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Abstract—In combination with the Perfectly Matched Layer
(PML)-paradigm, eigenmode expansion techniques have become
increasingly important in the analysis and design of cylindrical
and planar waveguides for photonics applications. To achieve
high accuracy, these techniques rely on the determination of
many modes of the modal spectrum of the waveguide under
consideration. In this paper we focus on the efficient computation
of Transverse Magnetic (TM) and Transverse Electric (TE)
polarized leaky modes for multilayered cylindrical waveguides.
First, quasi-static estimates are derived for the propagation
constants of these modes. Second, these estimates are used as
a starting point in an advanced Newton iteration scheme after
they have been subjected to an adaptive linear error correction.
To prove the validity of the computation technique it is applied to
technologically important cases: vertical-cavity surface-emitting
lasers (VCSELs) and a monomode fiber.

Index Terms—Multilayered circular waveguides, mode
matching methods, perfectly matched layers, leaky modes,
Bérenger modes, vertical-cavity surface-emitting laser (VCSEL),
monomode fiber

I. I NTRODUCTION

Perfectly Matched Layers (PMLs) [1], [2] were originally
conceived to serve as absorbing boundary conditions in elec-
tromagnetic field solvers, such as FDTD [3]. In recent years,
the PML-paradigm [4], [5] has led to new and rather unex-
pected applications concerning full-wave analysis and design
of complex electromagnetic structures, in particular layered
media. This paradigm allows to convert an open waveguide
that consists of an open stack of dielectric layers, into a
closed waveguide. The presence of the PML ensures that
the closed waveguide accurately mimics the behavior of the
original open waveguide. Whereas the modal spectrum of the
original open waveguide comprises a continuous set of radi-
ating modes, the closed waveguide only exhibits discrete sets
of modes. This paradigm resulted in fast analysis techniques
for planar microwave structures [6]–[9] as well as in modal
analysis methods for acoustic waveguides [10]. In the field of
photonics, the PML-paradigm has led to vectorial eigenmode
expansion techniques. These techniques have proven to be very
useful in the analysis of optical slab waveguides, such as laser
facets [11], [12], modelled as layered planar media. Optical
cylindrical waveguides have also been studied, e.g. waveguide
discontinuities appearing in vertical-cavity surface-emitting
lasers (VCSELs) [13] and bending losses in optical fibers [14].
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The determination of many modes, up to very high mode
numbers, appearing in the modal spectrum of the waveguides
under consideration is indispensable to be able to develop
mode matching techniques with high accuracy. Formalisms
to efficiently compute all these modes’ propagation constants
have been proposed in the literature for microwave and optical
waveguides [15]–[20]. Often, the focus is on finding the leaky
modes. These modes can be used in eigenmode analyses
of open waveguides, albeit for a limited set of applications,
since the leaky modes correspond toimproper solutions of
the dispersion relation [14]. The term “improper” is used
to indicate that these modes do not satisfy the radiation
condition [21]. In the case of a waveguide that is closed
through application of the PML-paradigm, the leaky modes
are proper solutions of the dispersion relation and together
with the guided modes and the so-called Bérenger (or PML)
modes, they form a complete set [5], [22].

In this paper we focus on the computation of the leaky
modes’ propagation constants of both open and closed multi-
layered cylindrical waveguides presented in Fig. 1. We propose
a two-step approach: first, accurate quasi-static estimates are
calculated and second, these estimates are used in a Newton
iteration scheme after being subjected to an adaptive linear
error correction to rapidly and very precisely determine the
propagation constants. It is important to mention that in [17]
a computation technique has been presented for single-layered
cylindrical waveguides which is also based on quasi-static
estimates. However, it is not at all straightforward to extend the
technique presented in [17] to general multilayeredcylindrical
waveguides. In [16], [23] a rapid technique for the determina-
tion of the leaky modes’ propagation constants in multilayered
planar media was proposed, following a similar two-step
approach as presented in this paper, but without the linear error
correction. In comparison to multilayered cylindrical media,
the quasi-static estimates pertaining to multilayered planar
media are easier to derive and more accurate. This is due to the
particular form of the dispersion relations of planar mediathat
mainly consist of exponential functions. In the cylindrical case,
a large-argument expansion of Bessel functions is required,
reducing the accuracy. So, in the cylindrical case discussed
in this paper, extra care needs to be taken to maintain high
accuracy. We focus on the transverse magnetic (TM) and
the transverse electric (TE) polarized leaky modes of open
waveguides and waveguides closed through application of the
PML-paradigm. Hybrid modes are still more complex. Their
analysis would lengthen this paper to an unacceptable size.

