Hyperplanes of embeddable Grassmannians arise from projective embeddings: a short proof

Bart De Bruyn
Ghent University, Department of Pure Mathematics and Computer Algebra, Krijgslaan 281 (S22), B-9000 Gent, Belgium, E-mail: bdb@cage.ugent.be

Abstract

In this note, we give an alternative and considerably shorter proof of a result of Shult [2] stating that all hyperplanes of embeddable Grassmannians arise from projective embeddings.

Keywords: Grassmannian, hyperplane, projective embedding
MSC2000: 51A45, 51E20

1 Introduction

Let $n \geq 1$ and let \mathbb{K} be a field. Let V denote an $(n+1)$-dimensional vector space over \mathbb{K} and let $\mathrm{PG}(n, \mathbb{K})=\mathrm{PG}(V)$ denote the projective space associated with V. Let $k \in\{0, \ldots, n-1\}$. Then the following point-line geometry $A_{n, k+1}$ can be defined:

- The points of $A_{n, k+1}$ are the k-dimensional subspaces of $\operatorname{PG}(n, \mathbb{K})$.
- The lines of $A_{n, k+1}$ are the sets $A\left(\pi_{1}, \pi_{2}\right)$ of k-dimensional subspaces of $\operatorname{PG}(n, \mathbb{K})$ which contain a given $(k-1)$-dimensional subspace π_{1} and are contained in a given $(k+1)$-dimensional subspace $\pi_{2}\left(\pi_{1} \subset \pi_{2}\right)$.
- Incidence is containment.

The geometry $A_{n, k+1}$ is called the Grassmannian of the k-dimensional subspaces of $\operatorname{PG}(n, \mathbb{K})$. We will denote the point-set of $A_{n, k+1}$ by \mathcal{P}. If x and y are two points of $A_{n, k+1}$, then $\mathrm{d}(x, y):=k-\operatorname{dim}(x \cap y)$ is the distance between x and y in the collinearity graph of $A_{n, k+1}$. A hyperplane of $A_{n, k+1}$ is a proper subspace of $A_{n, k+1}$ which meets every line of $A_{n, k+1}$.

Now, let $\bigwedge^{k+1} V$ denote the $(k+1)$-th exterior power of V. For every k dimensional subspace $\alpha=\left\langle\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{k+1}\right\rangle$ of $\operatorname{PG}(n, \mathbb{K})$, let $e(\alpha)$ denote the point $\left\langle\bar{v}_{1} \wedge \bar{v}_{2} \wedge \cdots \wedge \bar{v}_{k+1}\right\rangle$ of $\operatorname{PG}\left(\bigwedge^{k+1} V\right)$. Notice that the point $e(\alpha)$ is independent of the generating set $\left\{\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{k+1}\right\}$ of the subspace α. The map e defines a full projective embedding of $A_{n, k+1}$ into $\operatorname{PG}\left(\bigwedge^{k+1} V\right)$ which is
called the Grassmann-embedding of $A_{n, k+1}$. If π is a hyperplane of $\operatorname{PG}\left(\bigwedge^{k+1} V\right)$, then $e^{-1}(\pi \cap e(\mathcal{P}))$ is a hyperplane of $A_{n, k+1}$. We say that the hyperplane $e^{-1}(\pi \cap e(\mathcal{P}))$ arises from the Grassmann-embedding of $A_{n, k+1}$.

The aim of this note is to give a short and elementary proof of the following result due to Shult [2].

Theorem 1.1 All hyperplanes of $A_{n, k+1}$ arise from the Grassmann-embedding of $A_{n, k+1}$.

Theorem 1.1 has an equivalent formulation in terms of alternating k-linear forms. This fact together with results of Ronan [1] and Wells [3] was exploited in [2] to prove Theorem 1.1. The alternative proof for Theorem 1.1 which we will now give is considerably shorter and only uses basic projective geometry.

