
Notes on sum-tests and independence tests

Bruno Bauwens ∗ Sebastiaan A. Terwijn†

Abstract

We study statistical sum-tests and independence tests, in partic-
ular for computably enumerable semimeasures on a discrete do-
main. Among other things, we prove that for universal semimea-
sures every Σ0

1-sum-test is bounded, but unbounded Π0
1-sum-tests

exist, and we study to what extent the latter can be universal.
For universal semimeasures, in the unary case of sum-test we leave
open whether universal Π0

1-sum-tests exist, whereas in the binary
case of independence tests we prove that they do not exist.

Keywords: sum-tests – independence tests – Kolmogorov com-
plexity

1 Introduction

At the intersection of statistics and computability theory one is interested
in the most significant statistical tests satisfying certain computational
restrictions. In this paper we investigate “identity testing” and tests for
independence of two strings. In the traditional statistical framework one
uses concrete and simple formula-based statistical tests for elementary
probability distributions such as the Kolmogorov-Smirnov test and the
correlation test for Gaussian distributions. In the course of time more
and more powerful tests relative to increasingly sophisticated distribu-
tions have been constructed [12, 14]. It makes sense to ask for which
computational restrictions most significant tests exist.

Suppose that one wants to test a coin for fairness. A fair coin gener-
ates sequences of coin flips according to a uniform distribution. We want

∗Department of Electrical Energy, Systems and Automation, Ghent University,
Technologiepark 913, B-9052, Ghent, Belgium, Bruno.Bauwens@ugent.be. Supported
by a Ph.D grant of the Institute for the Promotion of Innovation through Science and
Technology in Flanders (IWT-Vlaanderen).
†Radboud University Nijmegen, Department of Mathematics, PO Box 9010, 6500

GL Nijmegen, the Netherlands, terwijn@logic.at. Supported by the Austrian Science
Fund FWF under project P20346-N18.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55796322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to test whether a generated sequence is consistent with this distribution
and does not carry more structure. This is known as “identity testing”
or “randomness testing”. For example, we can test whether the mean of
the coin flip sequence is distributed according to a Bernoulli distribution.
If the coin passes this particular test, there is still the possibility that it
is tricked, but we can then go on and devise other tests. It is natural to
ask whether this process of improving tests has a limit. This corresponds
to the question whether there exist universal elements in a set of tests of
a given complexity.

Independence testing is the process of determining whether two sour-
ces can be considered as two distinctly operating systems, or that they are
part of an interacting system in which information is shared or exchanged.
Such independence tests show up in many engineering applications such
as source separating, dimension reduction, and noise elimination [7, 8].
In advanced practical tests [6, 13] we see an evolution of tests for more
complex interactions relative to more sophisticated sources.

Identity testing has been studied for ergodic sources using universal
codes in Ryabko et al. [14]. These universal codes are are optimal for
compressing ergodic sources and are still sufficiently computable for use
in practice. The information distance and information metric introduced
in [1, 10] express how similar two objects are. Complementary to inde-
pendence tests, similar objects have low distance or metric value. The
information metric is neither computably enumerable (c.e.) nor co-c.e.
However, its computable approximations have turned out to be very use-
ful [2, 3].

Sum-tests have been investigated as tests for randomness for finite bi-
nary strings relative to computable distributions, cf. Li and Vitányi [11].
It is shown in [11] that there are c.e. sum-tests subsuming all computable
sum-tests (cf. Section 4 below). By considering sum-tests relative the
product of two universal distributions the definition of sum-tests natu-
rally leads to independence tests. This was first noted by Levin [9], and
a more general notion was mentioned in Gács [5]. In [9] it is argued that
algorithmic mutual information appears naturally as an independence
test relative to two universal distributions.

We now give the formal definitions of sum-tests and independence
tests. Some measure-theoretic terminology is explained along with our
notation at the end of the section.

Let P be a given semimeasure on the set ω of natural numbers. We
call a unary function d : ω → Z with∑

x∈ω

P (x)2d(x) 6 1 (1)

2

a sum-test for P or simply a P -sum-test. 1

One can think of a sum-test as a test for randomness for the case of a
semimeasure on a discrete domain. Namely, if d is a P -sum-test, then for
every n it easily follows from (1) that the set

{
x : d(x) > n

}
has weight

6 2−n under the semimeasure P . Therefore strings x for which d(x) is
large are not random with respect to P .

Note that it is not really essential that sum-tests are integer func-
tions: If we would allow them to have rational values, then since 2d(x) 6
2bd(x)c+1 6 2d(x)+1 we see that by rounding off d upwards we would only
change the sum (1) by a factor 2, not changing anything essential for the
theory.

Definition 1.1. Given two semimeasures P and Q, a binary function
d : ω × ω → Z with ∑

x,y∈ω

P (x)Q(y)2d(x,y) 6 1 (2)

is called an independence test for P and Q.

Independence tests of this form were first studied in the PhD-research
of the first author. Just as sum-tests are tests for randomness, indepen-
dence tests can be thought of testing possible algorithmic dependencies
between pairs of strings that are random relative to P and Q. Note
that analogously to the unary case we have that if d is an indepen-
dence test for P and Q then for every n it follows from (2) that the set{

(x, y) : d(x, y) > n
}

has weight 6 2−n under the product semimea-
sure P · Q. Therefore pairs (x, y) that are random relative to P and Q
for which d(x, y) is large are not independent with respect to P and Q.

Below we investigate to what extent there are universal (i.e. additively
dominating all others) sum-tests and independence tests for a given Σ0

1-
semimeasure P . Our results are as follows. Let m denote Levin’s uni-
versal Σ0

1-semimeasure (cf. Theorem 3.2). First, there are no unbounded
Σ0

1-sum-tests for m (Corollary 4.2), but there are unbounded and mono-
tone Π0

1-sum-tests for any given Σ0
1-semimeasure (Proposition 5.1). We

prove that in the following cases there is no universal Π0
1-sum-test for

P ∈ Σ0
1:

• P computable (Proposition 6.1)

• P (x) = 0 infinitely often (Proposition 6.2)

1In [11] a sum-test is a function d : ω → ω rather than a function into the integers.
The stricter definition is only interesting for the study of proper semimeasures P ,
that is with

∑
x P (x) < 1. By suggestion of the referee we use the more liberal

definition. For the questions studied in this paper the difference is immaterial, and
the presentation of section 7 becomes much smoother with this definition.