Applications of the technique can be found in the analysis
or the design of technologically important cylindrical wave-
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guides. Therefore, the method has been illustrated by calculat-
ing the leaky modes’ propagation constants for (i) AlAs-AlOx
apertures in VCSEL cavities and (ii) a typical monomode fiber.
These examples have also been considered in [13], [17], [24],
but, due to the limitations of the technique applied in these
papers, a single cylindrical layer consisting of a homogeneous
dielectric together with aninfinite cladding had to be assumed.
The new method presented here alleviates this restriction,
making it better suited to address real-life applications,such
as VCSEL cavities and fibers with additional layers and/or a
cladding offinite dimensions.

The outline of this paper is as follows. In Section II the
formalism to calculate the leaky modes’ propagation constants
is proposed. The cylindrical waveguide configurations under
consideration are defined in Section II-A and the correspond-
ing dispersion relations are given in Section II-B. Next, quasi-
static estimates are derived (Sections II-C and II-D). These
estimates are used as starting points of an efficient computation
procedure, as explained in Section II-E. The theory is illus-
trated by a set of examples in Section III. Finally, conclusions
are summarized in Section IV.

In the sequel, all sources and fields are assumed to be
time-harmonic with angular frequencyω and time dependen-
ciesejωt are suppressed.

II. FORMALISM TO EFFICIENTLY COMPUTE LEAKY MODES

IN OPEN AND PEC-BACKED PML-CLOSED MULTILAYERED

CIRCULAR DIELECTRIC WAVEGUIDES

A. Geometry

Consider the multilayered circular waveguides consistingof
L dielectric layers, as shown in Fig. 1. In these configurations,
each dielectric layerl, l = 1, . . . , L, is characterized by its
thicknesstl and a refractive indexnl =

√
ǫr,l, whereǫr,l is

the relative permittivity of the layer. In general, a magnetic
contrast between the layers is possible, hence, each layer
is also characterized by its relative permeabilityµr,l. In
cylindrical coordinates(ρ, φ, z), with ρ =

√

x2 + y2, the
interface between layerl and layerl + 1 is found at a radial
distanceρ = dl =

∑l
q=1 tq, l = 1, . . . , L. In the case

of an open waveguide (Fig. 1(a)), the outside layer of the
geometry is an air-filled half-space, indicated by the layer
number l = L + 1, a refractive indexnL+1 = 1, and a
relative permeabilityµr,L+1 = 1. In Fig. 1(b), the PML-
paradigm [4], [5] has been applied. The waveguide is closed
by means of a PML that is backed by a perfect electrically con-
ducting (PEC) cylindrical wall. Using the complex coordinate
stretching formalism [2], it can be shown that this procedure is
mathematically equivalent to enclosing theL dielectric layers
of the waveguide and a part of the(L + 1)th layer of air
in a PEC cylinder withcomplex radius D. This complex
thicknessD is chosen such that the PML provides damping
along the direction perpendicular to the layer interfaces,i.e.
the radial directionρ. This is achieved by a thickness with a
real partℜ(D) > 0 and an imaginary partℑ(D) < 0. Due
to the reflectionless absorption of waves impinging upon the
PML, the structure of Fig. 1(b) closely mimics the behavior
of the original, open structure of Fig. 1(a).
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Fig. 1: Multilayered circular waveguide geometries

B. Generalized reflection coefficient and dispersion relation

To derive the dispersion relation for the waveguides pre-
sented in Fig. 1, the concept of generalized reflection coef-
ficient is used, as defined in [25]. Of course, for the PEC-
backed PML-closed waveguide presented in Fig. 1(b), the
method of [25] is adapted to take the closed character of
the waveguide into account. For both circular geometries of
Fig. 1, waves can be expanded into cylindrical harmonics with
different e−jνφ dependencies, where the integer numberν
indicates theνth harmonic. In order not to overload this paper,
only axially symmetric (ν = 0) transverse magnetic (TM) and
transverse electric (TE) (with respect to thez-axis) polarized
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modes are considered, and no hybrid modes. The modal
fields have ae−jβTXz-dependency whereβTX is the TX-
polarized transverse modal propagation constant. Here, and in
what follows, TX stands for TM and TE (X=M,E). For both
waveguides of Fig. 1, the generalized reflection coefficient[25]
for TM- and TE-polarized waves at the interface between
region l and l + 1, l = 1, . . . , L, is given by

R̃l,l+1
TX = Rl,l+1

TX +
T l+1,l

TX R̃l+1,l+2
TX T l,l+1

TX

1 − Rl+1,l
TX R̃l+1,l+2

TX

. (1)

The expressions for the reflection coefficientsRl,l+1
TX

and Rl+1,l
TX and for the transmission coefficientsT l,l+1

TX

and T l+1,l
TX result from lengthy calculations, which are sum-

marized in the appendix for both waveguides. They depend
of course on the material parametersnl and µr,l and the
layer thicknessestl, as well as on the modal propagation
constantsβTX. As can be expected, these latter typically
appear in radial wavenumberskρ,l =

