Five-fold symmetry in fractal atom hydrogen probed with accurate $1 S$-nS terms

G. Van Hooydonk, Ghent University, Faculty of Sciences, Ghent, Belgium

Abstract. We probe Penrose's five-fold symmetry and fractal behavior for atom H . With radius r_{H} derived from H mass m_{H}, H symmetry is governed by Euclid's golden ratio [$\left.\operatorname{sqrtt}(5)-1\right] / 2$, as proved with accurate H terms. Our prediction for H 1S-3S, to be measured soon, is 2922743278654 kHz .

I. Introduction

Euclid-Phidias numbers appear in fundamental and applied sciences, in arts... [1-3], and for chaotic or fractal behavior (Mandelbrot [4], Gutzwiller [5]) and Penrose's 5-fold symmetry [6]. With (1-x)/x $=\mathrm{x} / 1$ for complementary parts $+\mathrm{x}, 1-\mathrm{x}$ of composite units, Euclidean harmony is $\mathrm{x}_{ \pm}=\varphi_{ \pm}=-1 / 2(1 \pm \sqrt{5})$. The simplest, smallest but most abundant neutral unit in the Universe [7], composite H has electron (mass m_{e}) and proton (mass m_{p}) as complementary parts: $m_{H}=m_{e}+m_{P}=m_{e}+\left(m_{H}-m_{e}\right)$ or $1=x+(1-x)$, if $x=m_{e} / m_{H}$. If φ applied to H, it must show in its spectrum. By its compact nature, Bohr theory fails on φ-symmetry, also invisible in bound state QED [8]. We probe φ for H using mass m_{H} and radius r_{H} related by $m_{H}=(4 \pi / 3) \gamma r_{H}{ }^{3}$. Scaling H levels by virial $1 / 2 \mathrm{e}^{2} / r_{\mathrm{H}}$ gives away φ and fractal behavior. This is in line with Rydberg's original formula [9] and confirmed with accurate H 1S-nS terms [10]. We predict a value of 2922743278654 kHz for H 1S-3S, to be measured in the near future [11].

II. Rydberg equation and fractal behavior of atom H

II. 1 Chaotic/fractal interpretation of the Rydberg formula for composite H

With constant a in \AA and line number n , the original Rydberg formula [9] for H terms

$$
\begin{equation*}
\mathrm{T}_{\mathrm{n}}=\mathrm{an}^{2} /\left(\mathrm{n}^{2}-1\right) \AA \text { or } \mathrm{T}_{\mathrm{n}} /(\mathrm{an})=\mathrm{n} /\left(\mathrm{n}^{2}-1\right)=1 /(\mathrm{n}-1 / \mathrm{n}) \tag{1}
\end{equation*}
$$

suggests that H may well exhibit fractal or chaotic behavior [4,5]. Bohr energy differences

$$
\begin{equation*}
\Delta \mathrm{E}_{\mathrm{n}}=1 / \mathrm{T}_{\mathrm{n}}=\left(\mathrm{n}^{2}-1\right) 10^{8} /\left(\mathrm{an}^{2}\right)=\mathrm{R}_{\mathrm{H}}\left(1-1 / \mathrm{n}^{2}\right)=\mathrm{R}_{\mathrm{H}}-\mathrm{R}_{\mathrm{H}} / \mathrm{n}_{2}=\mathrm{E}_{\mathrm{n}}-\mathrm{E}_{1} \mathrm{~cm}^{-1} \tag{2}
\end{equation*}
$$

with Rydberg $\mathrm{R}_{\mathrm{H}}=10^{8} / \mathrm{a} \mathrm{cm}^{-1}$, give fractal behavior (1) in linear form

$$
\begin{equation*}
\mathrm{n} \Delta \mathrm{E}_{\mathrm{n}} / \mathrm{R}_{\mathrm{H}}=(\mathrm{n}-1)(\mathrm{n}+1) / \mathrm{n}=\mathrm{n}-1 / \mathrm{n} \tag{3}
\end{equation*}
$$

With $E_{n}[12]$ instead of ΔE_{n}, plots of $n E_{n}$ versus n and $1 / n$ give power laws

$$
\mathrm{E}_{\mathrm{n}}(\mathrm{n}) \equiv \mathrm{E}_{\mathrm{n}}(1 / \mathrm{n})=109679,223605211 \mathrm{n}^{-1,000004252339} \equiv 109679,223605211(1 / \mathrm{n})^{1,000004252339}(4)
$$

Linear n and inverse $1 / n$ views suggest fractal H (3) within $0,007 \mathrm{~cm}^{-1}$, while Bohr $1 / \mathrm{n}^{2}$ theory has errors of $0,0126 \mathrm{~cm}^{-1}$ (a power fit in $1 / \mathrm{n}^{2}$ has its exponent shifted by 1). The greatest difference with Bohr theory and QED is asymptote $109679,2236 \mathrm{~cm}^{-1}$ in (4), larger than $-\mathrm{E}_{1}=109678,773704 \mathrm{~cm}^{-1}$ in [12]. Since $1 / \mathrm{n}$ secures convergence, a $4^{\text {th }}$ order fit in $1 / \mathrm{n}$

$$
\mathrm{nE}_{\mathrm{n}}=0,006889343262 / \mathrm{n}^{4}-4,375765800476 / \mathrm{n}^{3}+5,5580713748932 / \mathrm{n}^{2}+109677,585385323000 / \mathrm{n}(5)
$$

is accurate within $10^{-8} \mathrm{~cm}^{-1}$ or $0,45 \mathrm{kHz}$ (less precise data [13] behave similarly). By its precision, (5) for fractal H must be important for metrology [10, 14-15], as we discuss further below.