2 Some useful results

We continue with the notation of Section 1 .
Lemma 2.1 Every hyperplane H of $A_{n, k+1}$ is a maximal subspace of $A_{n, k+1}$.
Proof. Let X_{1} and X_{2} be two points of $A_{n, k+1}$ not contained in H. Recall that $\mathrm{d}\left(X_{1}, X_{2}\right)=k-\operatorname{dim}\left(X_{1} \cap X_{2}\right)$. We prove by induction on $\mathrm{d}\left(X_{1}, X_{2}\right)$ that X_{1} and X_{2} are contained in a path which entirely consists of points of $\mathcal{P} \backslash H$. Obviously, this holds if $\mathrm{d}\left(X_{1}, X_{2}\right) \leq 1$. So, suppose that $\delta:=\mathrm{d}\left(X_{1}, X_{2}\right) \geq 2$. For every $i \in\{1,2\}$, let $\left(y_{i}, \alpha_{i}\right)$ be a non-incident point-hyperplane pair of X_{i} such that $X_{1} \cap X_{2} \subseteq \alpha_{i}$. Put $\beta_{1}:=\left\langle X_{1}, y_{2}\right\rangle$ and $\beta_{2}:=\left\langle X_{2}, y_{1}\right\rangle$. Then $A\left(\alpha_{1}, \beta_{1}\right)$ and $A\left(\alpha_{2}, \beta_{2}\right)$ are two lines of $A_{n, k+1}$. Moreover, for every point Z_{1} of $A\left(\alpha_{1}, \beta_{1}\right)$, there exists a unique point $Z_{2} \in A\left(\alpha_{2}, \beta_{2}\right)$ at distance $\mathrm{d}\left(X_{1}, X_{2}\right)-1$ from Z_{1}, namely $Z_{2}=\left\langle\alpha_{2}, z\right\rangle$, where z is the unique point in $Z_{1} \cap y_{1} y_{2}$. Since $X_{i} \notin H$ and $X_{i} \in A\left(\alpha_{i}, \beta_{i}\right),\left|A\left(\alpha_{i}, \beta_{i}\right) \cap H\right|=1$. So, it is possible to choose a $Z_{1} \in A\left(\alpha_{1}, \beta_{1}\right)$ and a $Z_{2} \in A\left(\alpha_{2}, \beta_{2}\right)$ such that $Z_{1} \notin H, Z_{2} \notin H$ and $\mathrm{d}\left(Z_{1}, Z_{2}\right)=$ $\mathrm{d}\left(X_{1}, X_{2}\right)-1$. By the induction hypothesis, Z_{1} and Z_{2} are connected by a path entirely consisting of points of $\mathcal{P} \backslash H$. Hence, also X_{1} and X_{2} are connected by such a path.

Suppose now that H_{1} and H_{2} are two distinct hyperplanes of $A_{n, k+1}$. Let Γ be the graph with vertex set $\mathcal{P} \backslash\left(H_{1} \cup H_{2}\right)$, with two vertices x and y adjacent if and only if $\mathrm{d}(x, y)=1$ and the line $x y$ meets $H_{1} \cap H_{2}$. Let \mathcal{C} denote the set of all connected components of Γ and put $\mathcal{H}:=\left\{H_{1}, H_{2}\right\} \cup\left\{C \cup\left(H_{1} \cap H_{2}\right) \mid C \in \mathcal{C}\right\}$.

Lemma 2.2 If H is a hyperplane of $A_{n, k+1}$ such that $H \cap H_{1}=H_{1} \cap H_{2}=$ $H \cap H_{2}$, then $H \in \mathcal{H}$.

Proof. Since H_{1} and H_{2} are distinct maximal subspaces, $H_{1} \cap H_{2}$ is not a maximal subspace. Since $H_{1} \cap H_{2} \subseteq H$ and H is a maximal subspace, there exists an $x^{*} \in H \backslash\left(H_{1} \cap H_{2}\right)$. Clearly, $x^{*} \notin H_{1} \cup H_{2}$. So, x^{*} is a vertex of Γ
and there exists a unique element $W \in \mathcal{H}$ containing x^{*}. We will prove that $H=W$.

