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Abstract

In this note, we give an alternative and considerably shorter proof of a
result of Shult [2] stating that all hyperplanes of embeddable Grassman-
nians arise from projective embeddings.
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1 Introduction

Let n > 1 and let K be a field. Let V' denote an (n + 1)-dimensional vector
space over K and let PG(n,K) = PG(V) denote the projective space associated
with V. Let k € {0,...,n — 1}. Then the following point-line geometry A, 41
can be defined:

e The points of A, ;41 are the k-dimensional subspaces of PG(n, K).

e The lines of A, ;41 are the sets A(m1,m2) of k-dimensional subspaces of
PG(n,K) which contain a given (k — 1)-dimensional subspace m; and are
contained in a given (k + 1)-dimensional subspace my (71 C 72).

e Incidence is containment.

The geometry A,, ;41 is called the Grassmannian of the k-dimensional subspaces
of PG(n,K). We will denote the point-set of A, x+1 by P. If  and y are two
points of A, k41, then d(z,y) := k —dim(z Ny) is the distance between z and y
in the collinearity graph of A, xy1. A hyperplane of A, 41 is a proper subspace
of Ay, r+1 which meets every line of A, k1.

Now, let A*t'V denote the (k + 1)-th exterior power of V. For every k-

dimensional subspace a = (¥1,0s,...,Uk+1) of PG(n,K), let e(a) denote the
point (01 A Uy A -+ A Tq1) of PG(/\]H_1 V). Notice that the point e(a) is
independent of the generating set {v1,02,...,0x+1} of the subspace . The

map e defines a full projective embedding of A,, ;41 into PG(/\kJrl V') which is



called the Grassmann-embedding of Ay, j41. If 7 is a hyperplane of PG(/\kJrl V),
then e !(m N e(P)) is a hyperplane of A, x+1. We say that the hyperplane
e~ t(mNe(P)) arises from the Grassmann-embedding of A, j11.

The aim of this note is to give a short and elementary proof of the following
result due to Shult [2].

Theorem 1.1 All hyperplanes of Ay k41 arise from the Grassmann-embedding
Of An,k+1-

Theorem 1.1 has an equivalent formulation in terms of alternating k-linear
forms. This fact together with results of Ronan [1] and Wells [3] was exploited
in [2] to prove Theorem 1.1. The alternative proof for Theorem 1.1 which we
will now give is considerably shorter and only uses basic projective geometry.

2 Some useful results

We continue with the notation of Section 1.

Lemma 2.1 Every hyperplane H of A, k41 15 a mazimal subspace of Ay jy1.

Proof. Let X; and X, be two points of A, 11 not contained in H. Recall
that d(X1, X2) = k — dim(X; N X3). We prove by induction on d(X;, X3) that
X1 and X, are contained in a path which entirely consists of points of P\ H.
Obviously, this holds if d(X7, X3) < 1. So, suppose that ¢ := d(X1, X2) > 2.
For every ¢ € {1,2}, let (y;,;) be a non-incident point-hyperplane pair of
X; such that X7 N Xy C «;. Put B; := (X3,992) and f2 := (Xo2,91). Then
A(aq, 81) and A(ag, B2) are two lines of A,, y4+1. Moreover, for every point Z; of
A(aq, (1), there exists a unique point Z € A(aq, f2) at distance d(Xq, Xo) — 1
from Z;, namely Zs = (as, z), where z is the unique point in Z; N y1ys. Since
X; € H and X; € A(w, Bi), |A(ay, ;) N H| = 1. So, it is possible to choose a
Zy € A(ay, 1) and a Zy € A(asg, B2) such that Z1 € H, Zs ¢ H and d(Z1, Zs) =
d(Xy, X2) — 1. By the induction hypothesis, Z; and Zs are connected by a path
entirely consisting of points of P\ H. Hence, also X; and X3 are connected by
such a path. O

Suppose now that H; and Hy are two distinct hyperplanes of A,, ;1. Let I" be
the graph with vertex set P\ (H; U Hs), with two vertices x and y adjacent if
and only if d(x,y) = 1 and the line zy meets H; N Hy. Let C denote the set of all
connected components of I and put H := {H;, H,} U{C U (H, N Hy) |C € C}.

Lemma 2.2 If H is a hyperplane of Ay k41 such that HN Hy = Hi N Hy =
H N Hy, then H € H.

