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[1] The estimation of catchment-averaged aquifer hydraulic conductivity values is
usually performed through a base flow recession analysis. Relationships between the
first time derivatives of the base flow and the base flow values themselves, derived for
small and large values of time, are used for this purpose. However, in the derivation of the
short-time equations, an initially fully saturated aquifer without recharge with sudden
drawdown is assumed, which occurs very rarely in reality. It is demonstrated that this
approach leads to a nonnegligible error in the parameter estimates. A new relationship is
derived, valid for the rising limb of a base flow hydrograph, succeeding a long rainless
period. Application of this equation leads to accurate estimates of the aquifer lower layer
saturated hydraulic conductivity. Further, it has been shown analytically that, if base
flow is modeled using the linearized Boussinesq equation, the base flow depends on the
effective aquifer depth and the ratio of the saturated hydraulic conductivity to the drainable
porosity, not on these three parameters separately. The results of the new short-time
expression are consistent with this finding, as opposed to the use of a traditional base flow
recession analysis. When base flow is modeled using the nonlinear Boussinesq equation,
the new expression can be used, without a second equation for large values of time, to
estimate the aquifer lower layer hydraulic conductivity. Overall, the results in this paper
suggest that the new methodology outperforms a traditional recession analysis for the
estimation of catchment-averaged aquifer hydraulic conductivities.
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1. Introduction

[2] The representation of groundwater flow processes in
hydrologic models is usually referred to as the horizontal or
lateral redistribution of soil water [Wood, 1991]. Even though
at small spatial scales these processes cannot automatically
be neglected, in many models, applied at large (continental)
scales, these processes are not represented. An example of a
widely used model that does not account for lateral redistri-
bution is the Common LandModel (CLM) [Dai et al., 2003].
On the other hand, the Richards equation [Richards, 1931]
can be solved numerically in a full three-dimensional manner,
as is demonstrated by, for example, Paniconi and Wood
[1993] and Camporese et al. [2009]. This methodology has
the advantage that the horizontal redistribution of soil water is
modeled in a physically based way. The drawbacks are that a
large number of spatially distributed parameter values are
required, that the computational demands can render this
approach infeasible for larger modeling domains, and that
effective parameter values cannot be determined in the

presence of heterogeneity. If one assumes the aquifers to be
homogeneous and isotropic (a reasonable assumption if one
wants a relatively simple model, taking into account all other
uncertainties), the need for large parameters sets is strongly
reduced, but the computational demands can in many cases
still be excessive. A middle of the road approach is to model
the saturated groundwater flow processes in a lumped man-
ner, meaning that the lateral redistribution of soil water is
modeled using simple methods that are obtained using a
variety of assumptions, strongly reducing the required com-
puter time. Examples of models that apply this approach are
the Variable Infiltration Capacity (VIC) model [Liang et al.,
1994] and the TOPMODEL-based Land Atmosphere Trans-
fer Scheme [Famiglietti and Wood, 1994].
[3] For the latter approach, aquifer hydraulic parameters,

such as the saturated hydraulic conductivity, are required at
the catchment scale. Although in theory these parameters can
be measured in laboratories using soil samples, the difference
between the scale of the observations and the scale at which
the processes occur renders these measurements inadequate
for application in hydrologic models [Bear, 1972]. For this
reason, methods have been developed, in which these param-
eters are estimated through a hydrograph recession analysis.
More specifically, using theoretically derived equations, the
rate of the recessions can be related to the aquifer hydraulic
parameters. In order to eliminate the time variable in these
relationships, the discharge recessions are analyzed as a
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function of the discharge [Brutsaert and Nieber, 1977; Troch
et al., 1993; Rupp and Selker, 2005; Huyck et al., 2005].
Usually, approximations for short and large times are derived.
Based on these expressions, the aquifer parameters can be
related to observed recession dynamics. Rupp and Selker
[2006a] provide an overview of such relationships, including
the assumptions used in their derivation. These assumptions
apply to the slope of the aquifer, the linearization of the
governing equation, the incorporation of variable geometry,
the uniformity of the aquifer parameters, and the omission of
certain terms in the governing equation.
[4] In the application of the short-time equations, a

number of inconsistencies are usually neglected. For exam-
ple, although conditions of probable full saturation have
been documented for an isolated hydrograph caused by
extreme rainfall for a small catchment [Lyon et al., 2008],
full saturation combined with zero recharge at the onset of
a recession and a sudden drawdown at the bottom of the
aquifer is a condition that arguably occurs very rarely in
reality. Further, it is known that hydraulic conductivity
values are not uniform over the soil profile [Beven and
Kirkby, 1979; Rupp and Selker, 2005, 2006a]. It can be
expected that the inconsistency between the conditions
under which the equations have been derived and the con-
ditions under which they are applied will lead to errors in
the parameter estimates.
[5] The objective of this paper is to develop a method-

ology to estimate catchment-scale hydraulic conductivity
values of the lower layers of the underlying aquifer, con-
sistent with the conditions under which the required equa-
tions are derived. Such estimates are crucial to quantify
catchment behavior during drought periods when aquifer
storage is near minimum. To develop such a method, the
theory related to the governing equation (the extended
Boussinesq equation) is first summarized. A general equa-
tion for the short-time behavior of the base flow, valid for
realistic initial conditions and recharge rates, is derived
using the linearized extended Boussinesq equation. This
expression is further simplified for the case of the rising
limb of a base flow hydrograph succeeding a long rainless
period. It should be noted that, recently, advances have
been made in the estimation of catchment averaged net
rainfall rates using fluctuations in streamflow time series
[Kirchner, 2009]. However, the methodology developed in
this paper requires time series of base flow instead of
streamflow. Instead of estimating catchment averaged net
rainfall rates, in this paper it is demonstrated that the rising
limbs of base flow hydrographs can be related to the
hydraulic properties on an aquifer. Synthetic experiments
are used to demonstrate the accuracy of this new equation,
and to assess the impact of the unrealistic assumptions in
the traditionally used expressions for the short-time behav-
ior of base flow. The results of a traditional base flow
recession analysis are compared to the results of the newly
developed methodology. Further, a dimensional analysis is
performed, for the purpose of assessing whether the param-
eter sensitivity of the newly derived short-time expression
is consistent with the parameter sensitivity of the linearized
extended Boussinesq equation. A suggestion is then made
in order to apply the new equation for the estimation of
aquifer hydraulic conductivities, in case the nonlinear
extended Boussinesq equation is used. The paper finally

concludes with a discussion on the strengths and weak-
nesses of the newly developed methodology, based on the
use of the rising limbs of hydrographs, versus a traditional
recession analysis.

2. Methodology

[6] In order to develop a methodology to determine
catchment-scale aquifer hydraulic conductivity values, con-
sistent with the conditions under which the required equa-
tions are derived, the following approach is used. First, an
expression describing the behavior of the base flow for short
times during a recharge event is derived. This expression is
then validated using a synthetic time series of recharge,
applied to an aquifer with predefined parameters. This
analysis will allow an interpretation of the applicability of
the new short-time solution.
[7] As a next step, the aquifer hydraulic parameters

obtained using a traditional base flow recession analysis are
compared to the parameters obtained using the new method.
For this purpose, time series of recharge rates and base flow
values will be used that were generated for the Zwalm
catchment in Belgium. Pauwels et al. [2002] describe how
these time series were generated. To summarize, the net
precipitation (the precipitation leading to discharge) was
obtained by multiplying the precipitation by a monthly
averaged runoff coefficient. A fraction of this net precipita-
tion was assumed to infiltrate, not allowing the infiltration
rate to exceed a specified maximum value. The infiltration
rate was used as recharge to the groundwater table, of which
the outflow was calculated using equation (13) in section 3.1,
the general expression for the flow rate out of the aquifer. In
order to apply this equation, the catchment was conceptual-
ized as two aquifers, draining into the stream network of the
catchment. The topographic parameters for these aquifers
(width, length, and slope) were obtained through a Digital
ElevationModel analysis. The aquifer width was obtained by
dividing the catchment area by twice the total stream length
(since two aquifers with equal properties are draining into the
stream network). The aquifer slope was assumed to be equal
to the average slope of the topography in the catchment. The
hydraulic parameters for the model were obtained through a
traditional base flow recession analysis [Brutsaert and
Nieber, 1977]. The surface runoff was routed to the outlet
of the basin using the unit hydrograph approach of Troch et
al. [1994].
[8] In order to generalize the results, the base flow is also

modeled through a numerical solution to the nonlinear
equation (equation (4) in section 3.1). A very simple model
was thus used for this purpose. For the objectives of the
study, the model was deemed to be sufficiently detailed,
since this paper focuses on parameter retrieval, not hydro-
logic model development. Inclusion of, for example, unsat-
urated zone processes, may be more realistic, but will not
alter the conclusions drawn in the paper.
[9] Using this simple model, the base flow is generated in

a manner consistent with the equations developed in this
study. If the modeled discharge is comparable to the obser-
vations, it can be assumed that the infiltration rates and
consequently the groundwater recharge rates are sufficiently
realistic to be used in a synthetic experiment. The resulting
base flow values will then be used to assess the applicability
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of the approximative solutions to the Boussinesq equation
developed in section 3.
[10] It should be noted that the applicability of the new

methodology is thus assessed through a synthetic experi-
ment. The reason for this approach is that, even if a measured
time series of base flow and recharge rates would be available
with very high accuracy, it is still not possible to directly
measure the catchment-averaged aquifer hydraulic parame-
ters. It would thus be impossible to validate the retrieved
value of, for example, the hydraulic conductivity. On the
other hand, if a time series of base flow is generated using a
known time series of recharge rates, using the same govern-
ing equation upon which the methodology is based, the same
hydraulic parameters as were used in themodeling of the base
flow should be retrieved. A synthetic experiment is thus a
better way to validate the methodology developed in this
paper. It is thus irrelevant that the hydraulic parameters used
in the hydrologic model are obtained through a traditional
base flow recession analysis. The important aspect of the
paper is that the original parameter values are retrieved by the
methodology developed in this paper.