3

• P does not have a strictly positive computable lower bound, i.e. a
computable Q such that P (x) > Q(x) > 0 a.e. x. (Corollary 6.3)

Note that no universal Σ0
1-semimeasure satisfies any of these. The most

important question we leave open is whether for P = m there is no uni-
versal Π0

1-sum-test (Question 6.4). In Section 7 we answer this question
in the binary case of independence tests: We prove that there is no uni-
versal Π0

1-independence test in case both measures are m (Theorem 7.3).
We end this section with some notation and terminology. As we

already said, ω is the set of natural numbers. This set is effectively
bijective with the set of all finite binary strings.

A function f is Σ0
1, or computably enumerable, if it is computably

approximable from below, that is, if there exists a computable function
f̂(x, s) that is monotonic nondecreasing in s such that lims f̂(x, s) = f(x).
Similarly, f is Π0

1 if it is computably approximable from above, i.e. the
approximation f̂ is monotonic nonincreasing in s.

A function P : ω → R is a probability measure if
∑

x P (x) = 1.
Since every Σ0

1-measure is computable (Proposition 3.1), in computability
theory it is often natural to consider semimeasures. A function P : ω →
R is a semimeasure if

∑
x P (x) 6 1.

A function f dominates a function g if f(x) > g(x) for almost every x,
and f additively dominates g there is a constant c such that f(x) +
c > g(x) for every x. As in [11], we call a function f universal2 or
additively optimal for a class C if f ∈ C and f additively dominates all
other functions in C. A function is called an order if it is monotone
and unbounded.3 Given two functions d and d′, the phrase “d′ − d is
unbounded” abbreviates the statement that for all i there is x such that
d′(x)− d(x) > i.

2 Some general notes on Σ0
1- and Π0

1-func-

tions

As a preparation for sections to follow, we list some basic folk facts about
Σ0

1- and Π0
1-functions. (The discussion here is about functions from ω

to ω.)

(i) There is no universal Σ0
1-function. Namely if f ∈ Σ0

1 then also the
function λx.f(x) + x is Σ0

1.

2Note that the term universal is used here to refer to growth rates, and should
not be confused with the other common usage of the term, referring to the ability to
enumerate all other functions in the class.

3This translation of Schnorr’s term “Ordnungsfunktion” [15] has meanwhile be-
come standard in randomness theory.

4

(ii) The reason we cannot build a universal (additively optimal) Σ0
1-

function is that the Σ0
1-functions are not uniformly enumerable; in

an effective enumeration of the computable approximations (which
does exist) we cannot effectively separate those that remain finite
from the ones that grow unbounded. That there is a universal
Martin-Löf test (Martin-Löf) and that there is a universal Σ0

1-
semimeasure (Levin, Theorem 3.2) holds because these Σ0

1-objects
satisfy an extra boundedness condition that we can check along the
way to see if it is violated, and if so render the object harmless by
discarding it after finitely many steps.

(iii) The Π0
1-functions are also not uniformly enumerable, but for a dif-

ferent reason: Every Π0
1-function is computably bounded (namely

by any of its computable approximations). If there were a universal
Π0

1-function, its computable bound would in particular dominate all
computable functions, which is impossible.

(iv) Not every Σ0
1-function is computably bounded: Take an effective

enumeration of all partial computable functions ϕe and define

f(x) =
∑{

ϕi(i) : i 6 x ∧ ϕi(i)↓
}
.

This f is a Σ0
1-order dominating any computable function.

(v) Given any order f we can define a slow growing inverse h of f by

h(x) = µn. f(n) > x.

If f ∈ Σ0
1 then h ∈ Π0

1, so if we take for f the fast growing function
from the previous item then we obtain an Π0

1-order dominated by
any computable order.

(vi) Conversely, given a fast growing Σ0
1-order f we can define a slow

growing Π0
1-order h by

f(x) = µn. h(n) > x.

Hence, since there are no no universally fast growing Σ0
1-orders, we

see that there are no universally slow growing Π0
1-orders.

(vii) Any Σ0
1-order dominates a computable order: Given a Σ0

1-order one
easily constructs a slower growing computable order. This is also
true for nonmonotonic functions: For any unbounded Σ0

1-function
f one can find an unbounded computable g such that the function
f − g is positive and unbounded.

In conclusion: Σ0
1-orders can grow faster but not slower than any com-

putable one, whereas Π0
1-orders can grow slower but not faster than any

computable one.

5

3 General notes on measures and semimea-

sures

For the record we state the following

Proposition 3.1. 1. Every Σ0
1-measure is computable,

2. There is a Π0
1-measure that is not computable.

Proof. 1. This well-known and easy to see: If P ∈ Σ0
1 with computable

approximation Ps and
∑

x P (x) = 1 then to approximate P (x) to within
ε, find a stage s such that 1−

∑
x Ps(x) < ε. Then P (x)− Ps(x) < ε.

2. Let X be any noncomputable Π0
1-set, with computable approx-

imation Xs. Define a measure P as follows: At stage s assign the s
values 2−1, . . . 2−s to the first s elements of Xs ⊆ Xs−1, in such a way
that the elements of Xs that were already assigned a value at a previ-
ous stage retain this, and the values that were assigned to elements in
Xs−1 − Xs are given a new host element. For any element x /∈ X we
define P (x) = 0. Then P ∈ Π0

1, and P is not computable because other-
wise, since x ∈ X ⇔ P (x) > 0, X would also be computable. Note that
in general P (x) > 0 is not decidable for computable P , but in this case
it is: x is assigned an initial value 2−i with i 6 x. Computing P (x) to
within precision 2−i−1 decides whether it is 2−i or 0.

A semimeasure P (multiplicatively) dominates a semimeasure Q if there
is a rational constant q > 0 such that P (x) > qQ(x). A semimeasure P
is (multiplicatively) universal for a class of semimeasures C if P ∈ C and
P dominates every Q ∈ C. As quoted above, Levin showed that there is
a universal Σ0

1-semimeasure. Not surprisingly, there is no Π0
1 one.

Theorem 3.2. (Levin) There exists a universal Σ0
1-semimeasure m.

Proof. We sketch the proof for later reference. Let Pi be an effective
enumeration of all Σ0

1-semimeasures. Note that such an enumeration
can be obtained because we can see in finitely many steps whether the
condition

∑
x Pi(x) 6 1 is violated. Define

m(x) =
∑

i

2−iPi(x).

Clearly m(x) is finite, m ∈ Σ0
1, and m is multiplicatively universal.