Proof. Since H; and H, are distinct maximal subspaces, H; N Hy is not a
maximal subspace. Since Hy N Hy C H and H is a maximal subspace, there
exists an x* € H \ (Hy N Hy). Clearly, * ¢ Hy; U Hs. So, z* is a vertex of T’



and there exists a unique element W € H containing x*. We will prove that
H=W.

We first show that W C H. In view of the fact that z* € W N H, we need
to show that if x € H \ (H1 N Hz) and y is a vertex of I adjacent to z, then also
y € H\ (H1N Hy). Now, since (i) d(z,y) = 1, (ii) zy meets H;y N Hy = HN Hy,
and (iii) H is a subspace, it follows that zy C H. In particular, y € H.

We next show that H C W. It suffices to prove the following (by induction
oni): if x,y € H\ (H1NHy) with d(z,y) =i and € W, then also y € W. The
claim then immediately follows from the fact that «* € HNW. If d(z,y) = 1,
then the line xy meets H N Hy = H; N Hs. Hence, z and y are adjacent points
of I'and y € W. So, we will suppose that 6 = d(z,y) > 2. We show that there
exists a point u, of x, a point u, of y, a hyperplane o, of x and a hyperplane
ay of y such that 2Ny C ay, 2 NY C ay, Uy & Ay, Uy & Qy, (g, uy) € H and
(o, ug) € H.

Let a, be an arbitrary hyperplane of x through = Ny and let S denote the
set of all k-dimensional subspaces of PG(n,K) through «, which intersect y in
a subspace of dimension k—d+1. Then S is a subspace of A,, 1 which carries
the structure of a projective space isomorphic to PG(d — 1,K). The set SN H
is equal to either S or a hyperplane of S (if we regard S as a projective space).

Suppose § > 3 or SN H = S. Let u, be an arbitrary point of x \ a. Let S’
denote the set of all k-dimensional subspaces through w, which intersect y in a
hyperplane of y containing z Ny. Then S’ is a subspace of A,, j+1 which carries
the structure of a projective space PG(d — 1,K). The set S’ N H is equal to
either S’ or a hyperplane of S’. If § > 3, then we see that there exist elements
Be€SNH and v € "N H such that (BNy)N(yNy) =z Ny. In this case, put
oy =y Ny and let u, be an arbitrary point of (8N y)\ (xNy). Suppose § =2
and SN H = S. Let § be an arbitrary element of S’ H. Put 3Ny = «a, and
let u, be an arbitrary point of y \ a,. In both cases, one readily verifies that
(ug, Uy, g, o) satisfies all required properties.

Suppose § = 2 and that SN H is a singleton {#}. Let u, be an arbitrary
point of (BN y)\ (xNy) and let o, be an arbitrary hyperplane of y through
x Ny not containing u,. Let S" denote the set of all k-dimensional subspaces of
PG(n,K) through a, which intersect x in a hyperplane of . Then S’ is a line.
Since (o, ) & H, there exists a unique element v € S’ belonging to H. Let
ug be an arbitrary point of (yNx) \ (z Ny). Then (uy,uy, ay, o) satisties all
required properties.

Now, let ug, uy, oz and «, as above. Then L, := A(cy, (z,u,)) and L, :=
A(ay, (y,uz)) are lines of A, p41. Since L, contains the points z and (o, uy)
of H, all the points of L, are contained in H. Similarly, since L, contains the
points y and (v, u,) of H, all the points of L, are contained in H. Clearly, every
point z; of L, has distance d(z,y) — 1 from a unique point z5 of L,, namely 2,
is the unique k-dimensional subspace containing «,, and the singleton z; Nugu,.
Since « ¢ Hy and y € Hy, |Ly N Hi| =1 = |L, N Hy|. Hence, there exists a
z1 € Ly and a 2z € Ly, such that z; € Hy, 2o € Hy and d(z1, 22) = d(z,y) — 1.
Now, applying the induction hypothesis 3 times, we find z; € W, 2o € W and
yeW. O



Corollary 2.3 If Hy and Hy arise from the Grassmann-embedding of Ay, k41,
then also every hyperplane H of A, j+1 satisfying HNHy = HiNHy = HN Hy
arises from the Grassmann-embedding of Ay, k1.