II. 2 Generalizing Bohr H theory and reduced mass: opening for φ

To not to interrupt the argument on φ, we compare H theories in Appendix A. With (A1)-(A2),
Bohr's integer quantum number n and Rydberg R_{H} give rotational level energies

$$
\begin{equation*}
\mathrm{E}_{\mathrm{n}}=-\mathrm{R}_{\mathrm{H}} / \mathrm{n}^{2}=-1 / 2\left(\hbar^{2} / \mu \mathrm{e}^{2}\right) / \mathrm{n}^{2}=-1 / 2 \mu \alpha^{2} \mathrm{c}^{2} / \mathrm{n}^{2}=-1 / 2\left(\mathrm{e}^{2} / \mathrm{r}_{0}\right) / \mathrm{n}^{2} \tag{6}
\end{equation*}
$$

Here, r_{0} is Bohr radius $r_{B}=\hbar^{2} /\left(m_{e} e^{2}\right)$, corrected for reduced electron mass, according to

$$
\begin{equation*}
\mu=m_{e} m_{p} /\left(m_{e}+m_{P}\right)=m_{e} m_{p} / m_{H}=m_{e} /\left(1+m_{e} / m_{P}\right) \equiv m_{e}\left(1-m_{e} / m_{H}\right) \tag{7}
\end{equation*}
$$

Generalizing (6) with a critical n_{c} for another H radius r_{H} by means of

$$
\begin{align*}
& r_{H}=n_{c}^{2} r_{0} \tag{8}\\
& E_{n}=-\left(R_{H} / n_{c}^{2}\right)\left(V_{n_{c}} / n\right)^{2}=-1 / 2\left[e^{2} /\left(n_{c}^{2} r_{0}\right)\right]\left(V_{n_{c}} / n\right)^{2}=-1 / 2\left(e^{2} / r_{H}\right)\left(V_{n_{c}} / n\right)^{2} \tag{9}
\end{align*}
$$

allows an infinite number of solutions, trivial or not.
(i) Any n_{c} (except 0) will lead to the same accuracy as (6). A relation between n_{c} and φ like

$$
\begin{equation*}
n_{c}=A \varphi^{m} \tag{10}
\end{equation*}
$$

for (9) may probe Euclidean symmetry, but only if an alternative r_{H} existed (see Section II.3).
(ii) Detecting internal φ-effects in H depends on specific φ-relations [2-5] like

$$
\begin{equation*}
\varphi^{m+2}+\varphi^{m+1}=\varphi^{m} ; 1=1 / \varphi-\varphi ; \varphi^{2}+\varphi-1=0 \text { and } \varphi(\varphi+1)=1 \tag{11}
\end{equation*}
$$

Internal φ-symmetries (11) are available from (7) in dimensionless form. With m_{H}, this gives product

$$
\begin{equation*}
\varrho_{\mathrm{H}}=\mu / \mathrm{m}_{\mathrm{H}}=\left(\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{H}}\right)\left(1-\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{H}}\right)=\mathrm{x}(1-\mathrm{x}) \tag{12}
\end{equation*}
$$

for parts $\left(\mathrm{d} \varrho / \mathrm{dx}=1-2 \mathrm{x}=0\right.$ gives $\varrho_{\max }=1 / 4$ when $\mathrm{x}=1 / 2$ or parts are equal; $\varrho=\mathrm{x}(1-\mathrm{x})$ or $\mathrm{x}^{2}-\mathrm{x}+\varrho=0$ gives $\left.x_{ \pm}=1 / 2[1 \pm \sqrt{ }(1-4 \varrho)]\right)$; a center between parts leads to $-x,(1-x), x^{2}-x+\varrho=0$ and $\left.x_{ \pm}=1 / 2[1 \pm \sqrt{ }(1+4 \varrho)]\right)$.
With only part ratios, all symmetries in (ii) are Euclidean (see Introduction).
By virtue of (10)-(12), reduced mass for $\mathrm{H}(12)$ implies Euclidean harmony between parts, obeying

$$
\begin{equation*}
\varrho_{\mathrm{H}}=\mathrm{x}(1-\mathrm{x}) \sim \mathrm{A} \varphi^{\mathrm{m}}\left(1-\mathrm{A} \varphi^{\mathrm{m}}\right) \tag{13}
\end{equation*}
$$

If valid, these are only small corrections to E_{n}, since $\mu / m_{e}(7)$ is 1837 times larger than μ / m_{H} (12). The fate of H symmetries (9)-(13) depends solely on the existence of a valid alternative radius r_{H}.

II. 3 Alternative classical H radius r_{H}

Apart from [16], a first principles alternative quantum radius for H, other than Bohr length r_{B}, does not exist. Only a classical $19^{\text {th }}$ century macroscopic view on spherical H can give r_{H} using

$$
\begin{equation*}
\mathrm{m}_{\mathrm{H}}=(4 \pi / 3) \gamma \mathrm{r}_{\mathrm{H}}^{3} \text { and } \mathrm{r}_{\mathrm{H}}=\left[(3 / 4 \pi \gamma) \mathrm{m}_{\mathrm{H}}\right]^{1 / 3} \tag{14}
\end{equation*}
$$

where $4 \pi / 3$ is the form factor for a sphere and γ in $\mathrm{g} / \mathrm{cm}^{3}$ is H density.
With $m_{H}=m_{e}+m_{P}=9,10938215.10^{-28}+1,672621637.10^{-24} \mathrm{~g}[10]$ and $\gamma=1 \mathrm{~g} / \mathrm{cm}^{3}$ for H, the result is

$$
\begin{equation*}
\mathrm{r}_{\mathrm{H}}=7,36515437.10^{-9} \mathrm{~cm}=0,736515437 \AA \tag{15}
\end{equation*}
$$

This is the only real, theoretically possible alternative to Bohr length $r_{B}=0,529177209 \AA$ [16]. Apart from form factor and γ, its accuracy relies on the precision for m_{e} and $m_{p}[10]$.
In (6), H radius r_{0} is Bohr length r_{B}, corrected for recoil (7) or

$$
\begin{equation*}
\mathrm{r}_{0}=\left[\hbar^{2} /\left(\mathrm{m}_{\mathrm{e}} \mathrm{e}^{2}\right)\right]\left(1+\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}\right)=0,5294654075 \AA \tag{16}
\end{equation*}
$$

