩ V ) .
The argument used above shows that f |W is a measure, that is, W ∈ U
and this proves IVv1 . �
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The following useful result on the existence of almost everywhere
limits follows from the Theorem 4.2.

Corollary 4.3. Let f ∈ D′ (Rn) . Let U be an open set. If the φ−transform
F = Fφ {f} with respect to a given normalized, positive test function
φ ∈ D (Rn) with supp φ ⊂ {x ∈ Rn : |x| ≤ R} satisfies that for each
x ∈ U there is a constant Mx > 0 such that

(4.13) Mx ≥ f+
φ,θ (x) ≥ f−φ,θ (x) ≥ −Mx ,

where θ > arctan R, while for some ϑ

(4.14) f+
φ,ϑ (x) ≥ 0 ≥ f−φ,ϑ (x) ,

almost everywhere in U, then f = 0 in U.

4.1. Analytic functions and existence of derivatives a.e. One
can use these ideas, for example, to study the several equivalent def-
initions of holomorphy of a function f defined in a region Ω ⊂ C. If
we say that f is holomorphic or analytic if it is equal to the sum of a
convergent power series in the neighborhood of each point of Ω, then
we easily obtain that f is analytic if and only if

∮
∂R

f (z) dz = 0 for

each rectangle R with R ⊂ Ω; this is Morera’s theorem. On the other
hand, if f is analytic then it is complex differentiable, that is,

(4.15) f ′ (z) = lim
ξ→0

f (z + ξ)− f (z)

ξ
,

exists at each z ∈ Ω. Conversely, if f is complex differentiable then it
is analytic, and this follows by proving that

∮
∂R

f (z) dz = 0 for each

rectangle R with R ⊂ Ω; earlier proofs of this fact used the continuity
of f ′, but Goursat [12] gave a nice proof, now standard in the textbooks
in complex variables [17, Sect. 1.2], that shows that the mere existence
of f ′ (z) implies that f is analytic. Actually Looman [16] proved that it
is enough to assume that f ′ (z) exists almost everywhere if we suppose
that

(4.16) f (z + ξ) = f (z) + O (ξ) , as ξ → 0 ,

everywhere in Ω. This follows from the Corollary 4.3. Indeed, if R is
a fixed rectangle with R ⊂ Ω, we can find f1 continuous in all C with
f1 = f in R. Let z0 = x0 + iy0 ∈ R and define

(4.17) gz0 (z) =

∮
∂Rz0,z

f1 (ζ) dζ ,

where Rz0,z is the rectangle with vertices z0 = x0+iy0, x+iy0, z = x+iy,
and x0 + iy.
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The identity

(4.18) gz0 (x + iy) = gz1 (x + iy)+gx1+iy0 (x + iy1)+gx0+iy1 (x1 + iy) ,

implies that h = ∂2gz0/∂x∂y does not depend on z0. The hypotheses of
the Corollary 4.3 are satisfied in R for h for any test function φ, since
(4.16) yields

(4.19) gz0 (z0 + ξ) = O
(
ξ2

)
,

for any z0 ∈ R, while the existence of f ′ (z) yields

(4.20) gz0 (z0 + ξ) = o
(
ξ2

)
,

and this holds almost everywhere. It follows that h = 0 in R and,
consequently, gz0 = 0 in R for any z0; this implies that f is analytic in
R and thus, since R is arbitrary, in Ω.

It is also well known [5, Chapter 6] that if f is continuous in Ω,
analytic in Ω \ Z, where Z is a closed set with finite linear Haussdorf
measure H1 (Z) < ∞, then f is actually analytic in Ω. We can use
the Romanovski’s lemma, in the version given in the Theorem 2.1, to
prove the following result of Besicovitch [2]: If f is continuous in Ω,
the derivative f ′ (z) exists almost everywhere, and f satisfies (4.16) in
Ω \

⋃∞
n=1 Zn, where the Zn are closed sets of finite linear Haussdorf

measure, then f is analytic in Ω. Indeed, one may take U to be the
class of open subsets of Ω where f is analytic. Conditions IIv1 and IIIv1

are easy, while to prove Iv1 and IVv1 one can use Baire’s theorem in
the decomposition of any K closed in Ω into a denumerable union of
closed subsets as

(4.21) K =
∞⋃

n=1

(Xn ∪ Z1 · · · ∪ Zn) ∩K ,

where

(4.22) Xn =

{
z :

∣∣∣∣f (z + ξ)− f (z)

ξ

∣∣∣∣ ≤ n for |ξ| ≤ 1, z + ξ ∈ Ω

}
.