Proof. Take a point * € H \ (H; N Hy). Since H;, i € {1,2}, is a maximal
subspace, 3; := (e(H;)) is a hyperplane of PG(A*"! V). Moreover, &; Ne(P) =
e(H;). So, 31 # 39 and e(x*) € X1 NXy since X1 NEaNe(P) = e(Hy)Ne(Hsy) =
e(Hi N Hy). Put ¥ := (e(z*),X1NYy) and H' := e~ (X Ne(P)). Then z* € H'
and H' N H; = Hi N Hy = H N Hy. By the proof of Lemma 2.2, H =W = H’,
where W is the unique element of H containing z*. ]

3 Alternative proof of Theorem 1.1

We will prove Theorem 1.1 by induction on n. If k € {0,n — 1}, then A, 41 is
a projective space and the theorem trivially holds in this case. So, Theorem 1.1
holds if n < 2. In the sequel, we will suppose that n > 3 and k € {1,...,n—2}.

Let (z,7) be a non-incident point-hyperplane pair of PG(n,K). Let S,
respectively Sy, be the subspace of A, ;41 consisting of all k-dimensional sub-
spaces of PG(n,K) which are incident with x, respectively m. The point-line
geometry :9; (respectively g; ) induced on S, (respectively S;) is isomorphic to
Ay (respectively A,,_1 k41). The Grassmann-embedding e of A, j41 induces
an embedding e,, of :S'; into a subspace X, of PG(/\ICJrl V) and an embedding e,
of S, into a subspace 3 of PG(A"™ V). Choosing a basis {1, s, .. .,ép41} in
V such that (é1) = = and (€2, ..., €,4+1) = 7, we see that: (i) X, is the subspace
of PG(A"™ V) generated by all points of the form (&1 A fo A--- A fri1), where
Fas- o, fug1 are vectors of (€, ..., ,41); (i) Sy is the subspace of PG(A" T V)
generated by all points of the form (fi A fo A-++ A fri1), where fi, fo, ..., fit1
are vectors of (€a, ..., €,41). Hence, ¥, and ¥, are complementary subspaces of
PG(A*! V). It is also clear that e, and e, are isomorphic to the Grassmann-
embeddings of respectively A,—1 1 and Ap_1 j41.

Lemma 3.1 Let y be a point of A, k41 not contained in S, U S,. Then there
exists a unique line L, through y meeting S, and Sx.

Proof. Regarding y as a k-dimensional subspace of PG(n,K), we have © & y
and y N is a (k — 1)-dimensional subspace of 7. The line L, := A(y N, (x,y))
contains y, intersects S, in the point (x,y N 7) and S, in the point (z,y) N 7.
The uniqueness of L, is also obvious. O

Now, let H be an arbitrary hyperplane of A,, y4+1. Then H N S is either S, or
a hyperplane of :SY\; Similarly, H N S is either S, or a hyperplane of :9’\; By
Lemma 3.1, it is impossible that H NS, = S, and H N S; = 5.

Suppose HNS; = S;. Then HNS, is a hyperplane of S,. By the induction
hypothesis, there exists a hyperplane 3 of X, such that HNS, = e~ (e(S,)N ).
Now, the hyperplane H is uniquely determined by H N S,: a point y &€ S, U S,



is contained in H if and only if L, NS, € H. This implies that H is the
hyperplane of A,, ;41 arising from the hyperplane (3, X.) of PG(/\kJrl V). Ina
completely similar way, one shows that if H NS, = S,, then H arises from the
Grassmann-embedding of A, 1.

Suppose HN S, is a hyperplane of :S’: and H NSy is a hyperplane of :9; By
the induction hypothesis, there exists a hyperplane (3; of ¥, and a hyperplane
B2 of X, such that H NS, = e *(e(S;) NB1) and H NS, = e 1(e(Sy) N Ba).
Now, put Hy := e~ (e(P)N{B1,%:)) and Hy := e~ (e(P)N{B2,%,)). Then H;
and Hy are distinct hyperplanes of A, r4+1. We show that

(HNnL)Nn(Hy1NnL)y=(H NnL)N(H;NL)=(HNL)N(H2NL) (1)

for every line L meeting S, and S;.

IfLNS, CHand LNS, CH,then HNL=H,NL=HsNL =L and (1)
holds. f LNS, CHand LNS,NH =0, then HNL=LNS,, HHNL =L,
HyNL=LnNS, and (1) holds again. A similar reasoning applies to the case
LNS; C H and LNS,NH = (. Finally, suppose LNS,NH =LNS,NH = (.
Then HHNL=LNS,, HoNL =LNS, and HNL is a singleton different from
HyNL and Hy N L. So, (1) holds again.

By Lemma 3.1 and (1), Hy N H = H; N Hy = Hy N H. By Corollary 2.3, H
arises from the Grassmann-embedding of A, j41.
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