√

k2
0n

2
l µr,l − β2

TX for
each layerl = 1, . . . , L+1, where the free-space wavenumber
is k0 = (ω/c) and c is the speed of light. Sincekρ,l is only
defined up to a sign, we demand thatℑ(kρ,l) ≤ 0. Using
propagation constantsβTX located in the fourth quadrant of
the complexβ-plane, i.e.ℜ(βTX) ≥ 0 and ℑ(βTX) ≤ 0,
propagation of the modes in the+z-direction with a bounded
mode profile is assured. Expression (1) for the generalized
reflection coefficient should be used recursively starting from
the top layerl = L, taking into account that̃RL+1,L+2

TX = 0,
working our way down to the generalized reflection coef-
ficient R̃1,2

TX. Denoting the denominator of the generalized
reflection coefficientR̃1,2

TX as NTX(βTX), the TX-polarized
dispersion relation of the waveguides under considerationis
given by

NTX(βTX) = 0. (2)

The propagation constantsβTX of the modes are found as the
zeros of this dispersion relation.

Besides leaky modes, also Bérenger modes exist within a
multilayered PEC-backed PML-closed waveguide. As stated
in [17], most of the field of these B́erenger modes is concen-
trated inside the PML, while strong attenuation is found in the
dielectric layer. Hence, a similar procedure as presented in [17]
for a single-layered waveguide can be followed to determine
the B́erenger modes’ propagation constants of multilayered
waveguides. Therefore, this will not be repeated here. For the
leaky modes, the situation is more complex when considering
a multilayered waveguide. Since the field of the leaky modes
is concentrated in the dielectric layer(s) of the waveguide, the
fact that we consider multiple layers in this paper has a large
influence and the procedure of [17] has to be altered.

C. Approximations for the propagation constants of the leaky
modes

The procedure starts by computing quasi-static estimates
of the propagation constants. These are found as zeros of a
properly approximated version of the dispersion relation (2).
For an open waveguide, the zeros are located in the improper
Riemann sheet (whereℑ(kρ,l) > 0) and for a PEC-backed

PML-closed waveguide they are located in the proper Riemann
sheet (whereℑ(kρ,l) ≤ 0). Anyway, under the quasi-static
approximation, the numbersβTX are exactly the same in both
cases, hence, we only focus on open waveguides here.

An approximate version of the dispersion relation (2) is
found as follows. First, it is safe to assume that the layer
thicknessestl, l = 1, . . . , L, form commensurable numbers.
This means that for each distancedl, l = 1, . . . , L, there exists
an integeril such thatdl = s il, where s is a fixed real
number. In all practical applications, such ans can be found.
This allows to introduce the following notation:

u = e2jkρ,ls. (3)

Second, large-argument expansions for the Bessel func-
tions [26], appearing in the expression for the reflection and
transmission coefficientsRl,l+1

TX , Rl+1,l
TX , T l,l+1

TX , and T l+1,l
TX

(see (A-1)–(A-4)) are introduced. Third, we invoke the quasi-
static approximation

kρ ≈ kρ,1 ≈ kρ,2 ≈ . . . ≈ kρ,L+1 ≈ jβTX. (4)

This quasi-static approximation is valid for high mode num-
bers m, i.e. for large values of|βTX|. The reader notices
that (4) leads toℑ(kρ) > 0 for propagation constantsβTX

situated in the fourth quadrant of the complex plane. Here,
for an open waveguide, this guarantees the location of the
propagation constants in the correct Riemann sheet, i.e. the
improper sheet. These three steps result in the following
expressions for the reflection and transmission coefficients:

Rl,l+1
TX ≈ −2j

(αl+1
TX − αl

TX)u−il

(αl+1
TX + αl

TX) + j(αl+1
TX − αl

TX)u−il

, (5)

Rl+1,l
TX ≈ − j

2

(αl+1
TX − αl

TX)(uil + u−il)

(αl+1
TX + αl

TX) + j(αl+1
TX − αl

TX)u−il

, (6)

T l,l+1
TX ≈ 2

αl
TX

(αl+1
TX + αl

TX) + j(αl+1
TX − αl

TX)u−il

, (7)

T l+1,l
TX ≈ 2

αl+1
TX

(αl+1
TX + αl

TX) + j(αl+1
TX − αl

TX)u−il

, (8)

where αl
TM = n2

l = ǫr,l and αl
TE = µr,l. The approxi-

mated dispersion relation for the leaky modes is now easily
constructed. Starting from the top interface between layers L
andL+1 and applying (1) with the above definitions (5)–(8),
the generalized reflection coefficient at the bottom interface
can be written as a rational function inu:

R̃1,2
TX ≈

MTX(u)

NTX(u)
. (9)

The denominatorNTX(u) = 0 now corresponds to the approx-
imated dispersion relation, and it can be easily shown that this
is a polynomial of degreeiL of the following form:

NTX(u) ≈ 1 + l.o.t.(u)− j
1 + αL

1− αL
uiL = 0, (10)

where the lower order termsl.o.t.(u) are of a degree smaller
than iL and larger than zero.

