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Abstract

In this note, we give an alternative and considerably shorter proof of a
result of Shult [2] stating that all hyperplanes of embeddable Grassman-
nians arise from projective embeddings.
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1 Introduction

Let n ≥ 1 and let K be a field. Let V denote an (n + 1)-dimensional vector
space over K and let PG(n, K) = PG(V ) denote the projective space associated
with V . Let k ∈ {0, . . . , n− 1}. Then the following point-line geometry An,k+1

can be defined:

• The points of An,k+1 are the k-dimensional subspaces of PG(n, K).

• The lines of An,k+1 are the sets A(π1, π2) of k-dimensional subspaces of
PG(n, K) which contain a given (k − 1)-dimensional subspace π1 and are
contained in a given (k + 1)-dimensional subspace π2 (π1 ⊂ π2).

• Incidence is containment.

The geometry An,k+1 is called the Grassmannian of the k-dimensional subspaces
of PG(n, K). We will denote the point-set of An,k+1 by P. If x and y are two
points of An,k+1, then d(x, y) := k−dim(x∩ y) is the distance between x and y
in the collinearity graph of An,k+1. A hyperplane of An,k+1 is a proper subspace
of An,k+1 which meets every line of An,k+1.

Now, let
∧k+1

V denote the (k + 1)-th exterior power of V . For every k-
dimensional subspace α = 〈v̄1, v̄2, . . . , v̄k+1〉 of PG(n, K), let e(α) denote the
point 〈v̄1 ∧ v̄2 ∧ · · · ∧ v̄k+1〉 of PG(

∧k+1
V ). Notice that the point e(α) is

independent of the generating set {v̄1, v̄2, . . . , v̄k+1} of the subspace α. The
map e defines a full projective embedding of An,k+1 into PG(

∧k+1
V ) which is
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called the Grassmann-embedding of An,k+1. If π is a hyperplane of PG(
∧k+1

V ),
then e−1(π ∩ e(P)) is a hyperplane of An,k+1. We say that the hyperplane
e−1(π ∩ e(P)) arises from the Grassmann-embedding of An,k+1.

The aim of this note is to give a short and elementary proof of the following
result due to Shult [2].

Theorem 1.1 All hyperplanes of An,k+1 arise from the Grassmann-embedding
of An,k+1.

Theorem 1.1 has an equivalent formulation in terms of alternating k-linear
forms. This fact together with results of Ronan [1] and Wells [3] was exploited
in [2] to prove Theorem 1.1. The alternative proof for Theorem 1.1 which we
will now give is considerably shorter and only uses basic projective geometry.

2 Some useful results

We continue with the notation of Section 1.

Lemma 2.1 Every hyperplane H of An,k+1 is a maximal subspace of An,k+1.

Proof. Let X1 and X2 be two points of An,k+1 not contained in H. Recall
that d(X1, X2) = k − dim(X1 ∩X2). We prove by induction on d(X1, X2) that
X1 and X2 are contained in a path which entirely consists of points of P \ H.
Obviously, this holds if d(X1, X2) ≤ 1. So, suppose that δ := d(X1, X2) ≥ 2.
For every i ∈ {1, 2}, let (yi, αi) be a non-incident point-hyperplane pair of
Xi such that X1 ∩ X2 ⊆ αi. Put β1 := 〈X1, y2〉 and β2 := 〈X2, y1〉. Then
A(α1, β1) and A(α2, β2) are two lines of An,k+1. Moreover, for every point Z1 of
A(α1, β1), there exists a unique point Z2 ∈ A(α2, β2) at distance d(X1, X2)− 1
from Z1, namely Z2 = 〈α2, z〉, where z is the unique point in Z1 ∩ y1y2. Since
Xi 6∈ H and Xi ∈ A(αi, βi), |A(αi, βi) ∩ H| = 1. So, it is possible to choose a
Z1 ∈ A(α1, β1) and a Z2 ∈ A(α2, β2) such that Z1 6∈ H, Z2 6∈ H and d(Z1, Z2) =
d(X1, X2)−1. By the induction hypothesis, Z1 and Z2 are connected by a path
entirely consisting of points of P \H. Hence, also X1 and X2 are connected by
such a path. 2