The following easy facts are also well-known in the folklore of the field:

Proposition 3.3. (i) There is no universal computable semimeasure.

6

(ii) There is no universal Π0
1-semimeasure.

Proof. Both item (i) and (ii) follow from the following. Let P be a Π0
1-

semimeasure. We construct a computable semimeasure Q such that

∀q ∈ Q>0∃x P (x) < qQ(x). (3)

Given q we simply search for an x where P (x) is small and set a large
value for Q(x). Note that x can be found effectively since P ∈ Π0

1.
More precisely, given q = 2−i find a fresh x such that P (x) < 2−2i. Set
Q(x) = 2−i, and to make Q total set Q(y) = 0 for all y < x that were not
yet defined. The Q thus constructed is computable, clearly satisfies (3),
and

∑
xQ(x) =

∑
i 2−i = 1.

Corollary 3.4. Let m be the universal Σ0
1-semimeasure and let P be a

Π0
1-semimeasure. Then the function m(x)/P (x) is unbounded. In partic-

ular, m(x) > P (x) infinitely often.

Proof. Suppose for a contradiction that c ∈ ω is a constant such that
m(x)/P (x) 6 c for every x. By Proposition 3.3, let Q be a computable
measure such that (3) holds. Then a fortiori

∀q ∈ Q>0∃x m(x) < q · c ·Q(x),

contradicting that m is multiplicatively universal.

Call a semimeasure P monotone if x 6 y implies P (x) > P (y). We note
that there does not exist a monotone universal Σ0

1-semimeasure. This is
not difficult to prove directly, but it also follows from the Coding Theo-
rem (10) below. Namely, if m is universal then − logm(x) = K(x) up to
a fixed additive constant, hence if m were monotone then K would also
be monotone, which is of course not the case. There is a Σ0

1-semimeasure
that is multiplicatively universal among the monotonic ones, namely
m′(x) = miny6xm(y), which is within a multiplicative constant equal
to

1

xm(log x)
.

4 Σ0
1-sum-tests

In Li and Vitányi [11, Theorem 4.3.5] it is proven that for every strictly
positive computable measure P the Σ0

1-function

log
(
m(x)/P (x)

)
is a Σ0

1-universal sum-test for P . In particular, since by Corollary 3.4 the
function m(x)/P (x) is unbounded, there is an unbounded P -sum-test.
We prove here that for P = m this is no longer true.

7

Proposition 4.1. For any unbounded Σ0
1-function d : ω → Z there is a

computable measure P such that∑
x∈ω

P (x)2d(x) =∞. (4)

Proof. Suppose that d : ω → Z is Σ0
1 and unbounded. We construct a

computable measure P such that∑
x∈ω

P (x) = 1. (5)

and (4) holds. The construction is in ω stages. At stage s, search for
a fresh (i.e. hitherto not used in the construction) element x such that
d(x) > s. Such x can be found effectively since d is unbounded and
Σ0

1. For this x define P (x) = 2−s. To make sure that P is total, define
P (y) = 0 for all y < x for which P (y) was not yet defined at a previous
stage. End of construction.

Clearly the P thus constructed satisfies (4) and (5), since at stage s
of the construction we contribute an amount of 2−s to

∑
x P (x) and an

amount of at least 1 to
∑

x P (x)2d(x).

Corollary 4.2. Every Σ0
1-sum-test for the universal Σ0

1-semimeasure m
is bounded.

Proof. Suppose that d is unbounded. Let P be as in Proposition 4.1.
Since m is universal, there is q > 0 with m(x) > qP (x) for all x. Then∑

xm(x)2d(x) >
∑

x qP (x)2d(x) =∞, hence d is not a sum-test for m.

We remark that for every computable semimeasure P there is a com-
putable order d that is a sum-test for P , as is easily seen. (One can use
for example the proof of Proposition 6.1 below, taking d constant.)

For later purposes we note the following variant of Proposition 4.1:

Proposition 4.3. If d and d′ are computable functions such that the
function d′−max(0, d) is unbounded, then there is a computable semimea-
sure P such that ∑

x∈ω

P (x)2d′(x) =∞. (6)

and ∑
x∈ω

P (x)2d(x) 6 1. (7)

That is, d is a sum-test for P and d′ is not.

8

Proof. The proof is similar to that of Proposition 4.1, except that at
stage s we now search for a fresh number x such that

d′(x)−max(0, d(x)) > s.

For this x define P (x) = 2−max(0,d(x))−s. Again, to make P total, define
P (y) = 0 for all y < x for which P (y) was not yet defined at a previous
stage. Note that P is indeed a semimeasure.

Now P satisfies (6) and (7), since at stage s of the construction we
contribute an amount of 2−max(0,d(x))−s2d(x) 6 2−s to

∑
x P (x)2d(x) and an

amount of P (x)2d′(x) > 2−max(0,d(x))−s2max(0,d(x))+s = 1 to
∑

x P (x)2d′(x).

Finally, we claim that there is a semimeasure P ∈ Σ0
1 without Σ0

1-
universal sum-test. This is trivial to see if we allow P (x) = 0 for infinitely
many x, but it also holds for strictly positive P :

Proposition 4.4. There exists a strictly positive Σ0
1-semimeasure P such

that there is no Σ0
1-universal sum-test for P .

Proof. Since the constant zero function is a sum-test for any semimea-
sure, a universal sum-test is bounded from below by some constant k ∈ Z.
So in proving that such a universal sum-test does not exist we may re-
strict ourselves to such functions.

Let di be an effective enumeration of all Σ0
1-functions from ω to Z ∪

{∞} that are bounded from below by some (possibly negative) constant.
(The latter assumption is needed to have an effectively enumerable class
of functions; for the rest of the proof it is not needed.) Let di,s denote the
approximation of di. We construct a semimeasure P ∈ Σ0

1 and functions
d′i ∈ Σ0

1 so that for every i it holds that d′i − di is unbounded and∑
x

P (x)2di(x) 6 1 =⇒
∑

x

P (x)2d′
i(x) 6 1. (8)

Let 〈x, y〉 be a bijective pairing function from ω2 to ω. We assign an
infinite computable domain Ri to the strategy for di as follows. Define

Ri =
{
〈x, i〉 : x ∈ ω

}
and

d′i,s(x) =

{
di,s(x) + x if x ∈ Ri

0 otherwise.