We first show that $W \subseteq H$. In view of the fact that $x^{*} \in W \cap H$, we need to show that if $x \in H \backslash\left(H_{1} \cap H_{2}\right)$ and y is a vertex of Γ adjacent to x, then also $y \in H \backslash\left(H_{1} \cap H_{2}\right)$. Now, since (i) $\mathrm{d}(x, y)=1$, (ii) $x y$ meets $H_{1} \cap H_{2}=H \cap H_{1}$, and (iii) H is a subspace, it follows that $x y \subseteq H$. In particular, $y \in H$.

We next show that $H \subseteq W$. It suffices to prove the following (by induction on i): if $x, y \in H \backslash\left(H_{1} \cap H_{2}\right)$ with $\mathrm{d}(x, y)=i$ and $x \in W$, then also $y \in W$. The claim then immediately follows from the fact that $x^{*} \in H \cap W$. If $\mathrm{d}(x, y)=1$, then the line $x y$ meets $H \cap H_{1}=H_{1} \cap H_{2}$. Hence, x and y are adjacent points of Γ and $y \in W$. So, we will suppose that $\delta=\mathrm{d}(x, y) \geq 2$. We show that there exists a point u_{x} of x, a point u_{y} of y, a hyperplane α_{x} of x and a hyperplane α_{y} of y such that $x \cap y \subseteq \alpha_{x}, x \cap y \subseteq \alpha_{y}, u_{x} \notin \alpha_{x}, u_{y} \notin \alpha_{y},\left\langle\alpha_{x}, u_{y}\right\rangle \in H$ and $\left\langle\alpha_{y}, u_{x}\right\rangle \in H$.

Let α_{x} be an arbitrary hyperplane of x through $x \cap y$ and let S denote the set of all k-dimensional subspaces of $\operatorname{PG}(n, \mathbb{K})$ through α_{x} which intersect y in a subspace of dimension $k-\delta+1$. Then S is a subspace of $A_{n, k+1}$ which carries the structure of a projective space isomorphic to $\operatorname{PG}(\delta-1, \mathbb{K})$. The set $S \cap H$ is equal to either S or a hyperplane of S (if we regard S as a projective space).

Suppose $\delta \geq 3$ or $S \cap H=S$. Let u_{x} be an arbitrary point of $x \backslash \alpha_{x}$. Let S^{\prime} denote the set of all k-dimensional subspaces through u_{x} which intersect y in a hyperplane of y containing $x \cap y$. Then S^{\prime} is a subspace of $A_{n, k+1}$ which carries the structure of a projective space $\operatorname{PG}(\delta-1, \mathbb{K})$. The set $S^{\prime} \cap H$ is equal to either S^{\prime} or a hyperplane of S^{\prime}. If $\delta \geq 3$, then we see that there exist elements $\beta \in S \cap H$ and $\gamma \in S^{\prime} \cap H$ such that $(\beta \cap y) \cap(\gamma \cap y)=x \cap y$. In this case, put $\alpha_{y}:=\gamma \cap y$ and let u_{y} be an arbitrary point of $(\beta \cap y) \backslash(x \cap y)$. Suppose $\delta=2$ and $S \cap H=S$. Let β be an arbitrary element of $S^{\prime} \cap H$. Put $\beta \cap y=\alpha_{y}$ and let u_{y} be an arbitrary point of $y \backslash \alpha_{y}$. In both cases, one readily verifies that $\left(u_{x}, u_{y}, \alpha_{x}, \alpha_{y}\right)$ satisfies all required properties.