Suppose now that H1 and H2 are two distinct hyperplanes of An,k+1. Let Γ be
the graph with vertex set P \ (H1 ∪H2), with two vertices x and y adjacent if
and only if d(x, y) = 1 and the line xy meets H1∩H2. Let C denote the set of all
connected components of Γ and put H := {H1,H2} ∪ {C ∪ (H1 ∩H2) |C ∈ C}.

Lemma 2.2 If H is a hyperplane of An,k+1 such that H ∩ H1 = H1 ∩ H2 =
H ∩H2, then H ∈ H.

Proof. Since H1 and H2 are distinct maximal subspaces, H1 ∩ H2 is not a
maximal subspace. Since H1 ∩ H2 ⊆ H and H is a maximal subspace, there
exists an x∗ ∈ H \ (H1 ∩ H2). Clearly, x∗ 6∈ H1 ∪ H2. So, x∗ is a vertex of Γ
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and there exists a unique element W ∈ H containing x∗. We will prove that
H = W .

We first show that W ⊆ H. In view of the fact that x∗ ∈ W ∩ H, we need
to show that if x ∈ H \ (H1 ∩H2) and y is a vertex of Γ adjacent to x, then also
y ∈ H \ (H1 ∩H2). Now, since (i) d(x, y) = 1, (ii) xy meets H1 ∩H2 = H ∩H1,
and (iii) H is a subspace, it follows that xy ⊆ H. In particular, y ∈ H.

We next show that H ⊆ W . It suffices to prove the following (by induction
on i): if x, y ∈ H \ (H1∩H2) with d(x, y) = i and x ∈ W , then also y ∈ W . The
claim then immediately follows from the fact that x∗ ∈ H ∩W . If d(x, y) = 1,
then the line xy meets H ∩H1 = H1 ∩H2. Hence, x and y are adjacent points
of Γ and y ∈ W . So, we will suppose that δ = d(x, y) ≥ 2. We show that there
exists a point ux of x, a point uy of y, a hyperplane αx of x and a hyperplane
αy of y such that x ∩ y ⊆ αx, x ∩ y ⊆ αy, ux 6∈ αx, uy 6∈ αy, 〈αx, uy〉 ∈ H and
〈αy, ux〉 ∈ H.

Let αx be an arbitrary hyperplane of x through x ∩ y and let S denote the
set of all k-dimensional subspaces of PG(n, K) through αx which intersect y in
a subspace of dimension k− δ +1. Then S is a subspace of An,k+1 which carries
the structure of a projective space isomorphic to PG(δ − 1, K). The set S ∩H
is equal to either S or a hyperplane of S (if we regard S as a projective space).

Suppose δ ≥ 3 or S ∩H = S. Let ux be an arbitrary point of x \αx. Let S′

denote the set of all k-dimensional subspaces through ux which intersect y in a
hyperplane of y containing x∩ y. Then S′ is a subspace of An,k+1 which carries
the structure of a projective space PG(δ − 1, K). The set S′ ∩ H is equal to
either S′ or a hyperplane of S′. If δ ≥ 3, then we see that there exist elements
β ∈ S ∩H and γ ∈ S′ ∩H such that (β ∩ y) ∩ (γ ∩ y) = x ∩ y. In this case, put
αy := γ ∩ y and let uy be an arbitrary point of (β ∩ y) \ (x ∩ y). Suppose δ = 2
and S ∩H = S. Let β be an arbitrary element of S′ ∩H. Put β ∩ y = αy and
let uy be an arbitrary point of y \ αy. In both cases, one readily verifies that
(ux, uy, αx, αy) satisfies all required properties.