We construct P by defining its approximation Ps as follows. Let P0(x) =
2−2x−1, so that P is strictly positive. At stage s of the construction, for
every i 6 s, if s is the first stage such that∑

x<s

Ps(x)2d′
i,s(x) > 1 (9)

9

then define
Ps+1(x) = Ps(x)2d′

i,s(x)−di,s(x) = Ps(x)2x

for every x ∈ Ri. Note that since this can happen only once, we have
that Ps(x) equals either P0(x) or P0(x)2x. This ends the construction.

We check that requirements (8) are satisfied for every i. Suppose that∑
x P (x)2d′

i(x) > 1. Then (9) holds for some s, hence∑
x∈ω

P (x)2di(x) >
∑
x/∈Ri

Ps(x)2di,s(x) +
∑
x∈Ri

Ps+1(x)2di,s(x)

>
∑
x/∈Ri

Ps(x) +
∑
x∈Ri

Ps(x)2d′
i,s(x)−di,s(x)2di,s(x)

>
∑
x/∈Ri

Ps(x) +
∑
x∈Ri

Ps(x)2d′
i,s(x)

=
∑
x∈ω

Ps(x)2d′
i,s(x) > 1.

hence (8) is satisfied. Clearly P ∈ Σ0
1, so it only remains to show that P

is a semimeasure. Since the domains Ri partition ω we have

∑
x∈ω

P (x) =
∑

i

∑
x∈Ri

P (x)

6
∑

i

∑
x∈Ri

P0(x)2x

=
∑

i

∑
x∈Ri

2−x−1

=
∑
x∈ω

2−x−1 = 1.

5 Unbounded Π0
1-sum-tests

We saw in Section 4 that there are Σ0
1-semimeasures with no nontrivial

sum-tests: all Σ0
1-sum-tests for m are bounded. We now prove that for

Π0
1 there are nontrivial, unbounded, examples.

Proposition 5.1. For every Σ0
1-semimeasure P there is a Π0

1-order d
that is a sum-test for P .

Proof. The idea is to monitor the tails of the sum
∑

x P (x), and estimate
at every stage the first element xi such that

∑
y>xi

P (y) 6 2−i. The xi

may grow, but eventually come to a finite limit. If we know them we
can add suitable large factors 2d(x) that satisfy

∑
x P (x)2d(x) 6 1. If xi

10

turned out to be wrong, we simply decrease d(x), but we have to do this
only finitely often. Formally the construction proceeds as follows.

Start with xi,0 = i. At stage s, when∑
y>xi,s

Ps(y) 6 2−i

let xi,s+1 = xi,s, otherwise set xj,s+1 = xj,s + 1 for all j > i. For all
x ∈ [xi,s, xi+1,s) define

ds(x) = blog ic.

End of construction.
First note that lims xi,s = xi exists for every i since

∑
x P (x) con-

verges. Since xi,s is nondecreasing, ds(x) can only decrease, and since
the limit exists it can do so only finitely many times.4 Hence d ∈ Π0

1,
and it is unbounded since d(xi) = blog ic. Finally,∑

x∈ω

P (x)2d(x) 6
∑
i∈ω

∑
x∈[xi,xi+1)

P (x)2log i

6
∑
i∈ω

i
∑
x>xi

P (x)

6
∑
i∈ω

2−ii = 2.

Therefore, d(x)− 1 defines a sumtest for P .

We can improve Proposition 5.1 as follows:

Proposition 5.2. For every Σ0
1-semimeasure P and every computable

sum-test d for P , there is a Π0
1-sum-test d′ for P such that d′ − d is

unbounded. If d is an order then d′ can be chosen to be an order as well.

Proof. The proof is similar to that of Proposition 5.1. The only difference
is that we now monitor the tails of the sum

∑
x P (x)2d(x), and estimate

at every stage the first element xi such that
∑

y>xi
P (y)2d(y) 6 2−i. If

this holds at stage s, we let

d′s(x) = ds(x) + blog ic

for all x ∈ [xi,s, xi+1,s). That lims xi,s exists follows because d is com-
putable, so the values Ps(x)2d(x) can only go up. If d is an order then d′

is also an order.

4Note that since d0(x) = log x, ds(x) can change at most log x times, but the
number of times xi,s changes is not computably bounded. Hence the limit function d
can in general be very slow growing, that is, be dominated by any computable order.

11

We now turn to the rate of growth of sum tests. If d is any (not necessarily
Π0

1) m-sum-test then d does not grow very fast:

Proposition 5.3. If d is any m-sum-test then d is dominated by all
Π0

1-functions f with ∑
x∈ω

2−f(x) <∞.

This also holds on any computable subset R ⊆ ω: d(x) 6 f(x) for almost
every x ∈ R whenever

∑
x∈R 2−f(x) <∞.

Proof. We prove only the first part, since the second is just an easy
modification. Given f as above, suppose that f does not dominate d, so
that d(x) > f(x) infinitely often. We produce a semimeasure P ∈ Σ0

1

such that d is not a sum-test for P . (Hence by universality of m the same
holds with m in place of P .) Simply put P (x) = 2−f(x) for every x. Then∑

x P (x) <∞, so a suitable tail of P is a semimeasure. Without loss of
generality we may assume that P itself is a semimeasure. Since f ∈ Π0

1

we have P ∈ Σ0
1. Finally,∑

x∈ω

P (x)2d(x) >
∑

d(x)>f(x)

P (x)2d(x) >
∑

d(x)>f(x)

2−f(x)2f(x) =∞,

hence d is not a P -sum-test.

Corollary 5.4. If d is a Π0
1-sum-test for m then

∑
x 2−d(x) =∞.

Proof. If we would have
∑

x 2−d(x) < ∞ then also
∑

x 2−(d(x)−1) < ∞,
hence by Proposition 5.3 the Π0

1-function d(x) − 1 would dominate d,
contradiction.

Next we turn to the question when a sum-test can be replaced by an
order dominating it.

Proposition 5.5. There exist a computable measure P and a computable
P -sum-test d such that every (not necessarily effective) order d′ dominat-
ing d is not a P -sum-test.

Proof. To construct P and d, simply let d(x) be large when P (x) is small
and vice versa: For every x define

P (2x) = 0 d(2x) = x

P (2x+ 1) = 2−x−1 d(2x+ 1) = 0

Clearly P is a measure and d is a P -sum-test. If d′ is an order domi-
nating d then d′(2x + 1) > d′(2x) > d(2x) = x, hence

∑
x P (x)2d′(x) >∑

x 2−x−12x =∞.