For general waveguides, the termsl.o.t.(u) cannot be ne-
glected and the complete dispersion relation (10) with the
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lower order terms has to be used to compute the quasi-static
estimates. Thereto, first, the zeros ofNTX(u) = 0 are deter-
mined using fast polynomial root finding techniques [27]. This
leads toiL zerosup, p = 1, . . . , iL. Second, eachup yields
a separate branch of propagation constants corresponding to
leaky modes, given by

jβTX ≈ kρ ≈
1

2js
log |up|+

1

2s
arg(up) +

mπ

s
, (11)

for a high mode orderm. Assuming that there is always
a dielectric contrast in at least one of the layers of the
waveguide, i.e. there is at least one refractive indexnl 6= 1,
the above described procedure is always valid for the TM-
modes. Similarly, for the TE-modes, the procedure is only
valid providedµr,l 6= 1 for at least one layer. In many practical
applications, there is no magnetic contrast between the layers,
yielding reflection coefficients for the TE-modes that are equal
to zero at all interfaces (see (5) and (6)). Therefore, the
particular case without magnetic contrast will be investigated
below.

D. Particular case: absence of magnetic contrast

In the absence of magnetic contrast, all layers have a relative
permeability µr,l = 1, l = 0, . . . , L, and more accurate
approximations of (A-1) and (A-2) for the TE-polarized re-
flection coefficients have to be made. Therefore, together with
the definition (3) and the large argument expansions for the
Bessel functions, instead of (4), thesecond-orderquasi-static
approximation

kρ,l ≈ jβTE − j
k2
0n

2
l

2βTE
= kρ +

k2
0n

2
l

2kρ

(12)

is introduced into the expressions of the TE-polarized reflec-
tion and transmission coefficients (see (A-1)–(A-4)), yielding

Rl,l+1
TE ≈ j

k2
0

k2
ρ

(n2
l+1 − n2

l )u−il

2− j
k2

0

2k2
ρ
(n2

l+1 − n2
l )u

−il

, (13)

Rl+1,l
TE ≈ j

4

k2
0

k2
ρ

(n2
l+1 − n2

l )
(

uil + u−il
)

2− j
k2

0

2k2
ρ
(n2

l+1 − n2
l )u

−il

, (14)

T l,l+1
TE ≈ 2

2− j
k2

0

2k2
ρ
(n2

l+1 − n2
l )u

−il

, (15)

T l+1,l
TE ≈ 2

2− j
k2

0

2k2
ρ
(n2

l+1 − n2
l )u

−il

. (16)

These new expressions (13)–(16) for the reflection and trans-
mission coefficients in geometries without magnetic contrast
are now used in the construction of the generalized reflec-
tion coefficientR̃1,2

TE. During this process, terms with factors
(

k0

kρ

)η

with η > 2 are omitted in the spirit of the second-order
approximation. This leads to a new approximated dispersion
relationNTE(u) = 0 of the following form:

NTE(u) ≈ 1 + l.o.t.(u) +
4j

k2

0

k2
ρ

(1− n2
L)

uiL = 0. (17)

Given this dispersion relation (17), it is clear that the procedure
explained in the previous section, i.e. finding the roots of
the polynomial leading to quasi-static estimates, cannot be
applied as the coefficients of the polynomial inu (17) now
also depend onkρ ≈ jβTE. As an alternative, for high
mode numbersm, we propose the following solution for the
propagation constants of themth TE-polarized leaky mode:

jβTE ≈ kρ ≈
mπ

s iL
+ A +

j

s iL
log

(

mπ

s iL
+ A

)

. (18)

It is now verified, a posteriori, that (18) is a good choice
and thatA is a constant independent of the mode numberm.
Substitution of (18) into (3) yields

u = e
2jmπ

iL e2jAs

(

mπ

s iL
+ A

)

−
2

iL

, (19)

whereA yet remains to be determined. Introducing (19) and
the first two terms of (18) into (17) yields

1 + termsO
(

1

mξ

)

+
4j

k2
0 (1− n2

L)
e2jAsiL ≈ 0. (20)

For large m, the terms of orderO
(

1
mξ

)

can be neglected
asξ > 0, yielding the following solution forA:

A = − j

siL
log

(

k0

√

1− n2
L

2

)

+
π

4siL
, (21)

which is indeed a constant independent of the mode num-
berm, making the proposed solution (18) valid. Inserting (21)
into (18) approximately results in

jβTE ≈ kρ ≈
j

siL
log

(

(4m + 1)π

2siLk0

√

1− n2
L

)

+
(4m + 1)π

4siL
,

(22)

which are valid second-order quasi-static approximationsfor
the TE-polarized dispersion relation in absence of magnetic
contrast.