The ratio of classical natural H radius r_{H} in (15) and Bohr's r_{0} in (16) is

$$
\begin{equation*}
\mathrm{x}=\mathrm{r}_{\mathrm{H}} / \mathrm{r}_{0}=1,391054876 \ldots \tag{17}
\end{equation*}
$$

(without recoil, $\mathrm{r}_{\mathrm{H}} / \mathrm{r}_{\mathrm{B}}=1,391812469 \ldots$..).
The natural virial Coulomb energy $-1 / 2 e^{2} / r_{H}$ for any two charge-conjugated parts amounts to

$$
\begin{equation*}
1 / 2 \mathrm{e}^{2} / \mathrm{r}_{\mathrm{H}}=78844,900590508 \mathrm{~cm}^{-1}=2363710654879,4 \mathrm{kHz} \tag{18}
\end{equation*}
$$

When multiplied by (18), the conventional H asymptote $(\mathrm{n}=\infty)$ is $\mathrm{xe}^{2} / \mathrm{r}_{\mathrm{H}}=109677,583516024 \mathrm{~cm}^{-1}$.

III. Scaling E_{n} by $1 / 2 \mathrm{e}^{2} / \mathrm{r}_{\mathrm{H}}$: probing Penrose's five-fold or φ-symmetry in atom \mathbf{H}

Scaling E_{n} by natural H asymptote (18) gives numbers

$$
\begin{equation*}
\mathrm{N}_{\mathrm{n}}=\mathrm{E}_{\mathrm{n}} /\left(1 / 2 \mathrm{e}^{2} / \mathrm{r}_{\mathrm{H}}\right) \text { or } \mathrm{nN} \mathrm{~N}_{\mathrm{n}}=\mathrm{nE}_{\mathrm{n}} /\left(1 / 2 \mathrm{e}^{2} / \mathrm{r}_{\mathrm{H}}\right) \tag{19}
\end{equation*}
$$

Due to (18), plots of $n N_{n}$ versus $1 / \mathrm{n}$ and (1-1/n) in Fig. 1 give $4^{\text {th }}$ order fits (with 5 decimals)

$$
\begin{align*}
& \mathrm{N}_{\mathrm{n}}=-0,00006 / \mathrm{n}^{4}+0,00007 / \mathrm{n}^{3}+1,39106 / \mathrm{n}^{2} \\
& \mathrm{~N}_{\mathrm{n}}=-0,000056(1-1 / \mathrm{n})^{4}+0,00015(1-1 / \mathrm{n})^{3}+1,39093(1-1 / \mathrm{n})^{2}-2,78210(1-1 / \mathrm{n})+1,39107 \tag{21}
\end{align*}
$$

With (1-1/n), typical for molecular potentials [16], (20)-(21) reveal the effect of odd powers in $1 / \mathrm{n}$, absent in Bohr $1 / n^{2}$ theory and in a relativistic expansion in $E_{n}=\mu c^{2}\left(1 / \sqrt{ }\left(1+\alpha^{2} / n^{2}\right)-1\right)[8,14]$.
In (A16)-(A17), we prove that the H force constant k_{n}, away from critical configuration n_{c}, varies with $1,5 / \mathrm{n}$. Fig. 1 includes N_{n} versus $1,5 / \mathrm{n}$ and $(1-1,5 / \mathrm{n})$ with 5 -decimal $4^{\text {th }}$ order fits

$$
\begin{equation*}
\mathrm{N}_{\mathrm{n}}=-0,00001(1,5 / \mathrm{n})^{4}+0,00002(1,5 / \mathrm{n})^{3}+0,61825(1,5 / \mathrm{n})^{2} \tag{22a}
\end{equation*}
$$

$\mathrm{N}_{\mathrm{n}}=-0,00001(1-1,5 / \mathrm{n})^{4}+0,00002\left(1-1,(/ \mathrm{n})^{3}+0,61824(1-1,5 / \mathrm{n})^{2}-1,23651(1-1,5 / \mathrm{n})+0,61826(22 \mathrm{~b})\right.$
Coefficients of $(1,5 / \mathrm{n})^{2}$ in (22a) and $(1-1,5 / \mathrm{n})^{2}$ in (22b) are close to Euclid or Phidias number (10)

$$
\begin{equation*}
\varphi=1 / 2(\sqrt{ } 5-1)=1 / \varphi-1=\Phi-1=0,618034 \quad \ldots \tag{23}
\end{equation*}
$$

Correction factor f_{φ} for φ-symmetry and f_{r} for recoil

$$
\begin{equation*}
\mathrm{f}_{\varphi}=0,618247 / 0,618034-1=0,000344 ; \mathrm{f}_{\mathrm{r}}=\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}=1 / 1836,15267247=0,000545 \tag{24}
\end{equation*}
$$

shows that f_{φ} is smaller than f_{r} by 40%. Difference δ for φ-symmetry is $0,02 \%$, i.e.

$$
\begin{equation*}
\delta=0,618247-0,618034=0,000213 \tag{25}
\end{equation*}
$$

In terms of ratio $\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{H}}=1 / 1837,15267247$ in (7), difference (25)

$$
\begin{equation*}
\left(\mathrm{m}_{\mathrm{H}} / \mathrm{m}_{\mathrm{e}}\right) 0,000213=0,390635 \approx(9 \varphi / 4-1)=(9 / 4)(1 / 2 \sqrt{ } 5-17 / 18) \tag{26}
\end{equation*}
$$

reflects the importance of Euclid's golden ratio for H. Combining coefficient for 1,5/n (22a) and asymptotes 0,618247 in (22a-b) gives a 9-decimal result, close to ratio x in (18), since

$$
\begin{equation*}
\mathrm{x}=(9 / 4) \cdot 0,618246619=(3 / 2)^{2} \varphi=1,391054894=\mathrm{r}_{\mathrm{H}} / \mathrm{r}_{0} \tag{27a}
\end{equation*}
$$