3. Theoretical Derivation

3.1. Governing Equation

[11] In a traditional base flow recession analysis, the
expressions relating the first time derivative of the base flow
to the base flow are obtained through analytical solutions to
the Boussinesq equation. This equation is derived through a
combination of the Darcy equation and the continuity equa-
tion, using hydraulic ground water theory and strictly one-
dimensional subsurface flow. In this paper, the nonlinear and

linearized versions of the extended Boussinesq equation are
used. The term extended means that the aquifer width does
not have to be uniform. The details regarding this derivation
are given by Troch et al. [2002, 2003] and Huyck et al.
[2005]. Only a short summary will be provided here.
[12] Figure 1 shows a schematic overview of an inclined

hillslope, indicating the symbols used in the derivation of
the extended Boussinesq equation. The assumption is made
that the width of the aquifer W (m) varies exponentially as a
function of the distance to the river [Fan and Bras, 1998]:

W ðxÞ ¼ ae�bx ð1Þ

b is the aquifer shape parameter (m�1), a is the width of the
aquifer at the outlet (m), and x is the distance in the aquifer
to the outlet (m). Figure 2 shows the aquifer shape for dif-
ferent values of b. Using a homogeneous drainable porosity
f (dimensionless), the continuity equation can be written as
[Troch et al., 2003]

fW ðxÞ @h
@t
þ @ðW ðxÞqðxÞÞ

@x
¼ W ðxÞN ð2Þ

h is the elevation of the groundwater table measured
perpendicular to the underlying impermeable layer (m), t is
the time (s), q is the outflow per unit width (m2 s�1), f is
the drainable porosity (dimensionless), and N is the recharge
uniformly distributed across the aquifer (m s�1). With the
Dupuit-Forchheimer assumption (hydraulic head is inde-
pendent of depth), and the additional assumption that the
streamlines are parallel to the bed, the Darcy equation is
given by

q ¼ �kh @h

@x
cosqþ sinq

� �
ð3Þ

provided that the aquifer is homogeneous and isotropic. k is
the saturated hydraulic conductivity (m s�1), and q the
aquifer slope (radians). Combination of equations (1), (2),
and (3) leads to

@h

@t
¼ k

f

@h

@x

� �2

cosqþ k

f
h
@2h

@x2
cosqþ k

f

@h

@x
sinq

� k

f
hb

@h

@x
cosqþ sinq

� �
þ N

f
ð4Þ

This is the nonlinear extended Boussinesq equation, which
can be solved numerically. In order to allow an analytical

Figure 1. Schematic representation of the parameters used
in the Boussinesq equation. The length scale is smaller than
the height scale; typically, the length of the aquifer is an
order of magnitude larger than the height.

Figure 2. Shape of the aquifer for different values of b.
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solution, the linearization technique of Brutsaert [1994] can
be applied to equation (3):

q ¼ �kpDcosq @h
@x
� khsinq ð5Þ

D is the aquifer depth (m), and p the linearization constant
(�). The parametersK (m2 s�1) andU (m s�1) are introduced:

K ¼ kpDcosq
f

U ¼ ksinq
f

8>><
>>: ð6Þ

Using these, the linearized Darcy equation can be written as

q ¼ �Kf @h
@x
� Uf h ð7Þ

Other linearization techniques are described by Chapman
[1995] and Troch et al. [2004]. However, in this paper, the
technique of Brutsaert [1994] was used, since for this
technique the most advanced analytical solutions exist.
Combining the linearized Darcy equation (equation (7)) with
the continuity equation (equations (2) and (1)) results in the
linearized extended Boussinesq equation:

@h

@t
¼ K

@2h

@x2
þ ðU � bKÞ @h

@x
� bUhþ N

f
ð8Þ

This is the equation which is solved analytically in this paper
for a number of specific limiting cases.

3.2. Physical Interpretation of the Linearization

[13] A thorough understanding of the linearization tech-
nique applied to equation (3) is important for a correct
interpretation of the analytical solutions to equation (8). For
this purpose, the assumptions used in the derivation of
equation (3) need to be discussed. Figure 3 shows a schematic
of the variables used for this purpose. The major assump-
tion is that the streamlines are parallel to the impermeable
layer. When the hydraulic conductivity is uniform with
depth, this implies that the transmissivity of the aquifer is
equal to the saturated hydraulic conductivity k multiplied
by the water level h, measured perpendicular to the bed-

rock. In order to obtain the flow rate, this transmissivity
needs to be multiplied by the gradient in the water level,
measured perpendicular to the horizontal reference surface.
The flow rate thus becomes

q ¼ �kh @H
@x

ð9Þ

H is the height of the water table, measured perpendicular to
the horizontal reference surface (m). Figure 3 shows that the
water level H can easily be transformed to the coordinate
system with slope q (the aquifer slope) as follows:

H ¼ hcosqþ xsinq ð10Þ

If the aquifer slope is zero (which is only a limit case used
for completeness), the flow rate can be written as

q ¼ �kh @h
@x

ð11Þ

If the linearization technique of Brutsaert [1994] is used, the
flow rate becomes

q ¼ �kpD @h
@x

ð12Þ

It is thus easy to see that in this case kpD is the trans-
missivity of the aquifer (m2 s�1). pD is defined as the
effective aquifer depth (m), which is the depth of the aquifer
through which groundwater flows. Ideally, if the aquifer is
relatively saturated, p should be chosen close to 1, and for a
relatively dry aquifer, p should approximate zero. Koussis
[1992] and Rupp and Selker [2006a] provide a theoretical
basis to estimate p. However, analytical solutions to
equation (8) for variable values of p are extremely difficult
to obtain. For this reason, a compromise is usually made, in
which p is chosen between 1/2 and 1/3 [Brutsaert, 1994].
In this paper, if analytical solutions to equation (8) are
analyzed, a value of 1/2 is used. For aquifers with nonzero
slope, a similar interpretation can be made. For example, for
a slope of 0.147 radians (which is the slope of the study
area), the expression for q becomes �0.75kpD@h/@x �
0.25h. At x equal to zero, h is equal to zero, so again kpD
can be assumed to be an effective transmissivity. Under
relatively steep slopes, the Boussinesq equation thus still
represents the processes of advection and diffusion. A
different approach, the kinematic wave, in which the first
term is neglected, only includes the process of advection.
For the purposes of this study, it is thus better to use the
Boussinesq equation as theoretical basis, as opposed to
other approximations.

3.3. Analytical Solution

[14] Huyck et al. [2005] provide a general solution to
equation (8), under the assumptions of a zero water level at
the aquifer outlet, and a zero flux at the hillcrest. A number
of studies have focused on the assumption of a zero water
level at the aquifer outlet [Chapman, 2005; Chapman and
Ong, 2006]. However, Pauwels et al. [2002] demonstrated
that the value of a nonzero water level does not appear in
the analytical expression for the base flow, which justifies
this assumption for the purpose of this study. The above

Figure 3. Transformation of the coordinates (x, h) in a
sloping aquifer to a horizontal reference surface.
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boundary conditions have been used in a number of studies,
including Brutsaert [1994], Verhoest and Troch [2000],
Pauwels et al. [2002], Troch et al. [2003], Paniconi et al.
[2003], Troch et al. [2004], and Hilberts et al. [2004].
[15] The aquifer is subject to a series of recharge rates N1,

N2, . . ., Nm (m s�1), each with duration T1, T2, . . ., Tm (s).
The initial condition is a steady state profile obtained using
the recharge rate N0. Under these conditions, the base flow
rate out of the basin (Qb, m

3 s�1) can be written as [Huyck et
al., 2005]

QbðtÞ ¼ ANm þ ðNm � Nm�1Þ
X1
n¼1

4W0KZn

Ub þ yn

zn

L
eynt�aL

" #

þ
Xm�1
i¼1
ðNi � Ni�1Þ

X1
n¼1

4W0KZn

Ub þ yn

zn

L
eynðtþT iÞ�aL

" #
ð13Þ

A is the area of the catchment (m2), and W0 is the total
stream length in the catchment (m). a (m�1), zn (dimension-
less), yn (s