12

Proposition 5.5 also holds if we require that P be strictly positive, with
the same proof idea. At this point we ask what happens when P = m
and d ∈ Π0

1:

Question 5.6. Suppose that d is a Π0
1-sum-test for m. Is there always a

Π0
1-order d′ dominating d that is a sum-test for m ?

6 Universal Π0
1-sum-tests

We have seen that for the universal Σ0
1-semimeasure m there are only triv-

ial Σ0
1-sum-tests, namely the bounded ones, and that there are nontrivial

Π0
1-sum-tests for m. In this section we investigate if Σ0

1-semimeasures can
have a universal Π0

1-sum-test. We do not obtain a complete answer to this
question, but only prove that no universal Π0

1-sum-test exists in specific
cases. In particular we leave open the case of universal Σ0

1-semimeasures.

Proposition 6.1. Suppose that P is a computable semimeasure. Then
there is no universal Π0

1-sum-test for P .

Proof. The idea is similar to that of Proposition 3.3. Given d ∈ Π0
1 such

that
∑

x P (x)2d(x) 6 1, construct d′ ∈ Π0
1 such that for all i there is x

such that d′(x) > d(x) + i. Given i, effectively search for x such that
P (x)2d(x) < 2−2i (which is possible since such x exist and d ∈ Π0

1), so that
P (x)2d(x)+i < 2−i. For this x define d′(x) = d(x)+ i, and set d′(y) = d(y)
for all y < x for which d′(y) was not yet defined. Then∑

x∈ω

P (x)2d′(x) 6
∑

d′(x)=d(x)

P (x)2d(x) +
∑
i∈ω

2−i <∞,

hence d′−c, for some c large enough, is a Π0
1-sum-test for P not dominated

by d.

Note that the proof of Proposition 6.1 in fact works for every Π0
1-semi-

measure P .

Proposition 6.2. If a Σ0
1-semimeasure P has a coinfinite support, i.e.

if P (x) = 0 for infinitely many x, then there is no universal Π0
1-sum-test

for P .

Proof. Given a Π0
1-sum-test d and a computable order f , define the func-

tion

d′t(x) =

{
dt(x) + f(x) if Pt(x) = 0

dt(x) otherwise.

Remark that d′ = lim d′t is again a Π0
1-sum-test for P . If P has a coinfinite

support then d′(x)− d(x) is unbounded, hence d is not Π0
1-universal.

13

Corollary 6.3. If P ∈ Σ0
1 does not have a strictly positive computable

lower bound (i.e. a computable Q such that P (x) > Q(x) > 0 a.e. x)
then there is no universal Π0

1-sum-test for P .

Proof. This follows from Proposition 6.2, since if P ∈ Σ0
1 is a.e. strictly

positive then it has such a computable lower bound.

Question 6.4. Let P be any Σ0
1-semimeasure. Then there is no universal

Π0
1-sum-test for P . In particular there is no universal Π0

1-sum-test for m.5

In the remaining part of this section we make some further remarks about
universal sum-tests. We first prove that there are Σ0

1-semimeasures P for
which the class of computable sum-tests has a universal element. In fact,
every computable function is such a universal sum-test:

Proposition 6.5. Given any computable function d : ω → ω, the Σ0
1-

semimeasure
P (x) = m(x)2−d(x)

satisfies:

• d is (additively) universal for the class

{
d′ computable : d′ is P -sum-test

}
,

• P is (multiplicatively) universal for the class

{
P ′ ∈ Σ0

1 : d is P ′-sum-test
}
.

Proof. For the first item, suppose that d′ is a sum-test for P that is
not additively dominated by d, i.e. d′ − d is unbounded. Then P ′(x) =
m(x)2d′(x)−d(x) is a Σ0

1-semimeasure that is not multiplicatively domi-
nated by m, contradicting Theorem 3.2. For the second item, suppose
that P ′ is a Σ0

1-semimeasure for which d is a sum-test. Then Q(x) =
P ′(x)2d(x) is a Σ0

1-semimeasure, hence by Theorem 3.2, P (x)2d(x) = m(x)
multiplicatively dominates Q(x), and hence P (x) multiplicatively domi-
nates P ′(x).

Note that the proof of Proposition 6.5 does not work for Π0
1-functions: For

d constant we obtain the universal semimeasurem, but by Proposition 5.1
there are Π0

1-functions d′ dominating every constant that are still sum-
tests for m, hence d is not universal. In fact, Proposition 5.2 shows that
Proposition 6.5 fails for Π0

1: There are d ∈ Π0
1 that are not Π0

1-universal

5Note added in proof: There is now a draft by the first author containing a concept
proof solving the second part of this question for m in the affirmative.

14

for any P ∈ Σ0
1, namely any computable d. In Proposition 6.6 we show

that, given a computable d, there is even a uniform witness d′ showing
that d is not Π0

1-universal.
Say that a given semimeasure P splits two functions d and d′ if d is a

P -sum-test and
∑

x P (x)2d′(x) =∞ (in that order). Proposition 4.3 says
that every pair of computable d and d′ with d′ − d unbounded can be
split by a computable semimeasure.

Proposition 6.6. For any computable d : ω → ω, there is d′ ∈ Π0
1 such

that d′ − d is unbounded and such that no Σ0
1-semimeasure splits d and

d′.

Proof. Let P (x) = m(x)2−d(x) be as in Proposition 6.5. Let d′(x) =
d(x) + b(x) where b is the unbounded sum-test for m as constructed in
Proposition 5.1. Suppose that Q is a Σ0

1-semimeasure and that d is a
sum-test for Q. Then P dominates Q by Proposition 6.5. If q > 0 is such
that qQ(x) < P (x) then∑

x

Q(x)2d′(x) 6
1

q

∑
x

P (x)2d′(x)

=
1

q

∑
x

m(x)2−d(x)2d(x)+b(x)

6
1

q
< ∞

Hence Q does not split d and d′.

7 Independence tests

Recall the definition of independence test from Section 1. The results
about sum-tests from previous sections also hold, mutatis mutandis, for
the binary case of independence tests, with the same proofs except for
Proposition 6.5. In particular, in the case of P = Q = m, Corol-
lary 4.2 now states that there are no unbounded computable and Σ0

1-
independence tests. There exist unbounded Π0

1 tests and we will show
that there is no Π0

1-universal test (Theorem 7.3). Note that this answers
the binary analogue of Question 6.4. As a corollary to the proof it fol-
lows that for all enumerable semimeasures P,Q, a Π0

1-independence test
for (P,Q) exist, with d(x, y) > l(x) − O(log l(x)) for infinitely many bi-
nary strings x, y with length l(x) = l(y), and for each Π0

1-independence
test d for (m,m), there is a test d′ such that d′(x, y) − d(x, y) exceeds
l(x) − O(log l(x)) infinitely often. Since P = Q = m throughout this

15

section, “independence test” will abbreviate “independence test for m
and m”.