Using (9), the Euclidean H variable x_{E} must obey

$$
\begin{equation*}
x_{\mathrm{E}}=\mathrm{a} \varphi^{1 / 2} / \mathrm{n} \tag{27b}
\end{equation*}
$$

Results (21)-(27) probe Penrose's five-fold or Euclid's φ-symmetry in H, due to alternative classical radius r_{H} (15). For internal φ-symmetry in H according to (13), (27) prescribes Euclidean variable

$$
\begin{equation*}
\mathrm{X}_{\mathrm{E}} \sim \mathrm{x}_{\mathrm{E}}\left(1-\mathrm{x}_{\mathrm{E}}\right) \sim\left(\mathrm{a} \varphi^{1 / 2} / \mathrm{n}\right)\left(\mathrm{a} \varphi^{1 / 2} / \mathrm{n}-1\right) \tag{28}
\end{equation*}
$$

Given their smallness, of order recoil (13), only precise H terms [17-21] can provide with evidence for internal five-fold H symmetry (28).

IV. Putting φ to the test in \mathbf{H} with accurate \mathbf{H} intervals (prediction of $\mathbf{H 1 S} \mathbf{S}_{1 / 2}-\mathbf{3} \mathrm{S}_{1 / 2}$)

The precision needed to validate (28) requires an upgrade of E_{n} [12]. Table 1 shows precise H terms available. Its 4 precisely known intervals $\mathrm{A}, \mathrm{B}, \mathrm{D}$ and E give 2 derived intervals C and F . Since only B and F are void of $1 S$, the immeasurable series limit or $-E_{1}, B$ and F allow multiplicative scaling. Precision at this level requires many significant digits. A fit of $\mathrm{E}_{\mathrm{n}}[12]$ to $4^{\text {th }}$ order in $1 / \mathrm{n}$ through the origin generates these digits and allows a test with terms in Table 1. Slope 1-1,79201817.10-8 and intercept 26940,95752/29979245, $8=0,00008965361 \mathrm{~cm}^{-1}$ give the terms in kHz in Table 2. The conversion corresponds with a change of Erickson's $1977 \mathrm{R}=109737,3177 \pm 0,00083 \mathrm{~cm}^{-1}$ [12]. Table 1 reveals that A, B and C are exactly reproduced. The small discrepancies for D, E and F are much lower than experimental uncertainties, 10 kHz for D and 21 for E in [20-21]. With the small error of $1,74 \mathrm{kHz}$ for F removed, the error reappears for D and $\mathrm{E}(1,71 \mathrm{kHz})$. The small difference of $1,26 \mathrm{kHz}$ for all terms caused by this correction justifies their omission in Table 2.
With ongoing experiments [11] in mind, we safely conclude that our predicted H1S-3S interval (G in Table 1 and also in Table 2) is correct within $1,74 \mathrm{kHz}$, i.e. the largest error in Table 2.

Table 1 Observed [10] and intervals from this work in kHz (with errors δ). Prediction of H 1S-3S

Intervals ${ }^{\text {a,b }}$	Observed	This work	$\delta(\mathrm{kHz})$	Refc.
A. 1S-2S	2466061413187,07	2466061413187,07	0,00	[17,18]
B. $2 \mathrm{~S}-8 \mathrm{~S}$	770649350012,00	770649350012,00	0,00	[19]
C. [1S-8S]	3236710763199,07	3236710763199,07	0,00	
D. $2 \mathrm{~S}-4 \mathrm{~S}-1 / 4(1 \mathrm{~S}-2 \mathrm{~S})$	4797338	4797334,20	-3,80	[20]
E. $2 \mathrm{~S}-6 \mathrm{~S}-1 / 4(1 \mathrm{~S}-3 \mathrm{~S})$	4197604	4197601,94	-2,06	[21]
F. [6S-2S+1/4(3S-2S)]	599734	599732,26	-1,74	
G. 1S-3S predicted ${ }^{\text {d }}$	to be measured	2922743278654,37		[11]

[^0]Surprisingly, $4^{\text {th }}$ order is still sufficient to fit all data accurately, when 15 significant digits are used.
$N_{n}=E_{n}^{\prime} /\left(1 / 2 e^{2} / r_{H}\right)$ plotted versus Euclidean variable $x_{E}(27 b)$ gives N_{n}, equal to
$-0,000028651871617 \mathrm{x}_{\mathrm{E}}{ }^{4}+0,000042968542402 \mathrm{x}_{\mathrm{E}}{ }^{3}+1,000344034289810 \mathrm{x}_{\mathrm{E}}{ }^{2}-0,000000000165642 \mathrm{x}_{\mathrm{E}}(29)$

For 19 terms 2 S to 20 S in Table 2, average errors of $0,11 \mathrm{kHz}$ give a precision of $1,6.10^{-12} \%$. Small deviations ε_{n} nevertheless increase with increasing n (which we discuss elsewhere).
H terms in Table 2 allow a check of Euclidean variable $X_{\mathrm{E}}(28)$ for internal Euclidean φ-symmetry.