�1), Zn (dimensionless), and T i (s) are calculated
as

a ¼ �U � Kb
2K

tanzn ¼ �
zn

Lðb � aÞ

yn ¼ �K a2 þ z2n
L2

� �
� Ub

Zn ¼ zn

eaL þ 2a� b
b � a

coszn

L2ðb � aÞ2 þ Lðb � aÞ þ z2n

T i ¼
Xm�1
j¼1

Tj

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð14Þ

zn are the infinite number of roots of the second expression
in equation (14). Appendix A shows the details of the
derivation of this equation.
[16] Under the conditions of an initially saturated aquifer,

under zero recharge, Huyck et al. [2005] derived the
following relationship between the first derivative of the
discharge with respect to time and the discharge, for small
values of t:

� dQbðtÞ
dt

¼ p
8W 2

0 kD
3fpcosq

ðQbðtÞÞ3 ð15Þ

It should be noted that the relationship between the intercept
and the aquifer parameters W0, K, k, and f, is similar as for
the expressions obtained by Polubarinova-Kochina [1962],
Lockington [1997], and Rupp and Selker [2005], and is
identical to the expression obtained by Brutsaert [1994].
Rupp and Selker [2005] demonstrated that the time window
in which equation (15) is valid, reduces as the aquifer slope
increases. However, in this paper, a new equation valid for
short timeswill be derived, and it will be demonstrated that this
equation can also be used for aquifers with a relatively steep
slope. On the other hand, for equation (13) this relationship
becomes, for large values of t [Huyck et al., 2005]:

� dQbðtÞ
dt

¼ y1QbðtÞ ð16Þ

In a logarithmic plot with the discharge values in abscissa
(x axis), and the first derivatives in ordinate (y axis),
equation (15) represents a straight line with slope 3, and
equation (16) a straight line with slope 1. It should be noted
that the slope of 1 is a consequence of the linearization of
the governing equation. For the nonlinear equation, in theory,
a slope of 1.5 should be obtained [Troch et al., 1993].
Deviations from this theoretic slope can be explained by
heterogeneity in the parameter values [Rupp and Selker,
2006a; Harman and Sivapalan, 2009a]. If an estimate of f
is available, k and pD can be calculated using the intercepts
of these two straight lines.

3.4. Impact of Parameter Heterogeneity

[17] In the application of equation (4) or equation (8), two
kinds of heterogeneity need to be taken into account, more
specifically vertical and horizontal heterogeneity in the
aquifer parameter values.
[18] Rupp and Selker [2006a] argue that hydraulic prop-

erties often vary with depth. However, both equations (15)
and (16) have been derived under the assumption of ver-
tically invariant aquifer hydraulic parameters. In this con-
text, it is important to note that this paper focuses on the
estimation of aquifer lower layer hydraulic conductivity
values. It is reasonable to assume that for these thin layers
the aquifer properties are homogeneous with depth. For the
test site used in this study, sedimentation is the main source
of vertical heterogeneity, which justifies the assumption of
vertical homogeneity used in this paper.
[19] Another aspect to consider is horizontal heterogene-

ity of the hydraulic parameters in the catchment. Szilagyi et
al. [1998] suggested, using lognormally distributed hydrau-
lic conductivity fields, that a recession analysis under these
conditions performed equally well as for a homogeneous
catchment. However, as is discussed by Harman and
Sivapalan [2009a], horizontal heterogeneity can be the
explanation of why the exponent in the discharge reces-
sions for a catchment can reach high values (up to two).
Further, Harman et al. [2009] demonstrate that, even if
individual hillslopes demonstrate linear behavior, the
integration of the response of multiple heterogeneous hill-
slopes can lead to nonlinear behavior in the storage-discharge
relationship.
[20] The combined effect of both types of heterogeneity is

that, if the linearized Boussinesq equation is analyzed, the
slope in the relationship between the time derivative of the
base flow and the base flow will deviate from one. How-
ever, in order to test whether a slope of one in the recession
data is obtained, the twenty years of data from Huyck et al.
[2005] were reanalyzed. The approach of Rupp and Selker
[2006b] was applied, in order to ensure that artifacts in the
data were removed. Only the data points which were
preceded by at least four dry days were analyzed, in order
to maximize the probability that the solution for large times is
valid for these points. A linear regression through the loga-
rithmic plot resulted in a slope of 1.07, which can be
considered sufficiently close to 1 for the linearized Boussinesq
equation to be valid.

3.5. Realistic Expression for Short Times

[21] Arguably, equation (15) has been obtained using
unrealistic initial conditions, more specifically, an initially
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fully saturated aquifer with zero recharge, which in reality
does not occur frequently. Therefore, a different expression
will be derived here, that is obtained in the same manner as
equation (13), but which is valid for short times during a
recharge event. More specifically, equation (13) has been
derived through a solution to equation (8). This equation is
solved by Huyck et al. [2005] using Laplace transformation.
Appendix A summarizes this derivation. If the aquifer is
subjected to a recharge rate N2, preceded by a recharge rate
N1 with duration T1, starting from a steady state initial
condition obtained with recharge rate N0, the Laplace
transform of the solution can be written as (equation (A15))

F ¼ UbN2 þ N1y

yfUbðUb þ yÞ þ N1

ð2a� bÞ
2yfUbðb � aÞebL e

bx

� N1

2ðb � aÞebL þ ð2a� bÞ
2yfUbðb � aÞebL eð2a�bÞx

þ 2
X1
n¼1

N1 � N0

f ðUb þ ynÞ
Zn

sin
znx

L

� �
eynT1�aðL�xÞ

y� yn

þ N2 � N1

f ðUb þ yÞy

�
ðb � a� bÞeaðLþxÞþbðx�LÞ � ðb � aþ bÞeaðLþxÞþbðL�xÞ � 2eaxð�2aþ bÞsinhðbxÞ
� �

2eaLððb � aÞsinhðbLÞ þ bcoshðbLÞÞ
ð17Þ

where y is the Laplace variable, and F is the Laplace
transform of h; b is written as

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ Ub þ y

K

r
ð18Þ

The Laplace transform of the base flow can then be written
as [Huyck et al., 2005]

qLðyÞ ¼ �f K
dF

dx
� f UF ð19Þ

The limit case for times approaching zero is equivalent to
values for y approaching infinity. For equation (17) this
limit becomes, for x equal to zero:

lim
y!1

F ¼ �N2 � N1

fy2
ð20Þ

The first derivative of F with respect to x is

dF

dx
¼ N1

ð2a� bÞb
2yfUbðb � aÞebL e

bx � N1ð2a� bÞ 2ðb � aÞebL þ ð2a� bÞ
2yfUbðb � aÞebL eð2a�bÞx

þ 2
X1
n¼1

N1 � N0

f ðUb þ ynÞ
Zn

zn

L

cos
znx

L

� �
eynT1�aðL�xÞ

y� yn

þ 2
X1
n¼1

N1 � N0

f ðUb þ ynÞ
aZn

sin
znx

L

� �
eynT1�aðL�xÞ

y� yn

þ N2 � N1

f ðUb þ yÞy �
ðb � a� bÞðaþ bÞeaðLþxÞþbðx�LÞ � ðb � aþ bÞða� bÞeaðLþxÞþbðL�xÞ � 2eaxbð�2aþ bÞcoshðbxÞ
� �

2eaLððb � aÞsinhðbLÞ þ bcoshðbLÞÞ

The limit for y approaching infinity is, again for x equal to
zero:

lim
y!1

dF

dx
¼ ð2a� bÞN1

1� ebL

yfUbebL
þ 2

X1
n¼1

N1 � N0

f ðUb þ ynÞ
Zn

zn

L

� e
ynT1�aL

y� yn
þ N2 � N1

f

1ffiffiffiffiffiffiffiffi
Ky3

p ð22Þ

Application of equation (19) andmultiplication by�2W0 (the
minus sign is to render base flow values positive, and 2W0

accounts for the length of the drainage network with drainage
from both banks) leads to the Laplace transform of the base
flow for the catchment:

QLðyÞ ¼ 2W0U
N2 � N1

y2
þ 2W0Kð2a� bÞN1

1� ebL

yUbebL

þ 4W0K
X1
n¼1

N1 � N0

Ub þ yn
Zn

zn

L

eynT1�aL

y� yn
þ 2W0ðN2 � N1Þ

ffiffiffiffiffi
K

y3

s

ð23Þ

We neglect the first term in equation (23), since it is divided
by y2, as opposed to the other terms, which are divided by y to
a lower power. We know that (2a � b)K is equal to �U
(equation (6)). We thus get

QLðyÞ ¼ � 2W0

N1

by
e�bL � 1
	 


þ 4W0K
X1
n¼1

N1 � N0

Ub þ yn
Zn

zn

L

eynT1�aL

y� yn

þ 2W0ðN2 � N1Þ
ffiffiffiffiffi
K

y3

s
ð24Þ

ð17Þ

ð21Þ
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Inverse Laplace transform leads to

QbðtÞ ¼ AN1 þ 4W0K
X1
n¼1

N1 � N0

Ub þ yn
Zn

zn

L
eynT1�aLeynt

þ 4W0ðN2 � N1Þ
ffiffiffiffiffi
Kt

p

r
ð25Þ

A is the catchment surface area (m2), and is calculated as

A ¼ 2W0

Z L

0

e�bx ¼ 2W0

1� e�bL

b
ð26Þ

Similarly as performed by Huyck et al. [2005], it is easy to
show that in general (for a succession ofm recharge rates) the
equation for the base flow for small values of time becomes