We start with an informal argument why there is no Π0
1-universal

independence test. Consider the set

D =
{

(x, y) : l(x) = l(y) ∧ x, y random and dependent
}
.

D is a natural example of a d.c.e. set, that is, a set that is the difference
of two c.e. sets, in this case the set of pairs (x, y) with x and y dependent
minus the set of pairs where one of x and y is not random. Now suppose
that d is a Π0

1 independence test. As pointed out in Section 1, it follows
directly from (2) that the set of pairs x, y where d(x, y) is large, is small
in measure. Thus d provides us with an effective method for detecting
dependencies in such pairs. Now suppose that for all (x, y) ∈ D, d(x, y)
would be large. Then we would have that x and y are dependent if
and only if d(x, y) is large. Since the latter is a Π0

1-event, we obtain
that D ∈ Π0

1, a contradiction. This means that there are (x, y) ∈ D
such that d(x, y) is small, that is, x and y are dependent but d does not
see this. Since D is a set of small measure, we could construct a new
d′ with d′ higher on such pairs (thus showing that d is not universal).
To recognize such pairs, we have to recognize more dependencies than
d does by allowing for more computation time. Some pairs (x, y) may
fall through at a later time when it turns out that one of x and y is not
random, but if we allow for enough computation time we will also find
pairs in D that were not recognized by d, and hence we can show that d
is not universal. The proof below is more informative, since it shows that
the functions di of the specific form defined there form a strict hierarchy
of independence tests, and that every independence test is dominated by
some di.

In this section we use Kolmogorov complexity. For general back-
ground we refer to Li and Vitányi [11] and the forthcoming Downey and
Hirschfeldt [4]. We fix our notation for this section. Let 〈x, y〉 denote
a computable bijective mapping from ω × ω to ω. Let Φ be an optimal
universal prefix-free Turing machine. Φs(p|z) ↓= x if and only if Φ(p|z)
outputs x in less than s steps using an auxiliary tape for string z. The
prefix-free complexity functions are Ks(x|z) = min{l(p) : Φs(p|z)↓= x},
K(x|z) = limsKs(x|z), K(x) = K(x|∅), and K(x, y) = K(〈x, y〉). The
complexity of a partial computable function f is defined by

K(f) = min{l(p) : ∀x ∈ domf [Φ(p|x)↓= f(x)]}.

The algorithmic complexity of a one-argument Σ0
1-function or Π0

1-function
d(x) is given by the lowest complexity K(dt(x)) of a two-argument func-
tion dt(x) that is the computable approximation of d(x) as t → ∞.

16

f(x) 6+ g(x) or f(x) 6 g(x) + O(1) means that there exists a constant
c such that for all x as indicated or allowed in the context of the proof,
we have: f(x) 6 g(x) + c. f(x) =+ g(x) means f(x) 6+ g(x) and
g(x) 6+ f(x). Similarly for the O(log) notation. Theorem 3.2 stated
the existence of a universal Σ0

1-semimeasure. The Coding Theorem [11]
states that the function

m(x) = 2−K(x) (10)

is a multiplicatively universal Σ0
1-semimeasure. Let l(x) be the length of

the number x, seen as a finite binary string, and let from now on n be
short for l(x).

Definition 7.1.

• R = {(x, y) : l(x) = l(y) ∧K(x), K(y) > n− log n}.

• A function f R-dominates g (notation f
R

< g) if

∃c∀∞(x, y) ∈ R
[
f(x, y) + c log n > g(x, y)

]
.

• Define for each i the total functions:

T i(n) = max{Φ(p|n) : l(p) 6 i, λm.Φ(p|m) is total},
Ki(x, y) = KT i(l(〈x,y〉))(x, y)

Ki(x) = Ki(x, ∅),
di(x, y) = K(x) +K(y)−Ki(x, y).

Note that domination implies R-domination and that R-domination de-
fines a semi-order on the binary functions. The function T i(n) is ∅′′-
computable, but for fixed i it is computable. Hence for fixed i also
Ki(x, y) is computable.
There is a prefix-free code such that every n ∈ ω is encoded with length
2 log n. Let z be the binary expansion of n. Remark that l(z) = dlog ne.
The code word

z00z10z20...zdlog ne1

for n has length 2 log n. Remark that the set of these code words is
prefix-free. The time needed to decode this sequence is bounded by
a computable function of n. Combining a prefix-free code for n with a
prefix-free code for x given n results in a prefix-free code for x. Therefore,
without loss of generality it can be assumed about the universal machine
Φ implicit in K that:

∃c∀i > c∀x[Ki+c(x)− 2 log n− c 6 Ki(x|n) 6 Ki(x)]. (11)

17

Lemma 7.2. For all i, di is a Π0
1-independence test.

Proof. Since K is a Π0
1-function, di is Π0

1. Clearly di(x, y) is increasing
in i and limiK

i(x, y) = K(x, y), therefore:

di(x, y) 6 K(x) +K(y)−K(x, y),

and ∑
x,y

m(x)m(y)2di(x,y) 6
∑
x,y

2−K(x,y) 6 1.

Theorem 7.3. There is no universal Π0
1-independence test.

Proof. Because domination implies R-domination, the absence of a uni-
versal element in the set of Π0

1 independence tests follows from the ab-
sence of a universal element with respect to R-domination: if there were
a Π0

1-independence test dominating all other Π0
1-independence tests, it

would also R-dominate any Π0
1-independence test. We show in two steps

that this is impossible:

• Lemma 7.5: For all Π0
1-independence tests d, there is an i such that

di
R

< d.

• Lemma 7.9: For all i, there is a j such that di 6
R

< dj.

Suppose d were R-universal, then by Lemma 7.5 and by transitivity of
R-domination, there should also be an R-universal element among the
set of di, i ∈ ω. However this is not possible by Lemma 7.9.

In the proof of Lemma 7.5 and 7.6 the following lemma is used.