Table 2 H 1S-nS: original $\mathrm{E}_{\mathrm{n}}[12]$ and converted $\mathrm{E}_{\mathrm{n}}^{\prime}$ in cm^{-1}, terms T_{n} in kHz and deviations ε_{n} with fitting to $4^{\text {th }}$ order (29)

n	$-\mathrm{E}_{\mathrm{n}}\left(\mathrm{cm}^{-1}\right)$	$-\mathrm{E}_{\mathrm{n}}^{\prime}\left(\mathrm{cm}^{-1}\right)$	$\mathrm{T}_{\mathrm{n}}(\mathrm{kHz})$	$\varepsilon_{\mathrm{n}}(\mathrm{kHz})$
1	109678,773704000	109678,77174307900	0	
2	27419,817835200	27419,81734379700	2466061413187,07	1,706
3	12186,550237200	12186,55001899660	2922743278654,37	0,139
4	6854,918845390	6854,91872213227	3082581563818,04	-0,078
5	4387,140880900	4387,14080222353	3156563684658,80	-0,097
6	3046,621950400	3046,62189584705	3196751430452,60	-0,083
7	2238,332451300	2238,33241135261	3220983339585,82	-0,065
8	1713,722059150	1713,72202861737	3236710763199,07	-0,050
9	1354,051221430	1354,05119731790	3247493423457,69	-0,038
10	1096,780974420	1096,78095487230	3255206191292,99	-0,029
11	906,430202530	906,43018635921	3260912763770,46	-0,022
12	761,652903990	761,65289037408	3265253077913,06	-0,016
13	648,982171840	648,98216020327	3268630861427,32	-0,012
14	559,581428918	559,58141885409	3271311028226,93	-0,008
15	487,457495457	487,45748665884	3273473249318,27	-0,005
16	428,429358101	428,42935033704	3275242868326,18	-0,003
17	379,508294780	379,50828787203	3276709484882,61	-0,001
18	338,511977355	338,51197116509	3277938523538,06	0,000
19	303,816802757	303,81679717463	3278978658687,20	0,001
20	274,194630876	274,19462581233	3279866709043,60	0,002
average 0,124				

V. Beyond Bohr H 1/n ${ }^{2}$ theory: probing internal φ-symmetry for fractal H

A $4^{\text {th }}$ order fit of accurate E_{n}^{\prime} data in Table 2 exposes the contribution of Bohr's $1 / n^{2}$ theory

$$
-E_{n}^{\prime}=-4,368336200714 / n^{4}+5,555412530899 / n^{3}+109677,583783388 / n^{2}-0,000015348196 n(30)
$$

Apart from small $1 / \mathrm{n}$, subtracting term $1 / \mathrm{n}^{2}$ discloses accurate symmetry bound energy differences

$$
\begin{equation*}
\Delta \mathrm{E}_{\mathrm{n}}^{\prime}=\left(4,368336200714 / \mathrm{n}^{2}-5,555412530899 / \mathrm{n}\right) / \mathrm{n}^{2} \mathrm{~cm}^{-1} \tag{31}
\end{equation*}
$$

Series limit E_{1} in Table 2 gives ΔE_{n}^{\prime}, shifted by $1,18 \ldots / n^{2}$. Coefficients in (31) reveal a parabola, obtained by adding $(1 / 25,5554 / \sqrt{ } 4,3683)^{2}=1,32901^{2}=1,766268$. This hidden term in $1 / \mathrm{n}^{2}$ provides with a harmonic Rydberg $\mathrm{R}_{\text {harm, }}$, larger than R_{∞} and R_{1}, in line with power fit (4) and is equal to [22]

$$
\begin{equation*}
\mathrm{R}_{\text {harm }}=109677,583783+1,766268=109679,350051 \mathrm{~cm}^{-1} \tag{32}
\end{equation*}
$$

H symmetry equation (31) with $R_{\text {harm }}$ now becomes a perfect Mexican hat curve, i.e. quartic [23]

$$
\Delta_{\text {harm }}=\left(4,368336 / \mathrm{n}^{2}-5,555413 / \mathrm{n}+1,766268\right) / \mathrm{n}^{2} \mathrm{~cm}^{-1}=1,766268(1-1,572642 / \mathrm{n})^{2} / \mathrm{n}^{2}(33)
$$

which is critical at $n=2 \cdot 1,572642 / n \approx \pi \approx 4 \varphi^{1 / 2}$ [23]. Fig. 2 gives quartics for $R_{\text {harm }}, R_{\infty}$ and E_{1} versus $4 \varphi^{1 / 2} / n-1$. The more symmetrical Hund-type Mexican hat curve with $R_{\text {harm }}(32)$ is an undeniable signature for left-right H behavior [23] but is usually, and unjustly, disregarded.

Using R_{∞} to disclose internal H symmetries as in QED creates large energy differences (see Fig. 2). With (33) accurate to order kHz , Euclidean symmetry for fractal H is obvious. In fact, all numbers in (33) are sufficiently close to Euclidean variables (27)-(28), i.e.

$$
\begin{align*}
& 9 \varphi^{1 / 2} / 4=1,768840600 \tag{34}\\
& 2 \varphi^{1 / 2}=1,572302756 \tag{35}
\end{align*}
$$

transforming (33) in $9 \varphi^{1 / 2} / 4\left(1-2 \varphi^{1 / 2} / \mathrm{n}\right)^{2} / \mathrm{n}^{2}$ and (31) in $9 \varphi^{1 / 2} / 4\left[1-\left(1-2 \varphi^{1 / 2} / \mathrm{n}\right)^{2}\right] / \mathrm{n}^{2}$. For internal symmetry (35), the parts' ratio, the difference is only 0,000338763 , just like 0,000344 in (24). This proves that internal H symmetry stems from chaotic/fractal behavior [4-5], Euclid's golden number [1-3] or Penrose's 5-fold symmetry [6], the most important, almost divine symmetry in nature [1-3].

