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In this short note, we come back to the recent proposal put forward by Kharzeev and Levin [1], in which they
phenomenologically couple the non-perturbative Veneziano ghost to the perturbative gluon, leading to a modi-
fied gluon propagator (the “glost”) of the Gribov type, with complex poles. As such, a possible link was made
between the QCD topological θ-vacuum (Veneziano ghost) and color confinement (no physically observable
gluons). We discuss some subtleties concerning gauge (BRST) invariance of this proposal, related to the choice
of Feynman gauge. We furthermore provide an example in the Landau gauge of a similar phenomenological
vertex that also describes the necessary Veneziano ghost but does not affect the Landau gauge gluon propagator.

PACS numbers: 12.38.Aw, 12.38.Lg

In the recent Letter [1], see also [2], the issue of the
Veneziano ghost [3] was revisited. In the absence of mass-
less quarks, the QCD action can explicitly depend on an extra
parameter, the θ-angle, closely related to the non-trivial topo-
logical nature of the QCD vacuum (cf. instanton dynamics de-
scribing the tunneling between different states with different
winding number, [4, 5]).

For the sake of presentation, we will mostly follow the no-
tations of [1]. A fundamental ingredient in the whole discus-
sion is the topological susceptibility χ4, defined in the pure
Yang-Mills case as the zero momentum correlator [6]

i
∫

d4x〈Q (x)Q (0)〉 = −χ
4 , (1)

where Q (x) is a pseudoscalar quantity, given by

Q (x) =
g2

32π2 Fµν(x)F̃µν(x) , (2)

with F̃µν = 1
2 εµναβFαβ the dual field strength. We refer to [1, 2,

6–8] for more details. The existence of χ4 received numerous
lattice confirmations, see e.g. [9–11]. The interesting part is
that the gauge invariant quantity Q (x) can be written as a total
derivative of a gauge variant pseudovector Kµ(x),

Q (x) = ∂µK µ ,K µ =
g2

16π2 ε
µνρσAa

ν

(
∂ρAa

σ +
g
3

f abcAb
ρAc

σ

)
.

(3)
A non-vanishing 〈Q Q 〉 correlator at zero momentum, that is,
a non-vanishing topological susceptibility, is thus only possi-
ble if there is a massless pole in the 〈K K 〉 correlator given
that Q is a total derivative. Such a pseudovector pole was in-
troduced first by Veneziano [3], inspired by Witten [6]. They
were then able to connect the topological susceptibility to the
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mass of the η′ particle. More precisely, Veneziano proposed

Kµν(q) = i
∫

d4xeiqx 〈Kµ(x)Kν(0)〉
q2∼0∼ −χ4

q2 gµν . (4)

The negative sign of residue of the massless pole indicates the
new “particle” is indeed a ghost, see also [12].

Kharzeev and Levin then recognized that the current corre-
lator (4) can be interpreted as being sourced by an effective in-
teraction between the glue and the Veneziano ghost. They pos-
tulated such a vertex, and then solved the Dyson-Schwinger
equation using solely this coupling, leading to a dynamically
corrected gluon propagator (the “glost”) given by

Gµν(p2) =
p2

p4 +χ4 gµν . (5)

In the following we will first show that this result necessar-
ily breaks the perturbative BRST symmetry of the underlying
theory.

They relied on the Feynman gauge to facilitate computa-
tions. Let us first look again at the Faddeev-Popov action in a
general linear covariant gauge, written as1

S =
∫

d4x
(

1
4

F2
µν +ba

∂µAa
µ + ca

∂µDab
µ cb− α

2
baba

)
(6)

with covariant derivative

Dab
µ = δ

ab
∂µ−g f abcAc

µ . (7)

The auxiliary field ba enforces the linear covariant gauge, with
α = 1 corresponding to the Feynman gauge.

We recall here that the local gauge invariance gets replaced,
after gauge fixing, by the BRST invariance [13], a crucial

1 We switch to Euclidean space time here.
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concept to treat gauge theories at the quantum level, used in
proofs of perturbative unitarity, renormalizability or quantum
gauge invariance. The BRST variation reads

sAa
µ =−Dab

µ cb , sca =
g
2

f abccbcc , sca = ba , sba = 0 .
(8)

Hence

S =
∫

d4x
(

1
4

F2
µν

)
+ s

∫
d4x

(
ca

∂µAa
µ−

α

2
baca

)
. (9)

The tree level gluon propagator in momentum (Fourier) space
is easily found, viz.