Still, more accurate approximations can be obtained. Let us
introduce (18) and (19) into the common denominator of (13)–
(16). This yields

2− j
k2
0

2k2
ρ

(n2
l+1 − n2

l )u−il

≈ 2− j
k2
0

2
(n2

l+1 − n2
l )

e
−jil

2mπ
iL e−jil2As

(

mπ
s iL

+ A
)2
(

1−
il
iL

) . (23)

Two cases should now be distinguished. First, con-
sider il < iL, viz. l = 1, . . . , L − 1. The second term in the
right-hand side of (23) decreases quickly for increasingm
and hence, it can be neglected for largem. Second, for
il = iL, this term becomes independent ofm and it should
be retained. So, it can be seen that forl < L the reflection
coefficientsRl,l+1

TE (13) andRl+1,l
TE (14) are of orderO

(

1
mξ

)

and tend to zero asξ > 0. In the same way, the transmission
coefficients T l,l+1

TE (15) and T l+1,l
TE (16) for l < L tend

to one. Hence, the second-order quasi-static estimates of
the TE-polarized leaky modes of a multilayered waveguide
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without magnetic contrast only depend on the reflection and
transmission coefficients at the interface whereρ = s iL = dL.
This means that, in contrast to the general case described in
Section II-C, the lower order termsl.o.t.(u) in the dispersion
relations (17) can be neglected and the waveguide can be
replaced by a single-layered waveguide of thicknessdL = siL
with refractive index nL. The dispersion relation of this
waveguide is given by

1 +
4j

k2

0

k2
ρ

(1− n2
L)

e2jkρsiL = 0. (24)

The reader notices that this result (24) could also be found
by noting that, given (20), the termsl.o.t.(u) in (17) can be
omitted for high mode numbersm. Closed-form solutions of
the approximate TE-polarized dispersion relation (24) exist,
yielding the following accurate second-order quasi-static esti-
mates

jβTE ≈ kρ,L ≈ −
j

s iL
W

(

m,±1− j

2
√

2
k0siL

√

1− n2
L

)

,

(25)

where eachm is integer and corresponds to a different branch
of the LambertW functionW (·, ·) [28]. Due to the nature
of this approach, the solution (25) is similar to the result
presented in [17] for the TE-polarized estimates for a single-
layered waveguide.

E. Efficient computation procedure to exactly determine the
propagation constants of the leaky modes of open and PEC-
backed PML-closed waveguides

To now efficiently compute theexact values of the leaky
modes’ propagation constants of open or PEC-backed PML-
closed multilayered circular waveguides, the quasi-static es-
timates βTX, described in the previous sections, are used
as a starting point. Using the original, pertinent dispersion
relationsNTX(βTX) = 0 (2) for the open or the PEC-backed
PML-closed waveguide, the exact propagation constantsβTX

can be determined by performing some additional Newton
iterations [29]

βnew
TX ← βold

TX −
NTX

(

βold
TX

)

d
dβ

NTX (β)
∣

∣

∣

β=βold

TX

. (26)

This approach, also used in [16], yields good results for
sufficiently high mode numbers. Compared to the quasi-static
estimates for the leaky modes of multilayeredplanar dielec-
tric waveguides described in [16], however, the quasi-static
estimates presented here are less accurate. This is due to the
fact that forcircular waveguides we have to invoke the large
argument expansions of the Bessel functions. Nevertheless, it
is possible to implement a more accurate and robust scheme
by considering the estimatesbranch per branch, starting
from the highest mode numbers. The difference between the
asymptotic approximation and the actual propagation constant
(obtained via (26)) for modem is used as a constant error
term to correct the value of the asymptotic estimate for mode
order m − 1 along the same branch, i.e. this difference is

added to the asymptotic estimate for modem − 1 to yield a
better approximation. As a consequence, a smaller number of
additional Newton iterations (26) will be needed. It turnedout
to be even more advantageous to apply a so-calledlinear error
correction. Now, the asymptotic estimate for mode orderm−2
is corrected using the values of both mode ordersm − 1
andm of the same branch. In this way the number of required
Newton iterations becomes minimal, leading to a very efficient
technique.

III. N UMERICAL EXAMPLES

The technique to compute the propagation constants of
leaky modes, presented in Section II, is now validated and
illustrated by means of several numerical examples. We focus
on two technologically important cases, i.e. VCSEL cavities
on the one hand and a monomode fiber on the other. These
are both non-magnetic waveguides, as is most often the
case in practical applications. A comparison with a slow but
accurate principle of argument method (PAM) [30] is made.
All calculations were carried out in Mathematica 6.0 on a
Pentium T7400 Centrino Duo 2.16 GHz machine with 2 GB
RAM.

A. VCSEL cavities

VCSEL cavity 1 VCSEL cavity 2
t1 0.5 µm 0.8 µm
n1 2.9 2.9
t2 0.5 µm 0.7 µm
n2 1.55 1.55
n3 1 1
s 0.5 µm 0.1 µm
i1 1 8
i2 2 15

TABLE I: Material parameters (layer thicknessestl and re-
fractive indicesnl) for two VCSEL cavities consisting of two

dielectric, non-magnetic layers.