QbðtÞ ¼ ANm�1 þ 4W0K
X1
n¼1

Xm�1
i¼1
ðNi � Ni�1ÞeynT i

" #

� Zn

Ub þ yn

zn

L
eynt�aL þ 4W0ðNm � Nm�1Þ

ffiffiffiffiffi
Kt

p

r
ð27Þ

3.6. Further Simplification

[22] Under the assumption that the recharge event prior to
Nm lasts very long, the double summation term in equation
(27) will approximate zero, since yn is negative and T i will
become very large (equation (14)). Under this assumption
the short-time expression becomes

QbðtÞ � ANm�1 þ 4W0ðNm � Nm�1Þ
ffiffiffiffiffi
Kt

p

r
ð28Þ

This situation can occur after a long rainless period. Thus if
Nm�1 can be assumed to be equal to zero, this leads to the
following expression:

QbðtÞ � 4W0Nm

ffiffiffiffiffi
Kt

p

r
ð29Þ

The first derivative of this expression with respect to time
becomes

dQbðtÞ
dt

� 2W0Nm

ffiffiffiffiffi
K

pt

r
ð30Þ

Thus the relationship between Qb and dQb/dt can be written
as

dQb

dt
� 8W 2

0N
2
m

K

p
Q�1b ð31Þ

3.7. Synthetic Example

[23] In order to test the short-time expressions (equa-
tions (27) and (28)), a synthetic study was performed. An
aquifer was subjected to a synthetic time series of recharge.
Table 1 lists the aquifer parameters, and Table 2 lists the time
series of recharge rates. The general solution (equation (13)),
a numerical solution to the nonlinear equation (equation (4)),
and the approximations (equations (27) and (28)) were
analyzed, for a single aquifer of unit width at x zero (thus
2W0 in the equations is equal to one). The numerical
solution to equation (4) has been obtained through a finite
element discretization to solve the spatial derivatives, for
which piecewise Lagrangian basis functions and piecewise
uniform weight functions are used. The temporal derivative
is solved using a Crank-Nicholson finite difference scheme.
It should be noted that, when Nm�1 is zero, equations (28)
and (29) will yield identical results.
[24] Figure 4 shows the results of this synthetic study. It

can be seen that the linearized and nonlinear extended
Boussinesq equations lead to relatively similar results.
The peaks using the nonlinear equation are slightly higher,
but for short times during the recharge events the outflows
resulting from both equations are very similar. Further, in all
cases equation (27) is, as expected, a good approximation of
the exact solution for a short time during the recharge event.
On the other hand, equation (28) is clearly not a good
approximation for the decreasing limbs of the hydrograph.
This can be explained by the omission of the double
summation term, which cannot be neglected, in contrary
to the assumptions made in the derivation of equation (28).
However, for the increasing limbs of the hydrograph, a good
match between the exact solution and equation (28) is
obtained for short times during the recharge events. This
good match is obtained even if the base flow before the
onset of the peak is still relatively high, as for example
occurs for the second peak. In other words, the base flow
prior to the peak does not have to be zero in order for
equation (28) or equation (29) to be valid.
[25] The results in Figure 4 thus indicate that equation (29)

is a good approximation of the base flow for short times
during the rising limbs of the base flow hydrographs, if
they succeed a long rainless period. In section 4, it will be

Table 1. Aquifer Parameters Used in the Synthetic Example and

for the Estimation of the Base Flow Rates for the Zwalm

Catchment

Parameter Units Synthetic Example Zwalm

k m s�1 0.008 0.0002703
D m 1.5 3.08
L m 100 366
q radians 0.02 0.147
f - 0.34 0.07
b m�1 0.005 0

Table 2. Recharge Rates Used in the Synthetic Example

Recharge Rate (mm h�1) Duration (h)

1.2 initial condition
5.28 20
0 50
8.088 20
0 100
4.56 10
0 200
13.92 10
0 90
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assessed whether this approximation can be used to estimate
aquifer hydraulic parameters.

4. Site and Data Description

[26] The study has been performed in the Zwalm catch-
ment in Belgium, of which Figure 5 shows the location.
Troch et al. [1993] provide a complete description of this
test site, only a short overview will be given here. The
total drainage area of the catchment is 114.3 km2 and the
total length of the perennial channels is 177 km. The max-
imum elevation difference is 150 m. The average annual
temperature is 10�C, with January the coldest month (mean
temperature 3�C) and July the warmest month (mean
temperature 18�C). The average annual rainfall is 775 mm
and is distributed evenly throughout the year. The annual
actual evapotranspiration is approximately 450 mm.
[27] Meteorological forcing data with an hourly resolu-

tion (the model time step) from 1994 through 1998 were
used in this study. The climatological station located in
Kruishoutem, approximately 5 km outside the catchment,
provided the precipitation needed by the models. Hourly
discharge values at the outlet of the catchment were avail-
able for the entire study period.
[28] Application of a number of base flow filters for this

catchment [Huyck et al., 2005] indicate that a very large
fraction of the storm hydrographs consist of base flow,

which makes this catchment very suitable for the analysis
in this paper. Further, since we apply this method after a long
dry period, it is likely that the initial rise will be strongly
affected by subsurface flow that depends on the aquifer
hydraulic properties that we want to estimate.

5. Results

5.1. Model Validation

[29] Table 1 lists the aquifer parameters that were used for
the application of the model described in section 2. These
parameters were determined by Pauwels et al. [2002]. The
model was applied at an hourly time step from 1994 through
1998. The top panels of Figure 6 show the comparison of
the modeled to the observed discharge for the simulation
period, obtained using the linearized extended Boussinesq
equation. The bottom panels of Figure 6 show this com-
parison, for the results obtained using the nonlinear extend-
ed Boussinesq equation. The results obtained using both
equations are almost identical, indicating the validity of the
linearized Boussinesq equation. The relatively low root-
mean-square error (RMSE) and the regression line close to
the 1:1 line indicate that the rainfall-runoff behavior of the
catchment is adequately represented using this model, and
that the resulting recharge rates can be deemed sufficiently
realistic to be used in a synthetic experiment.

5.2. Analysis of the Short-Time Expressions

[30] In order to analyze the short-time expressions,
equation (15) has been analyzed using the synthetically
generated time series of base flow, obtained using the

Figure 5. The location of the study site.

Figure 4. The results of the synthetic study. If the results
of equation (28) are not visible, they coincide with the
results of equation (27).
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linearized extended Boussinesq equation. As stated in
section 3.3, equation (15) has been derived under the
assumption that the catchment was initially fully saturated.
The results of the hydrologic model, as well as field obser-
vations, show that this situation does not occur at any time
during the simulation period.
[31] The analysis has been performed as follows. For all

modeled base flow values, the base flow and its first deriv-
ative with respect to time for the first time step in the
decreasing limb of each hydrograph were retained, in order
to approximate as accurately as possible the assumption of
short times in the recession. The other time steps in the
decreasing limbs were not used in the analysis. Under these
conditions, even for relatively steep aquifers, the short-time
solution to the Boussinesq equation is valid. Only data points
for which no recharge occurred were used in the analysis.
[32] Figure 7 shows the logarithmic plot of the first

derivative of the base flow with respect to time as a function
of the base flow values for these time steps. Following
equation (15), these data points should be located on a
straight line with slope 3. However, a linear regression

through the data set yielded a regression line with slope
0.55, intercept 5.89 � 10�6 m1.65 s�1.45, and a correlation
coefficient of 0.45. The slope of 3 is thus not observed in
this plot. This can be explained by the assumption of an
initial full saturation in the derivation of equation (15),
which does not occur in this catchment. It can thus be
expected that this inconsistency between the theoretical
assumptions in the derivation of equation (15) and the
conditions in reality will lead to errors in the catchment
hydraulic parameters. This will be assessed in section 5.3.

5.3. Estimation of the Aquifer Hydraulic Parameters
Through a Traditional Base Flow Recession Analysis

[33] In this section, the modeled base flow values,
obtained using the linearized extended Boussinesq equation,
were used in a recession analysis. Figure 8 shows a
logarithmic plot of the first derivatives of the modeled base
flow values of the decreasing hydrograph limbs with respect
to time as a function of the base flow values. Only data
points for which no recharge occurs were used in the
analysis. This plot was generated using the same time step

Figure 6. Validation of the modeled discharge for the Zwalm catchment showing (left) linear plots and
(right) logarithmic plots. The solid line is the 1:1 line, and the dotted line is the regression line. (top)
Results obtained using the linearized extended Boussinesq equation. (bottom) Results obtained using the
nonlinear extended Boussinesq equation.
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at which the model was applied, more specifically 1 h. Rupp
and Selker [2006b] demonstrated that, if the streamflow
data ara available with an imperfect precision and a certain
level of noise, this approach can lead to misinterpretation of
the recessions. They suggested the use of a variable time
step in order to bypass this problem. However, in this paper,
the base flow values were synthetically generated, and are
thus perfectly known, without noise. In this study, as
opposed to when real streamflow data are used, there is
thus no benefit in using variable time steps in order to
perform the recession analysis. It should be noted that the
line and inverse U shape of a number of data points for the
lower values of �dQ/dt can be explained by the effect of
recharge during the recessions. This will cause similar dis-
charge values to have different time derivatives. The inverse
U shape can be explained by the relatively slow decrease of
the base flow at the onset of a recession, the quicker decrease
later in the recession, and the slower decrease toward the end
of the recession. The aquifer hydraulic parameters k and D
were determined using the intercepts of the straight lines with
slope 1 and 3 in the �dQb/dt versus Qb plots. Using these
intercepts, and a value of 0.5 for the linearization constant p
(which was used to generate the base flow time series),
equations (16) and (15) can be used to calculate D and k.