Dµν(p) =
gµν

p2 − (1−α)
pµ pν

p4 . (10)

The longitudinal part is thus given by

DL(p) =
α

p2 (11)

and this is in fact an exact result, as a result of BRST sym-
metry. One way to appreciate this would be to recall that
the gluon self-energy corrections are transverse due to BRST
invariance, so the longitudinal sector of its inverse (viz. the
gluon propagator) cannot receive any corrections and thus it
stays bare. However, as we will discuss later, sometimes one
has to be careful when using the gluon self-energy.

Another explicit way to understand (11), not making using
of the gluon self-energy but still making use of BRST invari-
ance, goes as follows: we can always exactly compute the b-
propagator from the action (6); with ϕ representing any other
field present in the action and adding to the action the term∫

d4xJaba, with Ja an external current;

〈b(x)b(y)〉= δ2

δJ(y)δJ(x)

∫
[dϕdb]e−S

∣∣∣∣
J=0

. (12)

We can integrate exactly over the b-field, giving∫
[dϕdb]e−S =

∫
[dϕ]e−

∫
d4x

(
1

2α
(∂A)2+ 1

α
J∂A+ J2

2α
+rest

)
. (13)

Using (12), this leads to the exact identification

〈b(x)b(y)〉= 1
α2 〈∂A(x)∂A(y)〉− δ(x− y)

α
. (14)

Since the l.h.s. must be zero assuming BRST invariance
(〈s(cb)〉 = 〈bb〉), so must be the r.h.s. As we only relied on
the definition of the linear covariant gauge, next to BRST in-
variance, we can safely state that, according to (14), the gluon
propagator in that gauge must be of the form

Dµν(p) = ∆(p2)Pµν(p)+α
pµ pν

p4 (15)

in Fourier space, where all non-trivial (non-)perturbative in-
formation is collected in the form factor ∆(q2) coupled to the
transverse projector Pµν(p) = gµν−

pµ pν

p2 .

Returning to the glost, it is immediately clear, given the
incompatibility of the general form (15) and the glost-result
(5), that the BRST symmetry must be violated, given that the
Feynman gauge definition/choice was not explicitly violated.

Next, let us have a closer look on the alluded connection
with the Gribov gauge fixing ambiguity. This was first con-
sidered by Gribov in the seminal work [14] at leading order,
later on generalized to all orders by Zwanziger, see [15] and
the recent review [16]. These works were focused on either
the Landau gauge (α→ 0 limit of the linear covariant gauge,
corresponding to ∂A = 0) or the Coulomb gauge, although it
was shown later on by Singer that the Gribov problem is of
a quite generic nature [17]. Only more recently, the Gribov
issue was considered for the linear covariant gauge and stud-
ied explicitly [18, 19, 21]. Let us provide a sketchy overview
of the Gribov problem. Assuming a linear gauge fixing of the
type

∂µAa
µ = αba , (16)

then the Faddeev-Popov construction implicitly relies on the
fact that each gauge orbit only intersects once with the hy-
persurface defined by (16). Though, Gribov showed this to
be wrong at least for α = 0 (Landau gauge). Assuming an
infinitesimally gauge equivalent configuration

Ãa
µ = Aa

µ +Dab
µ ω

b , (17)

then Ãa
µ can fulfill the same gauge condition (16) iff

−∂µDab
µ ω

b = 0 , (18)

that is, there are gauge copies if the Faddeev-Popov operator,
−∂D, has non-trivial zero modes. In the case of the Landau
gauge, this operator is Hermitian, so its eigenvalues are real.
Gribov and Zwanziger therefore suggested to restrict the path
integration to a subset of gauge configurations, namely those
for which the Faddeev-Popov operator is positive. They man-
aged to implement this restriction explicitly into the partition
function. This amounts to the introduction of a dynamical
mass scale λ4 into the theory obeying a self-consistent gap
equation, and which affects the gluon propagator. At leading
order, one finds [14, 15]

Gµν(p) =
p2

p4 +λ4 Pµν(p) . (19)

The presence of the complex conjugate poles in (19) is why
Gribov propagators are frequently used in describing confined
degrees of freedom, since these cannot have a physical particle
(Källén-Lehmann) interpretation.