Lemma 7.4. For all n, let P (x, y|n) > 0 be a positive computable
semimeasure over all binary strings x,y, with l(x) = l(y) = n. If for
some i, there is a binary string p satisfying:

ΦT i(n)(p|x, y, n)↓= d− logP (x, y|n)e,

then
Ki+O(1)(x, y|n) 6+ l(p)− logP (x, y|n).

Proof. For any computable semimeasure P , Shannon-Fano coding [11]
provides a prefix-free code for all (x, y) of length n with maximal encod-
ing length − logP (x, y|n) + O(1). To decode the Shannon-Fano code of
(x, y), a fixed algorithm needs to be executed that requires an amount of
computation steps bounded by f(n, T i(n)) 6 T i+O(1)(n) for some com-
putable function f . The encoding of (x, y) contains two parts: the encod-
ing of P with length l(p), and the corresponding Shannon-Fano code.

18

Lemma 7.5. For all Π0
1-independence tests d, there is an i such that

d
R

4 di.

Proof. By universality of m there exists a constant c such that

− logm(x) 6 n+ 2 log n+ c. (12)

For any n, the values ds(u, v) can be evaluated for increasing s and all
(u, v) with l(u) = l(v) = n until a time s = τ(n) is found such that∑

l(u)=l(v)=n

2ds(u,v)−2n−4 log n−2c 6 1.

Such s always exists because of (2), (10) and (12). Hence the “code
length” function

cl(u, v) = −ds(u, v) + 2n+ 4 log n+ 2c

defines a semimeasure P (u, v|n) = 2−cl(u,v). The function τ(n) that evalu-
ates s for each n is computable, and by the above construction it has com-
plexity K(τ) 6 K(d) + O(1), so that τ(n) 6 TK(d)+O(1)(n). Therefore,
a program p exists that computes d− logP (u, v|n)e from n, u, v within
time TK(d)+O(1)(n), and l(p) 6+ K(d). Let c be the constant from in-
equality (11). Lemma 7.4 shows that for some i = K(d) + c + O(1), we
have:

Ki−c(x, y|n) 6+ K(d) + 2n+ 4 log n− ds(x, y).

Inequality (11) shows:

Ki(x, y) 6 2n− ds(x, y) +O(log n).

Hence for (x, y) ∈ R,

di(x, y) = K(x) +K(y)−Ki(x, y)
> 2(n− log n)−Ki(x, y)
> ds(x, y)−O(log n)
> d(x, y)−O(log n).

Notation: From now on all constants implicit in the O() notation do
not depend on i, whereas constants implicit in the 6+ notation may be
dependent on i. For the proof of Lemma 7.9 we need Lemmas 7.6, 7.7
and 7.8.

Lemma 7.6. For almost all i and all x, y with l(x) = l(y) = n, we have:

Ki+O(1)(x|n) +Ki+O(1)(y|x)

6+ Ki(x, y|n)

6+ Ki−O(1)(x|n) +Ki−O(1)(y|x).

19

Proof. The second inequality follows from combining minimal programs
from the definition of Ki−O(1)(x|n) and Ki−O(1)(y|x) into one program
producing 〈x, y〉 from n in time T i(n). It remains to prove the first
inequality. For all i large enough, we do this by defining a semimeasure
P (x, y|n) over all pairs of strings of length n:

P (x, y|n) = 2−Ki(x,y|n), . (13)

The computable marginal and conditional semimeasures of P are:

P (x|n) =
∑

u:l(u)=n

P (x, u|n),

P (y|x) = P (x, y|n)/P (x|n). (14)

Both measures are computable and can be evaluated in time T i+O(1)(n).
Remark that the Kolmogorov complexity of these measures is bounded
by K(T i)+O(1) 6+ 0, since constants that only depend on i are absorbed
in the 6+ notation. From Lemma 7.4 it follows that:

Ki+O(1)(x|n) 6+ − logP (x|n),

Ki+O(1)(y|x) 6+ − logP (y|x). (15)

The first inequality of the lemma follows from combining (13), (14) and
(15).

Lemma 7.7. For almost all i and n, there exist strings x and a such
that:

• l(a) = l(x) = n

• Ki+O(1)(a|n) 6+ 0

• K(x|n) >+ n

• Ki(a|x) >+ n.

Proof. Let c be a large enough constant. Let a be the lexicographic first
string of length n that cannot be produced from n by a program of length
less than n in time less than T i+c(n). There is always such a string a.
Obviously this string can be produced by running all possible programs
for T i+c(n) steps, and searching for the lexicographic first string of length
n that not has been output. This program needs a computation time
bounded by T i+2c(n), for c large enough. To produce a from n in time
T i+2c(n), it suffices to have a description of T i+c and execute a constant
amount of instructions. By this, the second condition is satisfied, since
K(T i+c) is absorbed in the 6+ notation.

20

There is at least one binary string of length n with K(x|a) > n. Pick
one such string to be x. Note that K(x|n) >+ K(x|a) > n, and by this
the third condition is satisfied. By definition of a and x we find:

2n 6+ Ki+c(a|n) +Ki+c(x|a).

Let c1 and c2 correspond to the O(1) constants in Ki+O(1) and Ki−O(1)

from Lemma 7.6. Apply Lemma 7.6 for i→ i+c1, and assume c > c1+c2:

2n 6+ Ki(x|n) +Ki(a|x).

Now it holds that K(x|n) 6+ n [11], hence for i large enough we have
Ki(x|n) 6+ n, and

2n 6+ n+Ki(a|x).

By this, the last condition is satisfied.

Lemma 7.8. For any function f and any set N , if

∃c∃∞n ∈ N [n− c log n < f(n)],

then
∀c∃∞n ∈ N [c log n < f(n)].

Proof. Let c be a constant, and ni, i ∈ ω be an infinite increasing se-
quence witnessing the first expression. For any c′, take j large enough
such that nj > (c + c′) log nj. Then the infinite sequence ni, i > j,
satisfies the second inequality.

Lemma 7.9. For all i, there is a j, such that di 6
R

< dj.

Proof. We prove that there exists a constant c such that for all i > c,

di−c 6
R

< di+c. By the converse of the definition of R-domination it needs
to be shown that:

∀c′∃∞(x, y) ∈ R
[
di−c(x, y) + c′ log n < di+c(x, y)

]
.

By Lemma 7.8, it suffices to prove that

∃c′∃∞(x, y) ∈ R
[
di−c(x, y) + n− c′ log n < di+c(x, y)

]
. (16)

For any n large enough, pick x and a as in Lemma 7.7, and let y =
XOR(x, a), where XOR is the bitwise exclusive-or operator. We now
derive inequalities (17), (19), and (20).