Consider two waveguides with material parameters as pro-
vided in Table I. These structures correspond to the AlAs-
AlOx apertures in VCSEL cavities described in [13], [31]. For
a free-space wavelengthλ0 = k0/2π = 1 µm, corresponding
to an angular frequency ofω = 2π300 THz, the location of the
TM-polarized propagation constants of a selected number of
leaky modes are given in Figs. 2(a) and 2(b) for VCSEL cav-
ity 1 and 2 respectively. The quasi-static solutions with linear
error correction are indicated by circles. These are computed
by calculating the roots of the polynomialNTM(u) = 0, as
presented in (10), combined with (11) and by applying linear
error correction, branch per branch, starting from the highest
mode orders. The exact locations of the propagation constants
(crosses on Fig. 2(a) and 2(b)) are determined by performing
additional Newton iterations (26), starting from the quasi-static
estimates after linear error correction. We have also determined
the exact locations using the PAM approach. For the modes
shown in Fig. 2, which are all high-order modes, they coincide
perfectly with the ones found with our technique (up to the
here considered 10 digits of accuracy). As for VCSEL cavity 1,
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the degree of the polynomial (10) isiL = 2, in Fig. 2(a)
two branches of leaky modes can be clearly distinguished. For
VCSEL cavity 2,iL = 15, and it is rather difficult to identify
the corresponding 15 branches visually in Fig. 2(b). From
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Fig. 2: Propagation constantsβTM of a selected number of
TM-polarized leaky modes of the VCSEL cavities 1 and 2
(Table I). Circles (◦): quasi-static approximations with linear

error correction. Crosses (×): Exact locations.

both branches of leaky modes of VCSEL cavity 1, a selected
number of quasi-static estimates with linear error correction
and the exact propagation constants (obtained after a number
of Newton iterations), as well as the relative error between
these two, are presented in Table II. The results obtained
with a PAM are exactly the same as the ones obtained after
performing additional Newton iterations, hence, they are not
shown in the table. Note that in this table — and in the
remainder of this paper — no distinction between the branches
is made to number the modes. They are collectively indexed
such that the imaginary part of the propagation constant of
modem is smaller than the imaginary part of the propagation
constant of modem−1, for all m. For VCSEL cavity 1, using
the new technique, it took 30 seconds of CPU time to calculate
the propagation constants of the first 500 TM-polarized leaky
modes up to 10 digits precision. To do the same with the PAM,
10986 seconds of CPU time were needed. Hence, the new
technique leads to a speedup factor of ca. 360. For VCSEL
cavity 2, similar speedups are obtained. It is clear from the
above that a high accuracy can be rapidly obtained, especially
for the high-order modes. The accuracy of the method is
further illustrated in Figs. 3(a) and 3(b), where the effect
of the linear error correction for VCSEL cavities 1 and 2
respectively is demonstrated. This is done by showing the
relative error between the estimates (with and without linear
error correction) on the one hand and the exact propagation
constants on the other hand. The two bottom curves are the
curves with the crosses, the two top ones those with the circles.
The reader notices that applying linear error correction for

each branch of modes, leads to far more accurate estimates.
Hence, starting from these accurate estimates, the number of
required additional Newton iterations (26), e.g. to obtainan
accuracy of 10 digits of precision, is low. For VCSEL cavity 1,
for mode numbersm larger than 100, a maximum of only
4 additional Newton iterations is needed to assure 10 digitsof
precision. For VCSEL cavity 2, for mode numbersm larger
than 100, a maximum of 5 additional Newton iterations (26) is
needed to assure 10 digits of precision. On the one hand, this
number of additionally required Newton iterations decreases
for increasing mode numbers. On the other hand, as can be
seen from Fig. 3, the relative error starts increasing quite
drastically for low order mode numbers. This is due to the
fact that the linearly corrected quasi-static approximation is
no longer good. The location of such low order modes, with
an imaginary part that is larger than, say−5k0, can be found
easily with a PAM, keeping in mind that, although being
more robust for these low order modes, this method is more
elaborate and time-consuming.
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Fig. 3: Relative error on the estimated quasi-static propagation
constantsβTM of VCSEL cavities 1 and 2 (Table I). Cir-
cles (◦): analytical estimates. Plus signs (+): linearly corrected

estimates.
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mode numberm
βTM/k0: quasi-static approximations

with linear error correction βTM/k0: exact values relative error
10 0.1130153− j 7.2951684 0.1119906− j 7.3042000 1.24 10

−3

11 0.0352484− j 7.7459141 0.0358785− j 7.7485492 3.50 10
−4

50 0.1082974− j 27.4851664 0.1083013− j 27.4853739 7.55 10
−6

51 0.0334020− j 28.0695995 0.0333966− j 28.0696495 1.79 10
−6

100 0.1057097− j 52.5181019 0.1057113− j 52.5181322 5.78 10
−7

101 0.0355355− j 53.1290048 0.0355338− j 53.1290130 1.58 10
−7

250 0.1036129− j 127.5398356 0.1036131− j 127.5398377 1.65 10
−8

251 0.0374738− j 128.1676009 0.0374736− j 128.1676016 5.68 10
−9

TABLE II: Quasi-static estimates with linear error correction and exact values of the normalized propagation constants βTM/k0

of a selected number of leaky modes of VCSEL cavity 1 (Table I), and the relative error between them.