5. Continuous extensions of analytic functions

Let F be analytic in the unit disc D = {z ∈ C : |z| < 1} . Suppose
that F can be extended to an element Fex ∈ C

(
D

)
, the continuous

functions in D = D ∪ ∂D. Then it is well known that the Cauchy
integral formula

(5.1) F (z) =
1

2πi

∮
|ξ|=1

f (ξ) dξ

ξ − z
,
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holds, where f is the restriction of Fex to ∂D. The set of all such restric-
tions forms a well known and much studied subalgebra A of C (∂D) ;
one could say that in a sense A is of about “half the dimension” of
C (∂D) , since the elements of C (∂D) have distributionally convergent
Fourier expansions of the type g

(
eiθ

)
=

∑∞
n=−∞ ane

inθ, for some con-
stants an, n ∈ Z, while the elements of A are those for which an = 0
for n < 0.

The Cauchy representation formula (5.1) holds not only for ana-
lytic functions that have continuous extensions, but also in many other
spaces, such as the Hardy spaces Hp, 1 ≤ p ≤ ∞, if one takes f as the
radial limit f (ξ) = limr→1− F (rξ) , which in such a case exists almost
everywhere in ∂D and defines a Lebesgue integrable function there. It
holds, in particular, if F ∈ H∞, that is, if F is bounded in D [7, 19].

It is interesting that the mere existence of radial limits is usually not
enough for the validity of (5.1). Indeed, the function

(5.2) W (z) = (z − 1) ei((z+1)/(z−1))2 ,

is analytic in D, the radial limit w (ξ) = limr→1− W (rξ) exists for all
elements ξ ∈ ∂D, and actually the function w is continuous in ∂D.
However, w ∈ C (∂D) \A and the Cauchy representation formula does
not hold: this is clear because W is not bounded in D, while all elements
of C

(
D

)
are.

If one considers functions with radial limits almost everywhere the
situation is even more surprising [4, 19], since if g ∈ C (∂D) and X
is a given subset of ∂D of first category (which one can take of full
measure!) then there is a function G, analytic in D, that satisfies
g (ξ) = limr→1− G (rξ) for all ξ ∈ X.

We shall now use the Romanovski’s lemma to show that if some extra
conditions are satisfied then if the almost everywhere radial limits of an
analytic function in D, F, are the restriction of a function f ∈ C (∂D)
to a set of full measure, then actually F admits an extension in C

(
D

)
and f ∈A. We shall assume that F is bounded on radial segments
and we shall also suppose that F has distributional boundary values in
the circle ∂D [1, 3, 9]. Notice that the existence of the distributional
limit f (ξ) = limr→1− F (rξ), f ∈ D′ (∂D) is equivalent to the growth
estimate

(5.3) |F (z)| ≤ M

(1− |z|)α ,

for some constants M > 0 and α ∈ R.
We need a couple of preliminary results. First, it is well known

that if F is analytic in D and if the distributional boundary value
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f (ξ) = limr→1− F (rξ) exists, f ∈ D′ (∂D) , then f cannot have jump
discontinuities, i.e., if the lateral limits f (ξ+) and f (ξ−) exist at ξ ∈
∂D, then they have to coincide f (ξ+) = f (ξ−) [8]. This yields the
following result.

Lemma 5.1. Let be F analytic in D with distributional boundary value
f (ξ) = limr→1− F (rξ), f ∈ D′ (∂D) . Suppose that there exists a bounded
function f0 in ∂D and a finite set E ⊂ ∂D such that f = f0 in ∂D \E.
Then f = f0 in all of ∂D.