Suppose δ = 2 and that S ∩ H is a singleton {β}. Let uy be an arbitrary
point of (β ∩ y) \ (x ∩ y) and let αy be an arbitrary hyperplane of y through
x∩ y not containing uy. Let S′ denote the set of all k-dimensional subspaces of
PG(n, K) through αy which intersect x in a hyperplane of x. Then S′ is a line.
Since 〈αy, αx〉 6∈ H, there exists a unique element γ ∈ S′ belonging to H. Let
ux be an arbitrary point of (γ ∩ x) \ (x ∩ y). Then (ux, uy, αx, αy) satisfies all
required properties.

Now, let ux, uy, αx and αy as above. Then Lx := A(αx, 〈x, uy〉) and Ly :=
A(αy, 〈y, ux〉) are lines of An,k+1. Since Lx contains the points x and 〈αx, uy〉
of H, all the points of Lx are contained in H. Similarly, since Ly contains the
points y and 〈αy, ux〉 of H, all the points of Ly are contained in H. Clearly, every
point z1 of Lx has distance d(x, y)− 1 from a unique point z2 of Ly, namely z2

is the unique k-dimensional subspace containing αy and the singleton z1∩uxuy.
Since x 6∈ H1 and y 6∈ H1, |Lx ∩ H1| = 1 = |Ly ∩ H1|. Hence, there exists a
z1 ∈ Lx and a z2 ∈ Ly such that z1 6∈ H1, z2 6∈ H1 and d(z1, z2) = d(x, y) − 1.
Now, applying the induction hypothesis 3 times, we find z1 ∈ W , z2 ∈ W and
y ∈ W . 2
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Corollary 2.3 If H1 and H2 arise from the Grassmann-embedding of An,k+1,
then also every hyperplane H of An,k+1 satisfying H ∩H1 = H1 ∩H2 = H ∩H2

arises from the Grassmann-embedding of An,k+1.

Proof. Take a point x∗ ∈ H \ (H1 ∩ H2). Since Hi, i ∈ {1, 2}, is a maximal
subspace, Σi := 〈e(Hi)〉 is a hyperplane of PG(

∧k+1
V ). Moreover, Σi∩e(P) =

e(Hi). So, Σ1 6= Σ2 and e(x∗) 6∈ Σ1∩Σ2 since Σ1∩Σ2∩e(P) = e(H1)∩e(H2) =
e(H1 ∩H2). Put Σ := 〈e(x∗),Σ1 ∩Σ2〉 and H ′ := e−1(Σ∩ e(P)). Then x∗ ∈ H ′

and H ′ ∩H1 = H1 ∩H2 = H ′ ∩H2. By the proof of Lemma 2.2, H = W = H ′,
where W is the unique element of H containing x∗. 2

3 Alternative proof of Theorem 1.1

We will prove Theorem 1.1 by induction on n. If k ∈ {0, n− 1}, then An,k+1 is
a projective space and the theorem trivially holds in this case. So, Theorem 1.1
holds if n ≤ 2. In the sequel, we will suppose that n ≥ 3 and k ∈ {1, . . . , n− 2}.

Let (x, π) be a non-incident point-hyperplane pair of PG(n, K). Let Sx,
respectively Sπ, be the subspace of An,k+1 consisting of all k-dimensional sub-
spaces of PG(n, K) which are incident with x, respectively π. The point-line
geometry S̃x (respectively S̃π) induced on Sx (respectively Sπ) is isomorphic to
An−1,k (respectively An−1,k+1). The Grassmann-embedding e of An,k+1 induces
an embedding ex of S̃x into a subspace Σx of PG(

∧k+1
V ) and an embedding eπ

of S̃π into a subspace Σπ of PG(
∧k+1

V ). Choosing a basis {ē1, ē2, . . . , ēn+1} in
V such that 〈ē1〉 = x and 〈ē2, . . . , ēn+1〉 = π, we see that: (i) Σx is the subspace
of PG(