The TE-polarized eigenmodes of VCSEL cavity 1 are also
presented. Again a free-space wavelengthλ0 = 1 µm is
used. The locations of a selected number of TE-polarized
propagation constants in the complexβ-plane are shown in
Fig. 4. There are two branches of leaky modes, which was
also predicted by (25). One branch of propagation constants
is calculated using the plus sign in the argument of the
LambertW function, the other branch corresponds to the minus
sign. Comparing the precision of the estimates without error
correction and with linear error correction for this TE-case
leads to similar conclusions as for the TM-case. Also, a
significant speedup is obtained. With the new technique, it
took 27 seconds to determine the propagation constants of the
first 500 TE-polarized leaky waves up to 10 digits of precision.
Doing the same with the PAM took 8281 seconds, and hence,
the speedup factor is ca. 300. For the TE-modes of VCSEL
cavity 2, similar results as for VCSEL cavity 1 are obtained.
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Fig. 4: Propagation constantsβTE of a selected number of
TE-polarized leaky modes of VCSEL cavity 1 (Table I).
Circles (◦): quasi-static approximations with linear error cor-

rection. Crosses (×): Exact locations.

B. Monomode fiber

In the final example, the TM-polarized leaky modes’ prop-
agation constants of a monomode fiber with characteristics
shown in Table III, leading to a numerical apertureNA = 0.17,

Monomode fiber
t1 4.5 µm
n1 1.5096
t2 58.5 µm
n2 1.5
n3 1
s 4.5 µm
i1 1
i2 14

TABLE III: Material parameters (layer thicknessestl and
refractive indicesnl) for a monomode fiber consisting of
two dielectric, non-magnetic layers, and with a numerical

apertureNA =
√

n2
1 − n2

2 = 0.17.
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Fig. 5: Propagation constantsβTM of a selected number of
TM-polarized leaky modes of the monomode fiber (Table III).
Circles (◦): quasi-static approximations with linear error cor-

rection. Crosses (×): Exact locations.

are computed. For a free-space wavelengthλ0 = k0/2π =
1.55 µm, or thus an angular frequency ofω = 2π194 THz,
the location of a selected number of TM-polarized propagation
constants of the leaky modes are given in Fig. 5. For this
fiber, the dispersion relation corresponds to a polynomial in u
of degreeiL = 14, leading to 14 branches of leaky modes.
Fig. 6 demonstrates the effect of the linear error correction
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Fig. 6: Relative error on the estimated quasi-static propa-
gation constantsβTM of the monomode fiber (Table III).
Dashed line (−−): analytical estimates. Full line (–): linearly

corrected estimates.

by showing the relative error between the estimates (with and
without linear error correction) on the one hand and the exact
propagation constants obtained after a number of Newton iter-
ations on the other hand. It is clear that, also in this example,
applying linear error correction for each branch of modes,
leads to far more accurate estimates. Hence, starting from
these accurate estimates, the number of required additional
Newton iterations (26), e.g. to obtain an accuracy of 10 digits
of precision, is again low. E.g., for mode numbersm higher
than 100, a maximum of only 6 additional Newton iterations
is required to assure 10 digits of precision. This number of
additional Newton iterations decreases for increasing mode
numbers. E.g., for mode numbersm higher than 4284, the
quasi-static estimates with linear error correction are already
accurate up to 10 digits of precision and no additional Newton
iterations are required.

The above examples demonstrate that the proposed tech-
nique is very efficient and accurate. Of course, the method
is best suited to locate high-order modes, since the accuracy
of the quasi-static approximations is the best for high mode
orders. When used in a PML-based (mode matching) for-
malism the new method is especially advantageous, since the
propagation constants of many modes need to be accurately
determined and also because the method remains stable for
high mode orders.

IV. CONCLUSIONS

To efficiently and accurately compute the TM- and TE-
polarized leaky modes’ propagation constants of open and
PEC-backed PML-closed multilayered cylindrical waveguides,
a two-step approach has been presented in this paper. Assum-
ing that the layer thicknesses form commensurable numbers,
which is the case in most practical applications, first, the
pertinent dispersion relation of the cylindrical waveguides, ex-
pressed in terms of cylindrical Bessel functions, are carefully
approximated. For higher-order modes, this leads to quasi-
static estimates of the propagation constants, which are found

as the roots of a polynomial function. In the particular case
of dielectric waveguides without magnetic contrast, special
closed-form solutions have been derived. Second, the estimates
are used as the starting point in an iterative Newton scheme to
determine the exact propagation constants. In contrast to planar
layered media, extra care has to be taken here to achieve a high
accuracy. This is done by subjecting the quasi-static estimates
to an adaptive linear error correction technique.