Proof. Indeed, f − f0 has support contained in E, and it thus equal to
a finite sum of Dirac delta functions and its derivatives at E, f (ω) −
f0 (ω) =

∑
ξ∈E

∑n
j=0 aξ,jδ

(j) (ω − ξ) . There is a constant a and a dis-

tribution g ∈ D′ (∂D) such that f − f0 = a + g(n+1). Since g would
have jumps of magnitude aξ,n at each ξ ∈ E, it follows that aξ,n = 0
∀ξ ∈ E, and, by induction, that aξ,j = 0 for 0 ≤ j ≤ n and ξ ∈ E.
Hence f = f0. �

We emphasize that the previous result does not hold if the analytic
function does not have distributional boundary values: (5.2) is an ex-
ample.

Using a conformal map we also obtain the following result.

Lemma 5.2. Let be F analytic in D with distributional boundary value
f (ξ) = limr→1− F (rξ), f ∈ D′ (∂D) . Suppose there is an arc I ={
eiθ : θ1 < θ < θ2

}
of ∂D such that f is a bounded function in I,

(5.4)
∣∣f (

eiθ
)∣∣ ≤ M , θ1 < θ < θ2 ,

and suppose that

(5.5)
∣∣F (

reiθj
)∣∣ ≤ M , 0 ≤ r < 1 , j = 1, 2 .

Then

(5.6)
∣∣F (

reiθ
)∣∣ ≤ M , 0 ≤ r < 1 , θ1 < θ < θ2 .

We can now give the main result of this section.

Theorem 5.3. Let F be analytic in D and let f be continuous in ∂D.
Suppose the following three conditions are satisfied:

1. limr→1− F (rξ) = f (ξ) , almost everywhere;
2. F has distributional boundary limits in ∂D; and
3. there is a countable set E such that for all ξ ∈ ∂D \ E there is a

constant Mξ < ∞ with |F (rξ)| ≤ Mξ for all r ∈ [0, 1).
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Then f ∈ A and the function Fex defined in D as F in D and as f
in ∂D belongs to C

(
D

)
.

Proof. Let B be the set of open arcs I of ∂D such that the function
given by F in D and by f in I is continuous in D ∪ I. We shall show
that B satisfies the hypotheses of the Theorem 2.2.

First we prove Iv2 , that is, that B 6= ∅. Let rn ∈ [0, 1) such that rn ↗
1, and consider the functions hn (ξ) = max {|F (rξ)| : 0 ≤ r ≤ rn} ; the
hn are continuous functions, and for each ξ ∈ ∂D \E we have hn (ξ) ≤
Mξ. Therefore, using the Baire theorem, we can find a non-empty open
arc I and a constant M > 0 such that hn (ξ) ≤ M for all n and for
ξ ∈ I, and thus |F (rξ)| ≤ M for all r ∈ [0, 1) and ξ ∈ I. Then
limr→1− F (rξ) = g (ξ) exists in weak∗ sense in the space of bounded
functions L∞ (J) for any open arc J with J ⊂ I. But 1 implies that
f = g a.e. and therefore limr→1− F (rξ) = f (ξ) uniformly in J. Hence
I ∈ B.

Conditions IIv2 and IIIv2 are clear. Finally we can establish IVv2 as
follows. Let K be a non-empty closed proper subset of ∂D, such that
∂D \ K =

⋃∞
n=1 In, where In ∈ B are disjoint. If K has an isolated

point ξ0, then the Lemma 5.1 immediately yields that if J is an open
arc with J ∩ K = {ξ0} then J ∈ B. When K is perfect, we can use
Baire’s theorem again to obtain an open arc J with J ∩ K 6= ∅ such
that for some constant M, we have |F (rξ)| ≤ M for r ∈ [0, 1) and for
ξ ∈ J ∩ K. We may suppose that M ≥ maxω∈∂D |f (ω)| , and we may
also suppose that the endpoints of J belong to K and that |F (rξ)| ≤ M
for r ∈ [0, 1) when ξ is one of the endpoints. If In is one of the open arcs
of ∂D \K with In ⊂ J, then its endpoints belong to J ∩K and thus we
can use the Lemma 5.2 to conclude that |F (rξ)| ≤ M for r ∈ [0, 1) and
ξ ∈ In. Therefore |F | is bounded by M in the sector z = rω, r ∈ [0, 1)
and ω ∈ J. It follows that J ∈ B. �
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