The glost propagator (5) thus appears of the Gribov type,
(19), if we identify the Gribov mass scale λ4 with the topolog-
ical susceptibility χ4. Note that the derivation of the Gribov
propagator (19) is specific for the Landau gauge, so it does
not apply to the Feynman gauge. The generalization of the
Gribov-Zwanziger construction to the linear covariant gauges
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was discussed in [18, 19, 21], leading to a propagator2

Gµν(p) =
p2

p4 +λ4 Pµν(p)+α
pµ pν

p4 . (20)

As such, the identification of the Feynman gauge glost prop-
agator (5) as the one capable of dynamically curing the Gri-
bov ambiguity based on the topological properties of the QCD
vacuum (non-zero χ4) does not necessarily appear to be well
founded. Interestingly, the (partial) resolution of the gauge
fixing ambiguity by restricting the integration region of the
gauge fields à la Gribov-Zwanziger3 does lead to a (soft)
breaking of the “standard” BRST symmetry generated by (8),
see for instance [15, 21–23]. Though, a non-perturbative
BRST symmetry can be introduced, depending on the Gribov
mass λ4, which allows, for example, to still prove the non-
renormalization of the longitudinal gluon propagator. Next to
analytical arguments [21, 25, 26], this has also been explic-
itly observed in lattice simulations [27, 28], which in princi-
ple encompass the topological raison d’être of 〈Q Q 〉. It is
important to mention that, when using the Gribov-Zwanziger
formalism, additional fields are required to maintain locality
[15, 16]. These extra fields enter the BRST transformation
and mix up with e.g. the gauge field. As such, it makes no
longer sense to work with only the gluon self energy, since it
will be part of a 1PI matrix that defines, after inversion, the
(connected) propagator matrix. For an explicit example, see
[29].

As the Gribov issue has been studied to more extent in the
Landau gauge, we should not refrain from carrying out a sim-
ilar exercise as [1] in this particular gauge. We first notice that
(4) is not the unique sensible way to introduce the Veneziano
ghost. The most important ingredient is to have the zero mass
pole, so

Kµν(q) = i
∫

d4xeiqx 〈Kµ(x)Kν(0)〉
q2∼0∼ −χ4

q2
qµqν

q2 (21)

will equally well do the job (see also [7, 24]), i.e. without
changing the gauge invariant 〈Q Q 〉-correlator (1). Any suit-
ably chosen linear combination of (4) and (21) is also possi-
ble. Adding a term transversal in q will not affect 〈Q Q 〉 ei-
ther. We will now benefit from these observations. Following
[1], from (21) we may define an effective infrared Veneziano
ghost-gluon-gluon vertex Γ

αβ
µ (q, p),

1
(2π)4i

∫
d4 pΓ

αβ
µ Γ

ρσ

ν

Pαρ(p)
p2

Pβσ(p−q)
(p−q)2 =−χ2

q2
qµqν

q2 , (22)

where we assumed the Landau gauge condition. From the
Landau gauge defining Ward identity δΓ

δb = ∂µAµ, with Γ the

2 The propagators appearing in [19, 21] are more general, taking into ac-
count further vacuum corrections, which are however unessential for the
discussion here.

3 For an alternative approach, also displaying a soft BRST breaking, see [20].

FIG. 1: One loop gluon self energy: dashed line stands for the
Veneziano ghost propagator, curly line represents the perturbative
gluon, the black dots are vertices.

1PI generating functional, it can be easily shown that the Lan-
dau gauge gluon propagator is necessarily transverse, thus
proportional to the already defined projector Pµν.

A (possible) solution to (22) is provided by

Γ
αβ
µ (q, p) ∝ Xqµ(p−q)αqβ ; q≤ p

X2 =
−χ2

p2q2
1

(p−q)α(p−q)ρqβqσPαρ(q)Pβσ(p−q)
,(23)

where we omitted some numerical prefactors irrelevant for
further purposes. The indices µ, resp. α,β refer to the
Veneziano ghost, resp. gluons.