The proposed method has been applied to two types of tech-
nologically important multilayered cylindrical waveguides,
i.e. VCSEL cavities and monomode fibers. In this way, the
method is thoroughly illustrated and validated. It is important
to mention that the proposed formalism is indispensable to
conceive accurate mode matching techniques used for analysis
and design purposes in photonics applications [13], [14].

APPENDIX

In this appendix, the reflection coefficientsRl,l+1
TX

andRl+1,l
TX , and the transmission coefficientsT l,l+1

TX andT l+1,l
TX ,

used in the expression for the generalized reflection coeffi-
cient R̃l,l+1

TX (1) are presented. To compute these coefficients,
for a PEC-backed PML-closed waveguide, the procedure
presented in [25] has to be adapted. The results of this
procedure for both the open and the PEC-backed PML-closed
multilayered circular waveguide presented in Fig. 1 can be
summarized as follows:

Rl,l+1
TX =

X l,l+1
TX

Dl,l+1
TX

, (A-1)

Rl+1,l
TX =

X l+1,l
TX

Dl,l+1
TX

, (A-2)

T l,l+1
TX =

2j

πk2
ρ,ldl

αl
TX

Dl,l+1
TX

, (A-3)

T l+1,l
TX =

2j

πk2
ρ,l+1dl

αl+1
TX

Dl,l+1
TX

, (A-4)

and

Dl,l+1
TX =

αl
TX

kρ,l

J0
′(kρ,ldl)fTX(kρ,l+1dl)

− αl+1
TX

kρ,l+1
J0(kρ,ldl)gTX(kρ,l+1dl), (A-5)

X l,l+1
TX =

αl+1
TX

kρ,l+1
H

(2)
0 (kρ,ldl)gTX(kρ,l+1dl)

− αl
TX

kρ,l

H
(2)
0

′

(kρ,ldl)fTX(kρ,l+1dl), (A-6)

X l+1,l
TX =

αl+1
TX

kρ,l+1
J0(kρ,ldl)J0

′(kρ,l+1dl)

− αl
TX

kρ,l

J0
′(kρ,ldl)J0(kρ,l+1dl), (A-7)
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where

fTM(kρ,l+1dl) = H
(2)
0 (kρ,l+1dl)

− σl+1
H

(2)
0 (kρ,l+1D)

J0(kρ,l+1D)
J0(kρ,l+1dl),

(A-8)

gTM(kρ,l+1dl) = H
(2)
0

′

(kρ,l+1dl)

− σl+1
H

(2)
0 (kρ,l+1D)

J0(kρ,l+1D)
J0

′(kρ,l+1dl),

(A-9)

fTE(kρ,l+1dl) = H
(2)
0 (kρ,l+1dl)

− σl+1
H

(2)
0

′

(kρ,l+1D)

J0
′(kρ,l+1D)

J0(kρ,l+1dl),

(A-10)

gTE(kρ,l+1dl) = H
(2)
0

′

(kρ,l+1dl)

− σl+1
H

(2)
0

′

(kρ,l+1D)

J0
′(kρ,l+1D)

J0
′(kρ,l+1dl),

(A-11)

αl
TM = n2

l , αl
TE = µr,l, and kρ,l =

√

k2
0n

2
l µr,l − β2

TX.
In (A-5)–(A-11), J0(·) is the zeroth order Bessel function,
H

(2)
0 (·) is the zeroth order Hankel function of the second kind,

andJ0
′(·) andH

(2)
0

′

(·) are their first-order derivatives respec-
tively. The numbersσl allow to write the expressions (A-8)–
(A-11) for both the open and the PEC-backed PML-closed
waveguide compactly. They are given by:

σl = 0, for l = 1, . . . , L ,

σL+1 =

{

0, for an open waveguide (Fig 1(a)),
1, for a closed waveguide (Fig 1(b)).

(A-12)

Hence, the numbersσl equal zero for all dielectric lay-
ers l = 1, . . . , L. For the layer of air (l = L + 1), σL+1

equals zero for an open configuration (Fig. 1(a)), and the
functionsfTX(kρ,l+1dl) andgTX(kρ,l+1dl) reduce to outgoing
cylindrical waves. For thefinite layer of air,σL+1 is equal to
one for the PEC-backed PML-closed configuration (Fig. 1(b)),
and then the proper boundary condition atρ = D is imposed
via the functionsfTX(kρ,l+1dl) andgTX(kρ,l+1dl).
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