[34] A number of interpretations of the location of these
straight lines can be made. Traditionally, this type of reces-
sion analysis is performed on measured discharge values, not
the base flow values themselves. For this reason, as described
by Brutsaert and Nieber [1977] and Troch et al. [1993], low
envelopes in the data sets are used, since the absolute value of
the first derivative of surface runoff with respect to time is
generally larger than this value for base flow. The use of these
lower envelopes increases the chance that the intercepts are
calculated on the base flow values, not on the discharge
including surface runoff. Usually, the 5% or 10% lowest
envelopes are used.
[35] However, in this section, the base flow values them-

selves are analyzed. Regarding the short-time solution with
slope 3, the argument can be made that the value for Qb

which is most likely to approximate the theoretically required

Figure 7. Analysis of the base flow recessions for short
time.

Figure 8. Calculation of the aquifer parameters through a
traditional recession analysis. For reasons of completeness
the 5% and 10% lower envelopes with a slope of 1 are also
indicated on the plot, even though they are not used in the
analysis. The dashed line is the line with slope 1 drawn
through the lowest Qb value or the line with slope 3 drawn
through the highest Qb value. The dash-dotted line is the
linear regression with slope 1 drawn through the 500 lowest
values for Qb. The line with the 500 lowest values for Qb

and the line with the true parameter values for slope 1
overlap.
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value (full saturation), is the largest value in the data set.
Similarly, the value for Qb which is most likely to approxi-
mate the theoretically required value for the large time
solution (slope 1), is the lowest value in the data set. For this
reason, the intercept for the straight line with slope 3 was
calculated using the highest obtained value for the base flow.
Similarly, the intercept for the straight line with slope 1 was
calculating using the lowest base flow value.
[36] The intercept for the straight line with slope 3 was

found to be 5.11 � 10�7 s m�6. For the straight line with
slope 1, this intercept was 2.42� 10�5 s�1. Using a drainable
porosity of 0.07, this corresponds to a value of �1.50 �
10�10 m s�1 for the saturated hydraulic conductivity, clearly
an unrealistic value, and an aquifer depth D of 8.57, almost
three times the correct value.
[37] Figure 8 shows that the calculated straight line with

slope 1 approximates well the lower values for the dis-
charge. In order to obtain a better estimate of the intercept of
the straight line with slope 1, a regression with slope 1 was
drawn through the 500 lowest values of the discharge. This
led to an intercept of 1.35 � 10�5 s�1. Using the a priori
known parameters for the catchment, a value of 1.398 �
10�5 s�1 for �y1 is obtained. The retrieved value thus
approximates the true intercept value very well. Further, in

order to take into account more data points in the calculation
of the intercept for the straight line with slope 3, the 5% and
10% lower envelopes were calculated. For the 5% lower
envelope, the intercept is 5.96 � 10�7 s m�6. It should be
noted, for the 5% lower envelope with slope 3, that this
straight line is almost identical to the straight line drawn
through the largest Qb value. These intercepts correspond to
saturated hydraulic conductivity of 0.00015 m s�1 and an
aquifer depth of 1.72 m. For the 10% lower envelope this is
1.22 � 10�6 s m�6, leading to a saturated hydraulic conduc-
tivity of 0.00013 m s�1 and an aquifer depth of 1.44 m. As
can be seen in Table 1, these values are quite different from
the correct values. The argument can thus be made that, due
to the inconsistencies between the conditions under which
equation (15) has been applied and the assumptions used in
its derivation, a base flow recession analysis may be able to
only provide the correct order of magnitude of the aquifer
hydraulic parameters. In section 5.4 a different methodology
is proposed, leading to more accurate results.

5.4. Application of the New Approximative Solution

[38] In order to make the base flow analysis for short times
consistent with the theoretical development, equation (31)
was analyzed. As stated in section 3.6, this equation has been
derived under the assumption that the recharge rate prior to
the event is zero, and that the impact of the previous recharge
rates can be neglected. This can occur after long rainless
periods. For this reason, only the hydrographs succeeding a
period with zero precipitation for at least 7 days were
analyzed. A duration of 7 days was used as a compromise
between the need to have enough data points to perform the
analysis, and the use of rainless periods of sufficient length.
For each rising limb in these base flow hydrographs, the first
time step was retained, in order to approximate as well as
possible the assumptions under which the short-time expres-
sion was derived. For these time steps, the first derivative of
the base flow with respect to time was plotted as a function
of the base flow divided by the square of the corresponding
recharge rate, in a logarithmic plot. Figure 9 shows the result
of this analysis. A linear regression through this data set
yielded an intercept of 1.32 � 104 m4 s�1, a slope of �0.67,
and a correlation coefficient of �0.91. The confidence
intervals at the 95% level fully encompass the linear reg-
ression line with slope �1 drawn through the data set.
This slope of �0.67 is thus statistically equal to the theoret-
ical slope of �1 at the 95% confidence level. It should be
stated that it is possible that for a number of data points in
Figure 9 an important assumption used in the derivation of
equation (31), more specifically no influence of previous
recharge rates, is not valid. In section 5.6 a criterium is
derived to eliminate these points from the analysis. In order
to use this plot for the estimation of hydraulic parameters, two
approaches can be used. On the one hand, a regression with
slope �1 can be drawn through the data set. This regression
line will thus take into account data points for which the
theoretical requirements are not met, which can lead to errors
in the estimated parameters. On the other hand, it can be
argued that the points in the data set that best approximate
the theoretical requirement of no influence of prior recharge
rates on the base flow are the points with the lowest dQb/dt
for each value of QbN

�2. Therefore, a second straight line
with slope �1 is drawn through the point with the lowest
intercept in the data set, thus, in other words, through the

Figure 9. Analysis of the rising limbs of the base flow
hydrographs, generated using the linearized extended
Boussinesq equation, for short times after long rainless
periods.
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point with the lowest dQb/dt for the corresponding value of
QbN

�2. As stated above, in section 5.6 a theoretically
founded algorithm is described in order to determine the
location of the straight line with slope �1.
[39] Figure 9 shows the location of these two straight

lines. It is important to note that many points in the data set
are located almost exactly on the lower envelope. This
indicates the validity of equation (31). The intercept of
the regression with slope �1 is 6.76 � 108 m4 s�1, while for
the lowest envelope this intercept is 3.61 � 108 m4 s�1.
Equation (31) shows that this intercept is equal to 8W0

2K/p.
For the regression with slope �1 this corresponds to a K of
1.08 � 10�2 m2 s�3, while for the lower envelope this leads
to a value of 5.79 m2 s�3 for K. Using equation (6) and the
values in Table 1, it can be seen that the correct value for K
is equal to 5.88 m2 s�3. The value for K obtained using the
lower envelope is thus very similar to the correct value,
indicating again the validity of equation (31).
[40] The hydraulic parameters k and pD (and consequently

D since p is known) can be calculated using the plots in
Figures 8 and 9. The intercept of the straight line with slope 1
in Figure 8, corresponding to the 500 lowest values of Qb

(denoted as I1), and the intercept of the lowest envelope in
Figure 9 (denoted as I2) can be used in the following system
with two equations and two unknowns:

I1 ¼
kpDcosq

f

bpDcosq� sinq
2pDcosq

� �2

þ z2n
L2

" #
þ bksinq

f

I2 ¼
8W 2

0 kpDcosq
f p

8>>><
>>>:

ð32Þ

These expressions have been obtained using equations (16),
(14), and equation (6) for I1, and equations (31) and (6) for
I2. It should be noted that these are limit cases, so an infinite
summation is no longer necessary. Using the values for I1
and I2 that were explained above, a value of 3.08 m for D
and 0.000266 m s�1 for k were obtained. Table 1 shows that
these are relatively close to the original parameter values.

5.5. Physical Interpretation of the New Methodology

[41] To summarize, the new method uses two equations
that are valid for relatively dry aquifers. The first expression
(for large values of time) has been derived under the
assumption that the aquifer has been draining for a long
time. The second expression (for short times) has been
derived for the case of replenishing of the aquifer after a
long rainless period.
[42] Following the discussion in section 3.2, in both cases

the value for p should be small. However, in order to gen-
erate the base flow time series used in the analysis, a
constant value of 0.5 for p was used. Logically, the correct
value for pD, and consequently D, was retrieved, since this
value was used to generate the time series of base flow. In
this context, it should be noted that the synthetic example
was used to demonstrate the correctness of the long- and
short-time equations. However, if the new methodology
were applied on observed base flow values, a value for
pD consistent with a low value for p would be retrieved,
since the aquifer is relatively dry after a long recession and
at the onset of a replenishing after a long rainless period.
The value for D can thus be expected to be an order of
magnitude larger than the retrieved value for pD. In any

case, it is important to note that both the short-time and the
long-time solutions, used to calculate pD, are both valid
for relatively dry aquifers, and consequently for low values
of p. Since the water levels in the aquifer are low when the
methodology is applied, it can be assumed that the hydraulic
conductivity values are invariant with depth throughout the
water table profile. The new method can thus be expected to
provide good estimates of the value of the hydraulic conduc-
tivity of the lower part of the aquifer.
[43] However, if a traditional base flow recession analysis

is performed, the equations for long and short times are
valid for different values for p. The short-time solution has
been derived for an initially saturated aquifer, and conse-
quently a value for p that approximates one. On the other
hand, the long-time solution has been derived for an aquifer
that has been draining freely for a long time, and thus a
relatively low value for p. However, in the estimation of the
aquifer parameters using these expressions, a constant value
for p (or pD) needs to be used. It can thus be stated that the
newly developed methodology is more consistent with its
theoretical requirements than a traditional base flow reces-
sion analysis.