Suppose $\delta=2$ and that $S \cap H$ is a singleton $\{\beta\}$. Let u_{y} be an arbitrary point of $(\beta \cap y) \backslash(x \cap y)$ and let α_{y} be an arbitrary hyperplane of y through $x \cap y$ not containing u_{y}. Let S^{\prime} denote the set of all k-dimensional subspaces of $\mathrm{PG}(n, \mathbb{K})$ through α_{y} which intersect x in a hyperplane of x. Then S^{\prime} is a line. Since $\left\langle\alpha_{y}, \alpha_{x}\right\rangle \notin H$, there exists a unique element $\gamma \in S^{\prime}$ belonging to H. Let u_{x} be an arbitrary point of $(\gamma \cap x) \backslash(x \cap y)$. Then $\left(u_{x}, u_{y}, \alpha_{x}, \alpha_{y}\right)$ satisfies all required properties.

Now, let u_{x}, u_{y}, α_{x} and α_{y} as above. Then $L_{x}:=A\left(\alpha_{x},\left\langle x, u_{y}\right\rangle\right)$ and $L_{y}:=$ $A\left(\alpha_{y},\left\langle y, u_{x}\right\rangle\right)$ are lines of $A_{n, k+1}$. Since L_{x} contains the points x and $\left\langle\alpha_{x}, u_{y}\right\rangle$ of H, all the points of L_{x} are contained in H. Similarly, since L_{y} contains the points y and $\left\langle\alpha_{y}, u_{x}\right\rangle$ of H, all the points of L_{y} are contained in H. Clearly, every point z_{1} of L_{x} has distance $\mathrm{d}(x, y)-1$ from a unique point z_{2} of L_{y}, namely z_{2} is the unique k-dimensional subspace containing α_{y} and the singleton $z_{1} \cap u_{x} u_{y}$. Since $x \notin H_{1}$ and $y \notin H_{1},\left|L_{x} \cap H_{1}\right|=1=\left|L_{y} \cap H_{1}\right|$. Hence, there exists a $z_{1} \in L_{x}$ and a $z_{2} \in L_{y}$ such that $z_{1} \notin H_{1}, z_{2} \notin H_{1}$ and $\mathrm{d}\left(z_{1}, z_{2}\right)=\mathrm{d}(x, y)-1$. Now, applying the induction hypothesis 3 times, we find $z_{1} \in W, z_{2} \in W$ and $y \in W$.

Corollary 2.3 If H_{1} and H_{2} arise from the Grassmann-embedding of $A_{n, k+1}$, then also every hyperplane H of $A_{n, k+1}$ satisfying $H \cap H_{1}=H_{1} \cap H_{2}=H \cap H_{2}$ arises from the Grassmann-embedding of $A_{n, k+1}$.

Proof. Take a point $x^{*} \in H \backslash\left(H_{1} \cap H_{2}\right)$. Since $H_{i}, i \in\{1,2\}$, is a maximal subspace, $\Sigma_{i}:=\left\langle e\left(H_{i}\right)\right\rangle$ is a hyperplane of $\operatorname{PG}\left(\bigwedge^{k+1} V\right)$. Moreover, $\Sigma_{i} \cap e(\mathcal{P})=$ $e\left(H_{i}\right)$. So, $\Sigma_{1} \neq \Sigma_{2}$ and $e\left(x^{*}\right) \notin \Sigma_{1} \cap \Sigma_{2}$ since $\Sigma_{1} \cap \Sigma_{2} \cap e(\mathcal{P})=e\left(H_{1}\right) \cap e\left(H_{2}\right)=$ $e\left(H_{1} \cap H_{2}\right)$. Put $\Sigma:=\left\langle e\left(x^{*}\right), \Sigma_{1} \cap \Sigma_{2}\right\rangle$ and $H^{\prime}:=e^{-1}(\Sigma \cap e(\mathcal{P}))$. Then $x^{*} \in H^{\prime}$ and $H^{\prime} \cap H_{1}=H_{1} \cap H_{2}=H^{\prime} \cap H_{2}$. By the proof of Lemma 2.2, $H=W=H^{\prime}$, where W is the unique element of \mathcal{H} containing x^{*}.

3 Alternative proof of Theorem 1.1

We will prove Theorem 1.1 by induction on n. If $k \in\{0, n-1\}$, then $A_{n, k+1}$ is a projective space and the theorem trivially holds in this case. So, Theorem 1.1 holds if $n \leq 2$. In the sequel, we will suppose that $n \geq 3$ and $k \in\{1, \ldots, n-2\}$.