VI. Discussion

(i) Spectral H data are accurately matched with a closed form quartic in $1 / \mathrm{n}$. Unless for Lamb shifts, odd $1 / \mathrm{n}$ powers are absent in $1 / \mathrm{n}^{2}$ and QED theories. If observed data [13] had 5 decimals, QED data in [12] could have been avoided, since all main intervals in Table 1 are also available from [13]. Only the smaller intervals remain with an error (for F in Table 1, a persisting error of only 100 kHz suggests Kelly data have a wrong $4^{\text {th }}$ decimal for 4 S and/or 6 S).
(ii) Euclidean H harmony rests on algebra, overlooked for recoil [16], see Section II.2. We agree with Cagnac et al. [14] that reduced mass as used in relativistic theories, see Section III, does not make sense. Using reduced mass instead of mass at $n=\infty$ creates a huge error of about $60 \mathrm{~cm}^{-1}$.
(iii) In the H_{2} spectrum, natural asymptote $1 / 2 e^{2} / r_{H} \approx 78844,9 \mathrm{~cm}^{-1}$ shows as ionic energy $D_{\text {ion }}=e^{2} / r_{H}$ [16]: r_{H} is close to observed separation $0,74 \AA$ in H_{2} [24] and gives fundamental H_{2} frequency of $4410 \mathrm{~cm}^{-1}$ [24]. With r_{H} and φ, molecular H_{2} and atomic H spectra are intimately linked [16].
(iv) Incidentally, an angle of 30°, typical for Euclid's φ, also appears in the SM [25] as mixing angle for perpendicular interactions.
(v) Higher order terms in $\xi=\mathrm{a} / \mathrm{n}$ or (1- ξ) brings H theory in line with Kratzer-type expansions like

$$
\begin{equation*}
\mathrm{E}_{\mathrm{n}}=\mathrm{a}_{0} \xi^{2}\left(1+\mathrm{a}_{1} \xi+\mathrm{a}_{2} \xi^{2}+\mathrm{a}_{3} \xi^{3}+\ldots\right) \tag{36}
\end{equation*}
$$

formally similar to but different than the more familiar Dunham expansion [26-30].
(vi) Results for D and the H nP series are given elsewhere. With a Sommerfeld-Dirac fine structure formula [31], the internal variable for HnP is $1,5 / \mathrm{n}$, rather than (35) for nS , which is responsible for the observed standard Lamb shift [22, 31].
Euclidean H-symmetry, brought about by natural radius r_{H} is in line with Rydberg's (1) and connects H terms with its most important property, mass $m_{H} . H$ is not only prototypical for atomic and molecular physics [16]; it is prototypical for fractal behavior, in line with Mandelbrot [4]. We do not elaborate on discrete Euclidean geometries for composite H, conforming to Penrose 5-fold
symmetry [6]. Bohr's model for composite H may well have to be refined on the basis of classical physics as suggested in Appendix A.

VII. Conclusion

Euclidean H symmetry only shows when H mass is directly linked to the H spectrum by virtue of its natural, classical radius r_{H}. Questions on conceptual, theoretical and practical (metrological) issues are outside the scope of this work. Definite conclusions depend on the observation of H 1S-3S [11].

References

[1] General references on phi are at http://en.wikipedia.org/wiki/Golden ratio and in E.W.
Weinstein, Golden Ratio at http://mathworld.wolfram.com . It is impossible to reference all articles on phi in peer reviewed journals by the authors, mentioned in [3-6] and by many others.
[2] M. Livio, The Golden Ratio: The Story of Phi, the World's most Astonishing Number, Broadway Books, New York, 20002
[3] A. Stahkov, The Mathematics of Harmony, World Scientific Publishing, Singapore, 2008
[4] B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman New York, 1982
[5] M.C. Gutzwiller, Phys. Rev. Lett. 45, 150 (1980)
[6] R. Penrose, The Road to Reality, Jonathan Cape, London, 2004
[7] J.S. Rigden, Hydrogen: The Essential Element, Harvard University Press, Cambridge, 2002
[8] M.I. Eides, H. Grotch and V.A. Shelyuto, Phys. Rept. 342, 63 (2001)
[9] J.R. Rydberg, Kungl. Svenska Vet. Handl. 11, 23 (1889)
[10] P.J. Mohr, B.B. Taylor and D.B. Newell, Rev. Mod. Phys. 80, 633 (2008)
[11] O. Arnoult et al., Can. J. Phys. 83, 273 (2005)
[12] G.W. Erickson, J. Phys. Chem. Ref. Data 6, 831 (1977)
[13] R.L. Kelly, Atomic and ionic spectrum lines below 2000 Angstroms. Hydrogen to Krypton. New York, American Institute of Physics (AIP), American Chemical society and the National Bureau of Standards, 1987
[14] B. Cagnac et al., Rep. Prog. Phys. 57, 853 (1994)
[15] B. de Beauvoir, Eur. Phys. J. D 12, 61 (2000)
[16] G. Van Hooydonk, arxiv:0806.224
[17] M. Fischer et al., Phys. Rev. Lett. 92, 230802 (2004)
[18] M. Fisher et al., in Astrophysics, Clocks, and Fundamental Constants, ed. S. Karshenboim and E. Peik, Lect. Notes Phys., 648, 209 (2004)
[19] B. de Beauvoir et al., Phys. Rev. Lett. 78, 440 (1997)
[20] M. Weitz et al., Phys. Rev. A 52, 2664 (1995)
[21] S. Bourzeix et al., Phys. Rev. Lett. 76, 384 (1996)
[22] G. Van Hooydonk, Phys. Rev. A 66, 044103 (2002)
[23] G. Van Hooydonk, Acta Phys Hung NS 19, 385 (2004)
[24] K.P. Huber and G. Herzberg, Molecular Spectra, Molecular Structure: Constants of Diatomic Molecules, vol. IV, Van Nostrand-Reinhold, New York, 1979
[25] P. Langacker, arxiv:0901.0241
[26] G. Van Hooydonk, Z. Naturforsch. A 37, 710 (1982)
[27] G. Van Hooydonk, Spectrochim. Acta A 56, 2273 (2000)
[28] G. Van Hooydonk, Eur. J. Inorg. Chem., Oct., 1617 (1999)
[29] G. Van Hooydonk, Eur. Phys. J. D 32, 299 (2005)
[30] G. Van Hooydonk, Phys. Rev. Lett. 100, 159301 (2008)
[31] G. Van Hooydonk, physics/0612141

Fig. $1 \mathrm{nN} \mathrm{N}_{\mathrm{n}}$ versus $1 / \mathrm{n}(\Delta), 1-1 / \mathrm{n}(\square)$ (solid lines), $1,5 / \mathrm{n}(+)$ and 1-1,5/n(x) (dashes).