5.6. Selection of Analysis Data Points

[44] A remaining issue is the selection of the appropriate
points in Figure 9 to perform the analysis. As stated above,
the straight line with slope �1 can be drawn through the
data point with the lowest value for the intercept. However,
a more appropriate manner to select these points is the
following.
[45] Equations (29) and (30) show that, for the points for

which these equations are valid, the following relationship
is true:

QbðtÞ
dQbðtÞ
dt

� 2t ð33Þ

Thus, if data points are sampled at a regular interval 4t (s),
and if the assumptions leading to equations (29) and (30)
are valid, a division of the discharge by the first derivative
of the discharge with respect to time is approximately equal
to twice the data time step. Only base flow values and their
first time derivatives are thus needed to select the analysis
data points.
[46] This criterium can be used to select the analysis data

points in Figure 9. All data points for which this division
was between 1.954t and 2.054t were retained for the
analysis. Indeed, a linear regression through the remaining
data points (14 out of the original 38) yielded a slope of �1,
an intercept of 3.78 � 108 m4 s�1, and a correlation
coefficient of �1. The location of this straight line is thus
practically identical to the location of the lower envelope in
Figure 9. Application of this intercept to equation (32)
resulted in an aquifer depth D of 3.15 m and a saturated
hydraulic conductivity k of 0.0002718 m s�1. Table 1 shows
that these values are again very close to the true parameters.

6. Dimensional Analysis

6.1. Introduction to the Analysis

[47] An important aspect in the application of a differen-
tial equation, or in general in the application of any model,
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is an understanding of the sensitivity of the results to the
different parameter values. In this section, it is first assessed
analytically whether the outflow resulting from the linear-
ized extended Boussinesq equation (equation (8)) is sensi-
tive to the three aquifer hydraulic parameters ( f, pD, and k).
Since these parameters are determined using analytical
solutions to equation (8) for short and large times, it is also
investigated whether this sensitivity is reflected in the
resulting parameter values. In other words, it is checked
whether the parameter sensitivity of the short- and large-
time solutions is consistent with the parameter sensitivity of
the governing differential equation (equation (8)).

6.2. Analysis of the Governing Equation

[48] Using the Darcy equation (equation (7)), the first
derivative of the base flow with respect to time can be
written as

dq

dt
¼ �f K @

@x

@h

@t

� �
� f U

@h

@t
ð34Þ

Substitution of equation (8) leads to

dq

dt
¼ �f K2 @

3h

@x3
� f KðU � bKÞ @

2h

@x2
þ f UKb

@h

@x
� f UK

@2h

@x2

� f UðU � bKÞ @h
@x
þ f U2bh� f U

N

f

ð35Þ

Rearrangement results in the following expression:

dq

dt
¼ �f K2 @

3h

@x3
� f KU

@2h

@x2
þ f K2b

@2h

@x2
þ f UKb

@h

@x
� f UK

@2h

@x2

� f U2 @h

@x
þ f UKb

@h

@x
þ f U2bh� UN

ð36Þ

A number of terms can then be regrouped:

dq

dt
¼� K

@2

@x2
f K

@h

@x
þ f Uh

� �
þ Kb

@

@x
f K

@h

@x
þ f Uh

� �

� U
@

@x
f K

@h

@x
þ f Uh

� �
þ Ub f K

@h

@x
þ f Uh

� �
� UN

ð37Þ

Substituting the Darcy equation (equation (7)), this equation
can be further simplified. Rearrangement finally leads to

dq

dt
¼ K

@2q

@x2
þ ðU � KbÞ @q

@x
� Ubq� UN ð38Þ

Equation (6) shows that, regarding the hydraulic para-
meters, both K and U are dependent on k/f, and that K
is further dependent on pD. f does no longer appear as
a separate parameter in equation (38). One would thus
expect the analytical expression for the base flow
(equation (13)) to be dependent on k/f and pD (thus in
fact on two parameters), not on the three parameters
separately. In section 6.3 it will be assessed whether or not
this is the case.

6.3. Analysis of the Analytical Solution

[49] For the purpose of a dimensional analysis, equa-
tion (13) is rewritten, substituting the expression for yn
from equation (14):

QbðtÞ ¼ ANm � ðNm � Nm�1Þ
X1
n¼1

4W0Zn

a2 þ z2n
L2

zn

L
eynt�aL

2
664

3
775

�
Xm�1
i¼1
ðNi � Ni�1Þ

X1
n¼1

4W0Zn

a2 þ z2n
L2

zn

L
e ynðtþTiÞ�aL

2
664

3
775 ð39Þ

With respect to the hydraulic parameters, this expression
is dependent on a, zn, Zn, and yn. a can be rewritten as
(equation (14))

a ¼ � U

2K
þ b

2
¼ � ksinq

2kpDcosq
þ b

2
¼ � tanq

2pD
þ b

2
ð40Þ

This shows that a, with respect to the hydraulic parameters,
is only dependent on the effective aquifer thickness pD.
Equation (14) then shows that both zn and Zn are inde-
pendent of f and k, and will depend only on pD. Thus, for
all the terms inside the summation for n, only yn is depen-
dent on k and f. yn can be rewritten as (equation (14))

yn ¼ �U
K

U
a2 þ z2n

L2

� �
þ b

� �
¼ � k

f
sinq

tanq
pD

a2 þ z2n
L2

� �
þ b

� �
ð41Þ

This means that, with respect to the hydraulic parameters,
yn is dependent only on k/f and pD, while Zn, zn, and a are
dependent only on pD. The results in this section imply
that the base flow modeled using the linearized Boussinesq
equation will depend only on k/f and pD, consistent with
the reasoning in section 6.2. Application of the metahillslope
model (meaning the hydrologic model in which the catch-
ment is represented by two aquifers draining into the stream
network) with the values for f and k multiplied by two
confirmed this conclusion.
[50] This finding has a number of important consequen-

ces. First, in order to estimate the parameters through a base
flow analysis, using the algorithm outlined in section 5.4,
the same value for pD (and consequently D) should be
retrieved, regardless of the value for f. Further, whatever the
value for f used in the analysis, the obtained value for k/f
should be constant. In other words, the use of a traditional
base flow recession analysis [Brutsaert and Nieber, 1977;
Troch et al., 1993; Huyck et al., 2005] results in a system
with two equations and three unknowns. In this case, the
system reduces to two equations and two unknowns, implying,
as stated above, that k/f and pD can be determined uniquely
using the intercepts in equation (32). In sections 6.4 and 6.5
it will be investigated whether or not this is the case. Second,
if the parameters need to be retrieved for the purpose of using
them to model base flow using the linearized Boussinesq
equation, retrieving the parameters k/f and pD is sufficient.
Thus, the value for f is irrelevant for this purpose. However,
if the water table profile needs to be modeled, a reasonable
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estimate for f remains necessary. Examples of values for this
parameter can be found in the work by Bear [1972].

6.4. Analysis of the Approximations for Short Time

[51] Troch et al. [1993] argue that, of the three parameters
that need to be estimated (D, k and f), the drainable porosity
f is the least scale-dependent parameter. For this reason,
Troch et al. [1993] use field estimates for this parameter,
obtained using pumping well tests, for their analysis. The
results of Troch et al. [1993], confirmed by the findings of
Huyck et al. [2005], demonstrate that the use of different
values for f, even if they are not strongly different, has a
direct impact on the retrieved parameter values for k and D.
The results from both studies further clearly show that k/f is
not independent of the value used for the drainable porosity.
In this context it should be noted that the results of Troch et al.
[1993] are obtained using the nonlinear Boussinesq equation,
while the results ofHuyck et al. [2005] are obtained using the
linearized version, more specifically equation (8). Thus, the
methodology of Troch et al. [1993] correctly leads to an
underdefined system of two equations and three unknowns,
and variable estimates of D and k/f as a function of f, but the
results of Huyck et al. [2005] are clearly not consistent with

the above reasoning. This latter discrepancy can only be
explained by the use of unrealistic initial conditions in the
derivation of the short-time expression, which was derived
using initial full saturation and zero recharge.
[52] A closer look at equation (32) shows that I2 is

dependent on k/f and pD. The same statement can be made
regarding I1. Thus, the short-time expressions derived in
this paper are consistent with the theory that the base flow,
with respect to the aquifer hydraulic parameters, is only
dependent on k/f and pD. In section 6.5, it will be verified
whether the use of a different value for f will lead to con-
sistent estimates of k/f and pD (and consequently D) or
not.