Assuming the infrared physics is dominated by the glost4,
we can compute the one loop gluon self energy Σ using the
vertex Γ

αβ
µ . The diagram shown in FIG. 1 leads to

Σµν(p) =
1

(2π)4i

∫
d4qΓ

µβ

α (q, p)
qαqρ

q4

Pβσ(p−q)
(p−q)2 Γ

νσ
ρ (q, p) ,

(24)

where we used for the internal Veneziano ghost a propagator
of the form qαqρ

q4 , consistent with our earlier choice (22). As in
[1], we can approximate the integral (24) by assuming q� p
as we are considering non-perturbative effects in the very deep
infrared. Because of our choice of vertex (23), we would find,
for q� p,

Γ
µβ

α (q, p)Γνσ
ρ (q, p)

q�p
∝ pµ pν (25)

and a fortiori, we would thus have

Σµν(p) ∝ pµ pν , (26)

i.e. the gluon self energy becomes longitudinal in this case. It
is then immediate that the Landau gauge glost propagator will
coincide with the perturbative gluon one, since the transverse
projector, that is by definition present in the propagator, will
always project to zero the self-energy correction (26).

Notice that we are not proclaiming that the vertex defined
via (22)-(23) is the correct one in the Landau gauge5, as other

4 That means, we will omit all information from the already present quark,
gluon and ghost vertices, see also [1, 2].

5 Rather the contrary, since the eventual gluon self energy is not transverse
either.
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possibilities exist, as long as the gauge invariant correlation
function 〈Q Q 〉 is correctly reproduced. We merely wanted to
illustrate that depending on the vertex choice, quite some dif-
ferent glost propagator dynamics could emerge. However, to
find out which vertex is effectively realized per gauge is open
for future debate. Another strong constraint, next to consis-
tency with 〈Q Q 〉, is that the longitudinal part of the gluon
propagator in the class of linear covariant gauges should re-
ceive no quantum corrections. In brief, a possible strategy to
proceed would be to set

Kµν(q)
q2∼0∼ −χ4

1
q2 δµν−

χ4
2

q2
qµqν

q2 + f (p,q)Pµν(q) , (27)

with χ4 = χ4
1 +χ4

2; and then to propose Ansätze for the vertex
Γ

αβ
µ (q, p) such that (27) can be realized in conjunction with a

longitudinal gluon propagator projection that remains α

p2 .

At last, it is worth mentioning that the Gribov problem has
been extensively studied in the Coulomb gauge as well, in
which case [14, 30] a gluon propagator

D(~p, p0) =
~p2

(p2
0 +~p2)~p2 +M4

(28)

was predicted (up to a projector), a form that is indeed pretty
consistent with corresponding lattice data [31]. It would ap-
pear that (28) does not entirely match the Coulomb gauge
glost propagator used in [1] to analyze a non-perturbative in-
frared coupling constant. In [32], a link was also made with
BRST breaking.

In summary, we have provided some arguments why it ap-
pears to be premature to directly link the topological nature of
the QCD vacuum to confinement, or more precisely, to link
the Veneziano ghost to the issue of Gribov copies and con-
finement. We discussed the apparent lack of BRST invari-
ance, related to a strong constraint on the longitudinal sector
of the gluon/glost propagator that is not fulfilled. As respect-
ing BRST invariance is crucial to extract gauge invariant (or

better said, gauge parameter independent) physical informa-
tion, one does not have the liberty to tamper too much with
effective vertices and/or propagators. Therefore, we paid a
somewhat closer view at the connection with the Gribov gauge
fixing ambiguity, reporting some different behaviour here than
from the introduced gluon/glost propagator. Furthermore, we
provided an example of a “Veneziano vertex” that does not af-
fect the gluon propagator at all, at least in the Landau gauge.

Though, further research is definitely needed to provide a
firmer answer to the premise of [1], and either to confirm or
to falsify it. In our opinion, a quite delicate point is the gauge
dependent nature of the Kµ-current and its correlation func-
tion. Since this is a genuinely non-perturbative correlation
function, it would already be most interesting to have specific
information about it using e.g. gauge fixed lattice simulations
or perhaps even via functional methods. That such might be-
come possible in the future is not unrealistic, given the re-
cent progress in accessing the linear covariant gauges non-
perturbatively [21, 25–28, 33]. This might also put further
restrictions on how the effective Veneziano ghost-gluon inter-
action must be modeled. In any case, lattice Landau gauge
is well-matured by now, so that might be the first option to
explore the Veneziano ghost in a fully non-perturbative gauge
fixed setting.
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