Let (x, π) be a non-incident point-hyperplane pair of $\mathrm{PG}(n, \mathbb{K})$. Let S_{x}, respectively S_{π}, be the subspace of $A_{n, k+1}$ consisting of all k-dimensional subspaces of $\operatorname{PG}(n, \mathbb{K})$ which are incident with x, respectively π. The point-line geometry $\widetilde{S_{x}}$ (respectively $\widetilde{S_{\pi}}$) induced on S_{x} (respectively S_{π}) is isomorphic to $A_{n-1, k}$ (respectively $A_{n-1, k+1}$). The Grassmann-embedding e of $A_{n, k+1}$ induces an embedding e_{x} of $\widetilde{S_{x}}$ into a subspace Σ_{x} of $\operatorname{PG}\left(\bigwedge^{k+1} V\right)$ and an embedding e_{π} of $\widetilde{S_{\pi}}$ into a subspace Σ_{π} of $\operatorname{PG}\left(\bigwedge^{k+1} V\right)$. Choosing a basis $\left\{\bar{e}_{1}, \bar{e}_{2}, \ldots, \bar{e}_{n+1}\right\}$ in V such that $\left\langle\bar{e}_{1}\right\rangle=x$ and $\left\langle\bar{e}_{2}, \ldots, \bar{e}_{n+1}\right\rangle=\pi$, we see that: (i) Σ_{x} is the subspace of $\operatorname{PG}\left(\bigwedge^{k+1} V\right)$ generated by all points of the form $\left\langle\bar{e}_{1} \wedge \bar{f}_{2} \wedge \cdots \wedge \bar{f}_{k+1}\right\rangle$, where $\bar{f}_{2}, \ldots, \bar{f}_{k+1}$ are vectors of $\left\langle\bar{e}_{2}, \ldots, \bar{e}_{n+1}\right\rangle$; (ii) Σ_{π} is the subspace of $\operatorname{PG}\left(\bigwedge^{k+1} V\right)$ generated by all points of the form $\left\langle\bar{f}_{1} \wedge \bar{f}_{2} \wedge \cdots \wedge \bar{f}_{k+1}\right\rangle$, where $\bar{f}_{1}, \bar{f}_{2}, \ldots, \bar{f}_{k+1}$ are vectors of $\left\langle\bar{e}_{2}, \ldots, \bar{e}_{n+1}\right\rangle$. Hence, Σ_{x} and Σ_{π} are complementary subspaces of $\operatorname{PG}\left(\bigwedge^{k+1} V\right)$. It is also clear that e_{x} and e_{π} are isomorphic to the Grassmannembeddings of respectively $A_{n-1, k}$ and $A_{n-1, k+1}$.

Lemma 3.1 Let y be a point of $A_{n, k+1}$ not contained in $S_{x} \cup S_{\pi}$. Then there exists a unique line L_{y} through y meeting S_{x} and S_{π}.

Proof. Regarding y as a k-dimensional subspace of $\operatorname{PG}(n, \mathbb{K})$, we have $x \notin y$ and $y \cap \pi$ is a $(k-1)$-dimensional subspace of π. The line $L_{y}:=A(y \cap \pi,\langle x, y\rangle)$ contains y, intersects S_{x} in the point $\langle x, y \cap \pi\rangle$ and S_{π} in the point $\langle x, y\rangle \cap \pi$. The uniqueness of L_{y} is also obvious.

Now, let H be an arbitrary hyperplane of $A_{n, k+1}$. Then $H \cap S_{x}$ is either S_{x} or a hyperplane of $\widetilde{S_{x}}$. Similarly, $H \cap S_{\pi}$ is either S_{π} or a hyperplane of $\widetilde{S_{\pi}}$. By Lemma 3.1, it is impossible that $H \cap S_{x}=S_{x}$ and $H \cap S_{\pi}=S_{\pi}$.