6.5. Application to the Synthetic Data

[53] In order to test the hypothesis that the estimates of k/f
and D are independent of the value for f, the aquifer
parameters calculated in section 5.4 were recalculated with
values of 0.035 and 0.14 for f (the original value divided
by and multiplied by 2). For f equal to 0.035, the obtained
value for k was equal to 0.000133 m s�1, while D was equal
to 3.08 m. On the other hand, for f equal to 0.14, the values
for k and f were 0.000532 m s�1 and 3.08 m, respectively.
k/f and D are thus constant in all three cases. The results in
this section thus indicate that the relationships between
dQb/dt and Qb, derived for short and long times, and the
resulting parameter estimates, are consistent with the govern-
ing equation.

7. Application to the Nonlinear Equation

[54] As shown in section 3.7, the linearized and nonlinear
extended Boussinesq equations behave relatively similarly
for the rising limbs in the base flow hydrographs after long
rainless periods. It can thus be expected that equation (31)
will also be valid if base flow values are generated using the
nonlinear equation.
[55] Figure 10 shows the relationship between QbN

�2 and
dQb/dt, generated using the nonlinear extended Boussinesq
equation, for the same time steps as are shown in Figure 9,
thus immediately after at least one week without precipita-
tion. A linear regression through the data set yielded an
intercept of 1.82 � 108 m4 s�1, a slope of �1.0529, and a
correlation coefficient of �0.98. These results (the slope
very close to �1) indicate the applicability of the newly
derived short-time solution for the estimation of aquifer
lower layer hydraulic conductivity values for the nonlin-
ear extended Boussinesq equation.
[56] Similar as in section 5.6, a linear regression was

drawn through the points for which the division of Qb by
dQb/dt was between 1.954t and 2.054t. This yielded an
intercept of 3.64 � 107 m4 s�1, a slope of �1, and a
correlation coefficient of �1. This is further proof that the
new short-time solution can be used to estimate aquifer
hydraulic parameters if the nonlinear extended Boussinesq
equation is used.
[57] The major difference between the use of the nonlin-

ear equation as compared to the linearized equation, is the
fact that the slope of 1 in the relationship between the base
flow and the first time derivative thereof for large values of
time (a consequence of the linearization of the governing
equation) will not be retrieved (for a horizontal aquifer this
slope should theoretically be 1.5) [Rupp and Selker, 2006a].

Figure 10. Analysis of the rising limbs of the base flow
hydrographs, generated using the nonlinear extended
Boussinesq equation, for short times after long rainless
periods.
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As a consequence, equation (16) cannot be used in the
retrieval of the aquifer hydraulic parameters. Equation (31)
contains three unknowns, more specifically pD, k, and f.
Consistent with the explanation in section 3.2, if low values
of p are used, the correct order of magnitude of k/f should
be retrieved. In order to assess this hypothesis, the value for
k/f obtained using the intercept of 3.64 � 107 m4 s�1 was
calculated for different values of pD. Table 3 shows the
results of this computation. Indeed, for a value of p of
approximately 0.03, the correct value of k/f is retrieved.
[58] The important consequence of this analysis is that, if

base flow is modeled using the nonlinear extended Boussinesq
equation, the order of magnitude of the aquifer lower layer
hydraulic conductivity can be estimated using only one
equation. A low value of pD should be used, and an estimate
of f is needed in that case.

8. Discussion and Conclusions

[59] The objective of this paper was to develop a meth-
odology for the estimation of catchment-scale aquifer lower
layer hydraulic conductivity values, consistent with the
conditions under which the required equations have been
derived. First, the applicability of a traditional base flow
recession analysis has been examined. The assumptions
under which the expressions for small values of time have
been derived, an initially fully saturated aquifer not subject
to recharge, are in most cases not realistic. It has been
shown that the use of this type of relationship does provide
a good estimate of the order of magnitude of the catchment-
averaged saturated hydraulic conductivity, but that the
obtained values are prone to a large uncertainty.
[60] A different expression for the base flow has been

derived, valid for short times during a recharge event. The
equation is valid for the rising limb of a hydrograph after a
long rainless period. Based on this expression, an inverse
relationship between the base flow and its first derivative
with respect to time has been obtained. Apart from the
aquifer hydraulic parameters, this relationship also depends
on the recharge rate. A synthetic experiment has shown that,
using this new relationship, combined with the relationship
for large times for base flow recessions, accurate estimates
of the catchment hydraulic parameters for the lower layers
of the aquifer are obtained.
[61] It has also been shown analytically that the base

flow, modeled using the linearized Boussinesq equation, is

dependent only on k/f and pD, not on the three parameters
(k, f, and pD) separately. This finding has been confirmed
through a numerical experiment. This leads to the important
implication that knowledge on the values of k/f and pD is
sufficient if the base flow needs to be modeled using the
linearized Boussinesq equation. Estimates of the drainable
porosity are no longer needed for this purpose. Using the
newly developed expression for the base flow for short
times, the estimates of, on the one hand, the aquifer
transmissivity pD, and, on the other hand, the ratio k/f, have
been found to be insensitive to the drainable porosity used in
the analysis. This is consistent with the theory, and more
robust parameters are thus obtained than in the case of a
traditional recession analysis. However, if water table pro-
files need to be modeled, reasonable estimates for f remain
necessary.
[62] If base flow is modeled using the nonlinear extended

Boussinesq equation, it has been shown that the newly
derived expression can be used without a second equation
for large values of time in order to estimate the order of
magnitude of the aquifer hydraulic conductivity. pD needs
to be assumed to be small for this purpose, and an estimate
of the aquifer drainable porosity is needed. Regarding the
choice between the linearized and nonlinear Boussinesq equa-
tions, a strong debate is still ongoing about the conditions
under which the two versions can be applied. An analysis
of the applicability of both versions has been performed by
Harman and Sivapalan [2009b].
[63] Even though the new expression is clearly accurate,

an operational application suffers from two drawbacks.
First, the analysis needs to be performed on base flow
values, not on total discharge. Empirical digital base flow
filters [Lyne and Hollick, 1979; Boughton, 1993; Chapman
and Maxwell, 1996; Jakeman and Hornberger, 1993]
should not be used to obtain these base flow values, since
these algorithms are usually constructed quite simplistically,
which will lead to a nonnegligible uncertainty in the base
flow estimates. In other words, the shape of the rising limb
is largely an artifact of the filter used. This will have an
impact on the intercepts of the straight lines with slope �1
and 1 in the logarithmic plots, and consequently on the
obtained parameters. Physically based base flow filters
[Furey and Gupta, 2001, 2003; Huyck et al., 2005] should
not be used either, since these require catchment-averaged
parameters, which need to be estimated through a base flow
analysis. It is therefore recommended to apply the equa-
tions on direct estimates of base flow. Recently, significant
advances have been made on the use of isotopes [Tetzlaff et
al., 2007; Nakaya et al., 2007; Tetzlaff and Soulsby, 2008;
Liu et al., 2008; Lyon et al., 2008; Desilets et al., 2008] or
distributed temperature sensing [Westhoff et al., 2007] for
the analysis of hydrograph composition. It should thus be
possible to obtain a long enough time series of base flow to
perform the analysis. A more difficult problem is the quan-
tification of the catchment-averaged recharge during the
rising limb of the hydrograph. Since the recharge appears to
the power two in equation (31), it must be determined with a
relatively high accuracy. Recent results of a combination of
soil moisture profile observations and gravity data indicate
that changes in the amount of storage in the groundwater
layer can be related to changes in detected gravity [Swenson
et al., 2008]. If base flow rates are obtained using one of the

Table 3. Calculation of k/f Using the Intercept of the Plot With

Slope �1a

pD (m) p k/f (m s�1)

0.02 0.00649 0.023061
0.04 0.01299 0.011531
0.06 0.01948 0.007687
0.08 0.02597 0.005765
0.1 0.03247 0.004612
0.12 0.03896 0.003844
0.14 0.04545 0.003295
0.16 0.05195 0.002883
0.18 0.05844 0.002562
0.2 0.06494 0.002306

aThe calculation is generated using the nonlinear extended Boussinesq
equation. The true k/f is 0.003861 m s�1.
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previously mentioned methods, the application of this meth-
odology at finer spatial and temporal scales using terrestrial
gravity measurements [Hasan et al., 2008], combined with a
simple mass balance of the saturated soil zone, could result in
recharge rates that are accurate enough to perform the rising
limb analysis.
[64] The results in this paper also reinvigorate the dis-

cussion on the appropriateness of linearized versions of the
Boussinesq equation for the purpose of modeling the base
flow in hydrologic models, as opposed to using the non-
linear equation. Rupp and Selker [2006a] provide an over-
view of the disadvantages of using the linearized equation.
However, the question can be raised whether it is better to
use an approximative equation, with accurate parameter esti-
mates, or a more correct equation, with relatively erroneous
parameter estimates.
[65] The overall conclusion from this paper is that, if one

is interested in knowing catchment-averaged hydraulic
parameters, a traditional base flow recession analysis will
lead to results that will give an indication of the order of
magnitude of these parameters. However, if more accurate
estimates are needed, the effect of unrealistic initial condi-
tions and recharge rates cannot be neglected. In this case,
the rising limb of the base flow hydrographs can be used to
estimate the catchment-averaged hydraulic conductivity
values, which is the important conclusion from this paper.
In this case, the application of the methodology developed
in this paper could be considered.