Fig. 2 Symmetry breaking curves in Euclidean H : E_{n}-differences (31)-(33) in cm^{-1} versus the appropriate Euclidean variable, see text): exact Mexican hat curve with $\mathrm{R}_{\text {harm }}$ (full-line \square), E_{1} (short dashes o) and NIST's R_{∞} (broken dashes +)

Appendix A Comparison of classical and Bohr H theories

This self-explanatory table contains all formulae for a stable charge-conjugated two particle Coulomb system, subject to periodic motion. Main results and differences are in bold.

Description	Classical H theory	Bohr H theory	\#
Energy E=T+V	$\mathrm{E}=1 / 2 \mu \mathrm{v}^{2}-\mathrm{e}^{2} / \mathrm{r}$	idem	A1
Hamiltonian	$\mathrm{E}=1 / 2 \mathrm{p}^{2} / \mu-\mathrm{e}^{2} / \mathrm{r}$	idem	A2
Periodic motion	$\mathrm{E}=1 / 2 \mu \omega^{2} \mathrm{r}^{2}-\mathrm{e}^{2} / \mathrm{r}$	idem	A3
Repulsive force d / dr	$\mu \omega^{2} \mathrm{r}=\mu \mathrm{v}^{2} / \mathrm{r}=\mathrm{p}^{2} /(\mu \mathrm{r})$	idem	A4
Attractive force d/dr	$\mathrm{e}^{2} / \mathrm{r}^{2}$	idem	A5
Equal forces (Newton)	$\mu \mathrm{v}^{2} \mathrm{r}=\mathrm{e}^{2}$	idem	A6
Equal forces (Keppler, $\mathrm{HO}^{\text {a }}$)	$\mu \mathrm{v}^{2}=\mathrm{e}^{2} / \mathrm{r} ; \mu \omega^{2}=\mathrm{e}^{2} / \mathrm{r}^{3} ; \omega^{2}=\mathrm{e}^{2} / \mu \mathrm{r}^{3} ; \omega=\sqrt{ }(\mathrm{k} / \mu)$	vibrator or HO not considered	A7
Force constant k_{e} at r_{e}	$\mathrm{k}_{\mathrm{e}}=\mathrm{e}^{2} / \mathrm{r}_{\mathrm{e}}{ }^{3}$	absent	A8
Constant periodicity $\mathrm{dE} / \mathrm{d} \omega$	$\mu \omega r^{2}=\mu \mathrm{vr}=\mathrm{pr}=\mathrm{C}$	$\mu \omega \mathrm{r}^{2}=\mu \mathrm{vr}=\mathrm{pr}=\mathrm{nh}$	A9
Moment	$\mathrm{p}=\mathrm{C} / \mathrm{r}$	$\mathrm{p}=\mathrm{n}$ / r	A10
Ratio A6/A9	$\mathrm{v}=\mathrm{e}^{2} / \mathrm{C}$	$\mathrm{v}=\mathrm{e}^{2} /(\mathrm{n} \hbar) ; \mathrm{v} / \mathrm{c}=\mathrm{e}^{2} /(\mathrm{n} \hbar \mathrm{c})=\alpha / \mathrm{n}$	A11
H radius	$\mathrm{r}=\mathrm{C} /(\mu \mathrm{v})=\mathrm{C}^{2} /\left(\mu \mathrm{e}^{2}\right)$	$\mathrm{r}=\mathrm{nh} /(\mu \mathrm{v})=\mathrm{n}^{2} \hbar^{2} /\left(\mu \mathrm{e}^{2}\right)=\mathrm{n}^{2} \mathrm{r}_{\mathrm{B}}$	A12
Feedback of A10 in E (A1)	$\begin{aligned} & 1 / 2 \mathrm{p}^{2} / \mu-\mathrm{e}^{2} / \mathrm{r}=1 / 2 \mu \mathrm{v}^{2}-\mu \mathrm{ve} \mathrm{e}^{2} / \mathrm{C}=1 / 2 \mathrm{C}^{2} /\left(\mu \mathrm{r}^{2}\right)- \\ & \mu \mathrm{e}^{4} / \mathrm{C}^{2}=1 / 2 \mathrm{e}^{2} \mathrm{C}^{2} /\left(\mu \mathrm{e}^{2} \mathrm{r}^{2}\right)-\mathrm{e}^{2} / \mathrm{r} \end{aligned}$	$\begin{aligned} & 1 / 2 \mu v^{2}-e^{2} / r=1 / 2 \mu e^{4} /\left(n^{2} \hbar^{2}\right)- \\ & \mu e^{4} /\left(n^{2} \hbar^{2}\right)=-1 / 2 \mu e^{4} /\left(n^{2} \hbar^{2}\right)=-R_{H} / n^{2} \end{aligned}$	A13
Feedback to $\mathrm{dE} / \mathrm{dr}=0$ at r_{0}	$-\mathrm{C}^{2} /\left(\mu \mathrm{r}^{3}\right)+\mathrm{e}^{2} / \mathrm{r}^{2}$ or $\mathrm{C}^{2} / \mu=\mathrm{e}^{2} \mathrm{r}_{0}$	absent	A14
Feedback to E (A13)	$\mathrm{E}=1 / 2 \mathrm{e}^{2} \mathrm{r}_{0} / \mathrm{r}^{2}-\mathrm{e}^{2} / \mathrm{r}=1 / 2\left(\mathrm{e}^{2} / \mathrm{r}_{0}\right)\left[\left(\mathrm{r}_{0} / \mathrm{r}\right)^{2}-2 \mathrm{r}_{0} / \mathrm{r}\right]$	absent	A15
Feedback to $\mathrm{d}^{2} \mathrm{E} / \mathrm{dr}^{2}=\mathrm{k}$	$\begin{aligned} & \mathrm{k}=3 \mathrm{C}^{2} /\left(\mu \mathrm{r}^{4}\right)-2 \mathrm{e}^{2} / \mathrm{r}^{3}=3 \mathrm{e}^{2} \mathrm{r}_{0} / \mathrm{r}^{4}-2 \mathrm{e}^{2} / \mathrm{r}^{3}= \\ & 2\left(\mathrm{e}^{2} / \mathrm{r}_{0}{ }^{3}\right)\left(\mathrm{r}_{0} / \mathrm{r}\right)^{3}\left[1,5\left(\mathrm{r}_{0} / \mathrm{r}\right)-1\right] \end{aligned}$	absent	A16
Classical r definition using n	$\mathrm{r}=\mathrm{nr}_{0}$	absent, replaced by A12 or $\mathrm{r}=\mathrm{n}^{2} \mathrm{r}_{\mathrm{B}}$	A17
Plugging (A17) in k (A16)	$\mathrm{k}_{\mathrm{n}}=\mathrm{k}_{1}\left(1 / \mathrm{n}^{3}\right)(1,5 / \mathrm{n}-1) ; \mathrm{k}_{1}=\mathrm{e}^{2} / \mathrm{r}_{0}{ }^{3}$	absent	A18
Plugging (A17) in E (A15)	$\mathrm{E}=1 / 2\left(\mathrm{e}^{2} / \mathrm{r}_{0}\right)\left[1 / \mathrm{n}^{2}-2 / \mathrm{n}\right]$	absent	A19
Adding $\mathrm{E}_{0}=1 / 2\left(\mathrm{e}^{2} / \mathrm{r}_{0}\right)$ to (A19)	$E^{\prime}=\mathrm{E}_{0}+1 / 2\left(\mathrm{e}^{2} / \mathrm{r}_{0}\right)\left[1 / n^{2}-2 / n\right]=\mathrm{E}_{0}(1-1 / \mathrm{n})^{2}$	absent	A20
Replacing $1 / \mathrm{n}$ by ($1-1 / \mathrm{n}$)	$E^{\prime}=\mathrm{E}_{0}[1-(1-1 / \mathrm{n})]^{2}=\mathrm{E}_{0} / \mathrm{n}^{2}$	see result A13	A21
Energy difference, terms T_{n}	$\mathrm{T}_{\mathrm{n}}=\mathrm{E}_{0}-\mathrm{E}_{0} / \mathrm{n}^{2}=\mathrm{E}_{0}\left(1-1 / \mathrm{n}^{2}\right)$	$\mathrm{T}_{\mathrm{n}}=\mathrm{R}_{\mathrm{H}}-\mathrm{R}_{\mathrm{H}} / \mathrm{n}^{2}=\mathrm{R}_{\mathrm{H}}\left(1-1 / \mathrm{n}^{2}\right)$	A22
Identical T formulae	n defined classically in (A17)	n in Bohr quantum hypothesis (A9)	A23