21

• Note that XOR(y, a) = XOR(XOR(x, a), a) = x. This provides a
program for x given a and y. It follows thatK(x) 6+ K(y)+K(a|y)
and hence:

K(y) >+ K(x)−K(a|y)

>+ K(x)−Ki+O(1)(a|n)

>+ K(x)

>+ n. (17)

It follows that (x, y) ∈ R for n large enough.

• Since XOR(y, x) = a, it follows that any program computing y from
x, also computes a from x. The extra time for this computation
is bounded by some computable function. Therefore, for some c′

large enough:
Ki−c′

(y|x) >+ Ki(a|x) >+ n. (18)

Furthermore we have Ki(x) >+ n. Hence, for c − c′ large enough,
Lemma 7.6 can be applied with i → i − c. Inequalities (11) and
(18) imply:

Ki−c(x, y) >+ Ki−c′
(x|n) +Ki−c′

(y|x)−O(log n)

>+ K(x|n) + n−O(log n)

>+ 2n−O(log n). (19)

• Since XOR(x, a) = y, it follows for c′ large enough, that

Ki+2c′
(y|x) 6+ Ki+c′

(a|x) 6+ 0.

The last inequality follows from the second condition of Lemma 7.7.
Remark that for i large enough, Ki+2c′

(x) 6+ n+2 log n. Assuming
c − 2c′ large enough, a bound for Ki+c(x, y) can be derived using
Lemma 7.6 with i→ i+ c:

Ki+c(x, y) 6+ Ki+2c′
(x) +Ki+2c′

(y|x)

6+ n+O(log n). (20)

Combining inequalities (17), (19), (20), and K(x) >+ n, we obtain

di−c(x, y) 6+ K(x) +K(y)−Ki−c(x, y)

6+ O(log n),

di+c(x, y) >+ K(x) +K(y)−Ki+c(x, y)

>+ n−O(log n).

22

Hence the constructed pair (x, y) ∈ R satisfies

di−c(x, y) + n−O(log n) 6+ di+c(x, y). (21)

Such a pair can be constructed for every large enough i and n. This
proves statement (16).

Corollary 7.10. Algorithmic mutual information

I(x; y) = K(x) +K(y)−K(x, y)

is an independence test that R-dominates all Π0
1-independence tests.

Proof. Because K(x, y) = infi{Ki(x, y)} it follows that:

I(x; y) = sup
i
{di(x, y)}.

By Lemma 7.5 it R-dominates all Π0
1-independence tests.

Corollary 7.11. There exists a constant c, such that for all Σ0
1-semi-

measures P,Q, there exist a Π0
1-independence test d for P,Q such that

d(x, y) > n− c log n for infinitely many (x, y) with l(x) = l(y) = n.

Proof. For some i large enough, there are infinitely many x, y with l(x) =
l(y) and

di(x, y) > n− c log n− ci,
where ci is the constant implicit in the 6+ notation of (21). By uni-
versality of m, we have that P (x) 6 2cPm(x) and Q(x) 6 2cQm(x), for
some constants cP , cQ. Remark that d(x) = di(x) − cP − cQ satisfies
inequality (2), and is therefore a Π0

1-independence test for P,Q. For
log n > ci + cP + cQ and infinitely many x, y with l(x) = l(y) we have:

d(x, y) > n− (c+ 1) log n.

From the proof it also follows that

Corollary 7.12. There is a constant c, such that for all Π0
1-independence

tests d, there is a Π0
1-independence test d′ with

d′(x, y)− d(x, y) > n− c log n,

for infinitely many x, y with l(x) = l(y) = n.

Proof. Note that for i = K(d) +O(1) we have

di(x, y)− d(x, y) > n− c log n− ci.

Hence for all n with log n > ci we have

di(x, y)− d(x, y) > n− (c+ 1) log n.

Acknowledgement We thank the anonymous referee for extensive com-
ments on the paper.

23

References

[1] C. H. Bennett, P. Gacs, M. Li, P. M. B. Vitányi, and W. H. Zurek,
Information distance, IEEE Transactions on Information Theory
44(4) (1998) 1407–1423.

[2] R. Cilibrasi and P. M. B. Vitányi, Clustering by compression, IEEE
Transactions on Information Theory 51(4) (2005) 1523–1545.

[3] R. L. Cilibrasi and P. M. B. Vitányi, The Google similarity dis-
tance, IEEE Transactions on Knowledge and Data Engineering 19(3)
(2007) 370–383.

[4] R. Downey and D. Hirschfeldt, Algorithmic randomness and com-
plexity, Springer, forthcoming.

[5] P. Gács, Uniform test of algorithmic randomness over a general
space, Theoretical Computer Science 341(1) (2005) 91–137.

[6] A. Gretton, R. Herbrich, A. Smola, O. Bousquet, and B. Schölkopf,
Kernel methods for measuring independence, Journal of Machine
Learning Research 6 (2005) 2075–2129.

[7] A. Hyvarinen, J. Karhunen, and H. Oja, Independent component
analysis, Wiley, New York, 2001.

[8] C. J. Ku and T. L. Fine, A Bayesian independence test for small
datasets, IEEE Transactions on Signal Processing 54(10) (2006)
4026–4031.

[9] L. A. Levin, Randomness conservation inequalities; information and
independence in mathematical theories, Information and Control
61(1) (1984) 15–37.

[10] M. Li, X. Chen, X. Li, B. Ma, and P. Vitányi, The similarity metric,
IEEE Transactions on Information Theory, 50(12) (2004) 3250–3264.

[11] M. Li and P. Vitányi, An introduction to Kolmogorov complexity and
its applications, Springer-Verlag, second edition, 1997.

[12] D. D. Mari and S. Kotz. Correlations and dependence, Imperial Col-
lege Press, 2001.

[13] P. Pajunen, Blind source separation using algorithmic information
theory, Neurocomputing 22(1) (1998) 35–48.

24

[14] B. Ryabko, J. Astola, and A. Gammerman, Application of Kol-
mogorov complexity and universal codes to identity testing and non-
parametric testing of serial independence for time series, Theoretical
Computer Science 359 (2006) 440–448.

[15] C. P. Schnorr, Zufälligkeit und Wahrscheinlichkeit, Lecture Notes in
Mathematics 218, Springer, 1971.

25