Suppose $H \cap S_{\pi}=S_{\pi}$. Then $H \cap S_{x}$ is a hyperplane of $\widetilde{S_{x}}$. By the induction hypothesis, there exists a hyperplane β of Σ_{x} such that $H \cap S_{x}=e^{-1}\left(e\left(S_{x}\right) \cap \beta\right)$. Now, the hyperplane H is uniquely determined by $H \cap S_{x}$: a point $y \notin S_{x} \cup S_{\pi}$
is contained in H if and only if $L_{y} \cap S_{x} \subseteq H$. This implies that H is the hyperplane of $A_{n, k+1}$ arising from the hyperplane $\left\langle\beta, \Sigma_{\pi}\right\rangle$ of $\operatorname{PG}\left(\bigwedge^{k+1} V\right)$. In a completely similar way, one shows that if $H \cap S_{x}=S_{x}$, then H arises from the Grassmann-embedding of $A_{n, k+1}$.

Suppose $H \cap S_{x}$ is a hyperplane of $\widetilde{S_{x}}$ and $H \cap S_{\pi}$ is a hyperplane of $\widetilde{S_{\pi}}$. By the induction hypothesis, there exists a hyperplane β_{1} of Σ_{x} and a hyperplane β_{2} of Σ_{y} such that $H \cap S_{x}=e^{-1}\left(e\left(S_{x}\right) \cap \beta_{1}\right)$ and $H \cap S_{\pi}=e^{-1}\left(e\left(S_{\pi}\right) \cap \beta_{2}\right)$. Now, put $H_{1}:=e^{-1}\left(e(\mathcal{P}) \cap\left\langle\beta_{1}, \Sigma_{\pi}\right\rangle\right)$ and $H_{2}:=e^{-1}\left(e(\mathcal{P}) \cap\left\langle\beta_{2}, \Sigma_{x}\right\rangle\right)$. Then H_{1} and H_{2} are distinct hyperplanes of $A_{n, k+1}$. We show that

$$
\begin{equation*}
(H \cap L) \cap\left(H_{1} \cap L\right)=\left(H_{1} \cap L\right) \cap\left(H_{2} \cap L\right)=(H \cap L) \cap\left(H_{2} \cap L\right) \tag{1}
\end{equation*}
$$

for every line L meeting S_{x} and S_{π}.
If $L \cap S_{x} \subseteq H$ and $L \cap S_{\pi} \subseteq H$, then $H \cap L=H_{1} \cap L=H_{2} \cap L=L$ and (1) holds. If $L \cap S_{x} \subseteq H$ and $L \cap S_{\pi} \cap H=\emptyset$, then $H \cap L=L \cap S_{x}, H_{1} \cap L=L$, $H_{2} \cap L=L \cap S_{x}$ and (1) holds again. A similar reasoning applies to the case $L \cap S_{\pi} \subseteq H$ and $L \cap S_{x} \cap H=\emptyset$. Finally, suppose $L \cap S_{x} \cap H=L \cap S_{\pi} \cap H=\emptyset$. Then $H_{1} \cap L=L \cap S_{\pi}, H_{2} \cap L=L \cap S_{x}$ and $H \cap L$ is a singleton different from $H_{1} \cap L$ and $H_{2} \cap L$. So, (1) holds again.

By Lemma 3.1 and (1), $H_{1} \cap H=H_{1} \cap H_{2}=H_{2} \cap H$. By Corollary 2.3, H arises from the Grassmann-embedding of $A_{n, k+1}$.

References

[1] M. A. Ronan. Embeddings and hyperplanes of discrete geometries. European J. Combin. 8 (1987), 179-185.
[2] E. E. Shult. Geometric hyperplanes of embeddable Grassmannians. J. Algebra 145 (1992), 55-82.
[3] A. L. Wells. Universal projective embeddings of the Grassmannian, half spinor, and dual orthogonal geometries. Quart. J. Math. Oxford Ser. 34 (1983), 375-386.