${ }^{\text {a }} \mathrm{HO}$ is the classical Harmonic Oscillator

Force constant equations (A16)-(A18) for periodic motion and vibrations in HOs, are absent in Bohr theory. A switch to complementary variable (A21) is a switch from (i) energy $\mathrm{V}=-\mathrm{e}^{2} / \mathrm{r}$ in (A1) to energy difference $\Delta \mathrm{V}=-\mathrm{e}^{2} / \mathrm{r}+\mathrm{e}^{2} / \mathrm{r}_{0}$ and (ii) of moment $\mathrm{p}=\mathrm{C} / \mathrm{r}$ in (A10) to moment difference $\Delta \mathrm{p}=\mathrm{C}(1 / \mathrm{r}-1 / \mathrm{r})$. Kinetic and potential differences give $\left.\Delta \mathrm{E}=1 / 2\left(\mathrm{e}^{2} / \mathrm{r}_{0}\right){ }^{[1 / 2}(1-1 / \mathrm{n})^{2}-(1-1 / \mathrm{n})\right]=1 / 2\left(\mathrm{e}^{2} / \mathrm{r}_{0}\right) / \mathrm{n}^{2}(\mathrm{~A} 21)$.
The usefulness of complementary variable $1-1 / \mathrm{n}$ in (A21), usually not considered for H theory, is illustrated by respective $4^{\text {th }}$ order fits (2 digit version) of E_{n} in Table 2
$1 / \mathrm{n}: \quad \mathrm{E}_{\mathrm{n}}^{\prime}=-4,37 / \mathrm{n}^{4}+5,55 / \mathrm{n}^{3}+109677,59 / \mathrm{n}^{2}-0,00 / \mathrm{n}+0,00 \mathrm{~cm}^{-1}$
$(1-1 / n): \quad E_{n}^{\prime}=-4,37(1-1 / n)^{4}+11,91(1-1 / n)^{3}+109668,05(1-1 / n)^{2}-219354,37(1-1 / n)+109678,77 \mathrm{~cm}^{-1}$
Reducing H size classically in (A17) without a quantum theory gives the same results as Bohr's quantum hypothesis for angular momentum (A9).

[^0]: ${ }^{\text {a }}$ only B and derived F do not depend on 1 S
 ${ }^{b}$ derived values between square brackets result from $C=A+B$ and $F=D-E$
 c the four intervals A,B,D,E are used for metrology in [10]
 ${ }^{\mathrm{d}}$ by the same argument, all other intervals n S in Table 1 are predicted with the relative accuracy to reference term B [19]