Appendix A: Solution of the Partial Differential
Equation

A1. Solution for an Initially Saturated Aquifer

[66] Equation (8) was solved by Huyck et al. [2005] for
temporally variable recharge rates. Since the derivation of
the new short-time expression is based on the equations of
Huyck et al. [2005], this solution is repeated here.
[67] Laplace transformation of equation (8) leads to the

following Ordinary Differential equation (ODE) with the
initial condition h = D and under a constant recharge rate N0:

K
d2F

dx2
þ ðU � KbÞ dF

dx
� ðUb þ yÞF ¼ �D� N0

fy
ðA1Þ

where F denotes the Laplace transform of h and y is the
Laplace variable. The solution to this ODE is

F ¼ D

Ub þ y
þ N0

f ðUb þ yÞy

� �

� ðb � a� bÞeaðLþxÞþbðx�LÞ � ðb � aþ bÞeaðLþxÞþbðL�xÞ � 2eaxð�2aþ bÞ sinhðbxÞ
2eaLððb � aÞ sinhðbLÞ þ b coshðbLÞÞ

þ D

Ub þ y
þ N0

f ðUb þ yÞy
ðA2Þ

where a = �U�Kb
2K

(m�1) and b =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ Ubþy

K

q
(m�1).

[68] The inverse Laplace transform can be written as the
sum of the residues at each pole:h(x, t) = SRi. For the
poles of the first order, these residues are

Ri ¼ lim
y!yi
ðy� yiÞFðyÞeyt½ � ðA3Þ

where yi is the value of the pole. If (y� yi) cannot be factored
out, the residues can be calculated as [Brutsaert, 1994]

Ri ¼ lim
y!yi

ðy� yiÞ
TðyÞ
PðyÞ e

yt

� �

¼ TðyiÞ

lim
y!yi

PðyÞ
y� yi

eyit ¼ TðyiÞ

lim
y!yi

PðyÞ � PðyiÞ
y� yi

eyit ¼ TðyiÞ
@P

@y






y¼yi

e yit ðA4Þ

For the steady state part of equation (A2) (the solution
obtained with the poles at y = 0), the residues are easily
calculated using equation (A3). For the transient part, the
poles of the denominator P have to be found:

P ¼ 2eaLððb � aÞ sinhðbLÞ þ b coshðbLÞÞ ¼ 0 ðA5Þ

Substituting bL by jz (j =
ffiffiffiffiffiffiffi
�1
p

) leads to

tanðzÞ ¼ �z
Lðb � aÞ ðA6Þ

meaning that P has an infinite number of roots zn. In this case,
the residues are calculated using equation (A4). The response
of an initially saturated aquifer to a constant recharge rate N0

can finally be written as

hðx; tÞ ¼ N0

fUb
1� eð2a�bÞx þ�e

axð�2aþ bÞ sinh xðb � aÞ½ �
ðb � aÞebL

� �

þ 2
X1
n¼1

Dyn

Ub þ yn
þ N0

f ðUb þ ynÞ

� �

�
zn sin

znx

L

� �
eaL þ 2a� b

b � a
cosðznÞ

� �
L2ðb � aÞ2 þ Lðb � aÞ þ z2n

eynt�aðL�xÞ ðA7Þ

where

yn ¼ K �a2 � z2n
L2

� �
� Ub ðA8Þ

We introduce the following notation:

Zn ¼
zn½eaL þ

2a� b
b � a

cosðznÞ�

L2ðb � aÞ2 þ Lðb � aÞ þ z2n
ðA9Þ

Since yn is negative, the sum in equation (A7) becomes zero
when t!1. The steady statewater table profile is thus given by

h0ðx;N0Þ ¼
N0

fUb
� 1� eð2a�bÞx þ�e

axð�2aþ bÞ sinhðxðb � aÞÞ
ðb � aÞebL

� �
ðA10Þ

ðA2Þ
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A2. Response of the Groundwater Table to N1

[69] Equation (A10), considered as a realistic water table
profile, is used here as the initial condition when calculating
the response of the water table to a recharge N1 with
duration T1. Again, the extended Boussinesq equation will
be solved through Laplace transformation. In the Laplace
domain, the equation to be solved is now

KfUb
d2F

dx2
þ f UbðU � KbÞ dF

dx
� f UbðUb þ yÞF

¼ �Ub
N1

y
� N0 þ N0

2ðb � aÞebL þ ð2a� bÞ
2ðb � aÞebL eð2a�bÞx

þ N0

ð�2aþ bÞebx
2ðb � aÞebL ðA11Þ

The expression for F is

F ¼ N1 � N0

f ðUb þ yÞy

� ðb � a� bÞeaðLþxÞþbðx�LÞ � ðb � aþ bÞeaðLþxÞþbðL�xÞ � 2eaxð�2aþ bÞ sinhðbxÞ
2eaLððb � aÞ sinhðbLÞ þ b coshðbLÞÞ

þ UbN1 þ N0y

Ubf ðUb þ yÞyþ
N0

Ubfy
ð2a� bÞ

2ðb � aÞebL e
bx

� N0

Ubf
2ðb � aÞebL þ ð2a� bÞ

2yðb � aÞebL eð2a�bÞx

After inverse transformation, the obtained water table height
is given by

h1ðx; tÞ ¼ h0ðx;N1Þ þ 2
X1
n¼1

N1 � N0

f ðUb þ ynÞ
Zn sin

znx

L

� �
eynt�aðL�xÞ

ðA13Þ

This expression calculates the transient profile of the
groundwater table, responding to a constant recharge rate
N1, with initial condition the steady state water table profile
obtained with recharge N0.

A3. Response of the Groundwater Table to N2

[70] At the onset of a new recharge rate N2 (t = T1), the
groundwater profile is given by equation (A13) evaluated at
t = T1. Again, the extended Boussinesq equation is solved
through Laplace transformation. The resulting ODE is

Kf Ub
d2F

dx2
þ f UbðU � KbÞ dF

dx
� f UbðUb þ yÞF

¼ �Ub
N2

y
� N1 þ N1

ð�2aþ bÞebx
2ðb � aÞebL

þ N1

2ðb � aÞebL � ð�2aþ bÞ
2ðb � aÞebL eð2a�bÞx

� 2f Ub
X1
n¼1

N1 � N0

f ðUb þ ynÞ
Zn sin

znx

L

� �
eynT1�aðL�xÞ ðA14Þ

The expression for F in the Laplace domain is

F ¼ UbN2 þ N1y

yfUbðUb þ yÞ þ N1

ð2a� bÞ
2yfUbðb � aÞebL e

bx � N1

2ðb � aÞebL þ ð2a� bÞ
2yfUbðb � aÞebL eð2a�bÞx

þ 2
X1
n¼1

N1 � N0

f ðUb þ ynÞ
Zn

sin
znx

L

� �
eynT1�aðL�xÞ

y� yn
þ N2 � N1

f ðUb þ yÞy

�
ðb � a� bÞeaðLþxÞþbðx�LÞ � ðb � aþ bÞeaðLþxÞþbðL�xÞ � 2eaxð�2aþ bÞ sinhðbxÞ
� �

2eaLððb � aÞ sinhðbLÞ þ b coshðbLÞÞ ðA15Þ

which finally yields the following groundwater profile:

h2ðx; tÞ ¼ h0ðx;N2Þ þ 2
X1
n¼1

ðN1 � N0ÞeynT1 þ ðN2 � N1Þ
f ðUb þ ynÞ

� Zn sin
znx

L

� �
eynt�aðL�xÞ ðA16Þ

A4. Response of the Groundwater Table to Nm

[71] In general, it can easily be proven that the solution to
the extended Boussinesq equation for a temporally varying
recharge rate can be written as

hðx; tÞ ¼ h0ðx;NmÞ þ 2
X1
n¼1

"
Xm
i¼1
ðNi � Ni�1Þe

yn

Xm�1
j¼i

Tj

#

� Zn

f ðUb þ ynÞ
sin

znx

L

� �
eynt�aðL�xÞ ðA17Þ

where T0 = 0. The first term in this equation represents the
steady state condition, while the second term represents the
transient condition. We define T i as follows:

T i ¼
Xm�1
j¼i

Tj ðA18Þ

The summation equals zero when m � 1 is lower than one.

A5. Calculation of the Groundwater Outflow

[72] The linearized Darcy equation (equation (7)) repre-
sents the relationship between the discharge and the height
of the water table. Application of equation (7) yields the
groundwater flux per unit width. Multiplication by �2W0

(the minus sign is to render base flow values positive, and
2W0 accounts for the length of the drainage network with
drainage from both banks) and setting x equal to zero leads
to the base flow rate of the catchment:

QbðtÞ ¼ANm þ ðNm � Nm�1Þ
X1
n¼1

4W0KZn

Ub þ yn

zn

L
eynt�aL

" #

þ
Xm�1
i¼1
ðNi � Ni�1Þ

X1
n¼1

4W0KZn

Ub þ yn

zn

L
eynðtþT iÞ�aL

" #
ðA19Þ

ðA12Þ
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