∧k+1
V ) generated by all points of the form 〈ē1 ∧ f̄2 ∧ · · · ∧ f̄k+1〉, where

f̄2, . . . , f̄k+1 are vectors of 〈ē2, . . . , ēn+1〉; (ii) Σπ is the subspace of PG(
∧k+1

V )
generated by all points of the form 〈f̄1 ∧ f̄2 ∧ · · · ∧ f̄k+1〉, where f̄1, f̄2, . . . , f̄k+1

are vectors of 〈ē2, . . . , ēn+1〉. Hence, Σx and Σπ are complementary subspaces of
PG(

∧k+1
V ). It is also clear that ex and eπ are isomorphic to the Grassmann-

embeddings of respectively An−1,k and An−1,k+1.

Lemma 3.1 Let y be a point of An,k+1 not contained in Sx ∪ Sπ. Then there
exists a unique line Ly through y meeting Sx and Sπ.

Proof. Regarding y as a k-dimensional subspace of PG(n, K), we have x 6∈ y
and y∩π is a (k− 1)-dimensional subspace of π. The line Ly := A(y∩π, 〈x, y〉)
contains y, intersects Sx in the point 〈x, y ∩ π〉 and Sπ in the point 〈x, y〉 ∩ π.
The uniqueness of Ly is also obvious. 2

Now, let H be an arbitrary hyperplane of An,k+1. Then H ∩ Sx is either Sx or
a hyperplane of S̃x. Similarly, H ∩ Sπ is either Sπ or a hyperplane of S̃π. By
Lemma 3.1, it is impossible that H ∩ Sx = Sx and H ∩ Sπ = Sπ.

Suppose H ∩Sπ = Sπ. Then H ∩Sx is a hyperplane of S̃x. By the induction
hypothesis, there exists a hyperplane β of Σx such that H∩Sx = e−1(e(Sx)∩β).
Now, the hyperplane H is uniquely determined by H ∩ Sx: a point y 6∈ Sx ∪ Sπ
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is contained in H if and only if Ly ∩ Sx ⊆ H. This implies that H is the
hyperplane of An,k+1 arising from the hyperplane 〈β, Σπ〉 of PG(

∧k+1
V ). In a

completely similar way, one shows that if H ∩ Sx = Sx, then H arises from the
Grassmann-embedding of An,k+1.

Suppose H ∩Sx is a hyperplane of S̃x and H ∩Sπ is a hyperplane of S̃π. By
the induction hypothesis, there exists a hyperplane β1 of Σx and a hyperplane
β2 of Σy such that H ∩ Sx = e−1(e(Sx) ∩ β1) and H ∩ Sπ = e−1(e(Sπ) ∩ β2).
Now, put H1 := e−1(e(P)∩〈β1,Σπ〉) and H2 := e−1(e(P)∩〈β2,Σx〉). Then H1

and H2 are distinct hyperplanes of An,k+1. We show that

(H ∩ L) ∩ (H1 ∩ L) = (H1 ∩ L) ∩ (H2 ∩ L) = (H ∩ L) ∩ (H2 ∩ L) (1)

for every line L meeting Sx and Sπ.
If L∩Sx ⊆ H and L∩Sπ ⊆ H, then H ∩L = H1 ∩L = H2 ∩L = L and (1)

holds. If L ∩ Sx ⊆ H and L ∩ Sπ ∩ H = ∅, then H ∩ L = L ∩ Sx, H1 ∩ L = L,
H2 ∩ L = L ∩ Sx and (1) holds again. A similar reasoning applies to the case
L∩Sπ ⊆ H and L∩Sx∩H = ∅. Finally, suppose L∩Sx∩H = L∩Sπ ∩H = ∅.
Then H1 ∩L = L∩Sπ, H2 ∩L = L∩Sx and H ∩L is a singleton different from
H1 ∩ L and H2 ∩ L. So, (1) holds again.

By Lemma 3.1 and (1), H1 ∩H = H1 ∩H2 = H2 ∩H. By Corollary 2.3, H
arises from the Grassmann-embedding of An,k+1.
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