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Abstract We present improved lower bounds on the sizes of small maximal partial
ovoids in the classical hermitian polar spaces, and improved upper bounds on the sizes
of large maximal partial spreads in the classical hermitian polar spaces. Of particular
importance is the presented upper bound on the size of a maximal partial spread of
H(3, q2). For q = 2, 3, the presented upper bound is sharp. For q = 3, our results con-
firm via theoretical arguments properties, deduced by computer searches performed
by Ebert and Hirschfeld, for the largest partial spreads of H(3, 9). An overview of the
status regarding these results is given in two summarizing tables. The similar results for
the classical symplectic and orthogonal polar spaces are presented in De Beule et al. [8].
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1 Introduction

This article is the second of two articles discussing partial ovoids and partial spreads in
finite classical polar spaces. Here, we discuss the hermitian polar spaces. In De Beule
et al. [8], we discussed the symplectic and orthogonal polar spaces.
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The classical finite polar spaces are the non-singular symplectic polar spaces W(2n+
1, q), the non-singular parabolic quadrics Q(2n, q), n ≥ 2, the non-singular elliptic and
hyperbolic quadrics Q−(2n+1, q), n ≥ 2, and Q+(2n+1, q), n ≥ 1, and the non-singu-
lar hermitian varieties H(d, q2), d ≥ 3. For q even, the parabolic polar spaces Q(2n, q)

are isomorphic to the symplectic polar spaces W(2n − 1, q).
The generators of a classical polar space are the subspaces of maximal dimension

contained in these polar spaces. If the generators are of dimension r − 1, then the
polar space is said to be of rank r.

The polar spaces of rank r = 2 coincide with the generalized quadrangles.
The finite classical generalized quadrangles are the non-singular parabolic quad-

ric Q(4, q), the non-singular elliptic quadric Q−(5, q), the non-singular hyperbolic
quadric Q+(3, q), the non-singular hermitian varieties H(3, q2) and H(4, q2), and the
symplectic generalized quadrangle W(3, q) in PG(3, q). The generalized quadrangles
Q(4, q) and W(3, q) are dual to each other. The generalized quadrangles Q(4, q) and
W(3, q) are self-dual if and only if q is even. Finally, H(3, q2) and Q−(5, q) also are
dual to each other.

An ovoid of a classical polar space P is a set O of points of P such that every
generator contains exactly one point of O. A partial ovoid of a classical polar space P
is a set O of points of P such that every generator contains at most one point of O. A
spread of a classical polar space P is a set S of generators of P partitioning the point
set of P . A partial spread of a classical polar space P is a set S of pairwise disjoint
generators of P . A partial ovoid or partial spread is called maximal when it is not
contained in a larger partial ovoid or partial spread of the same polar space.

Let X := |P|/|�|, where � is a generator of P . Then X is the size of an ovoid or
spread in P , in case P effectively contains an ovoid or spread. Assume that O is a
partial spread or partial ovoid of P , then X − |O| is called the deficiency of O.

The first natural problem regarding ovoids and spreads in finite classical polar
spaces is that of the existence of these ovoids and spreads [12,18,19].

Then research was focused on the size of the largest partial ovoids and spreads of
finite classical polar spaces that do not have ovoids or spreads, and to the problem of
the extendability of partial ovoids and partial spreads to ovoids and spreads when the
finite classical polar spaces have ovoids and spreads [11,18].

Recently, attention was also paid to the problem of the cardinality of the smallest
maximal partial ovoids and the smallest maximal partial spreads in finite classical
generalized quadrangles and polar spaces [1,2,6,7,10,15,16]. In particular, [13,16]
addressed these problems for the classical generalized quadrangles.

We now present a large number of results on the smallest maximal partial ovoids,
and on large maximal partial spreads, for the finite classical hermitian polar spaces.
For the analogous results for the classical orthogonal and symplectic polar spaces, we
refer to [8]. We conclude the article with two tables presenting the present status on
these problems.

2 Small maximal partial ovoids

When working in a hermitian polar space H(d, q2), we denote by ⊥ the related polar-
ity of the ambient projective space PG(d, q2). Two subspaces π , τ with τ ⊆ π⊥ are
called perpendicular.
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We now focus on small maximal partial ovoids of hermitian polar spaces. The
following results on the polar spaces H(3, q2) and H(4, q2) are known.

Result 2.1

(a) [2] If q is even, then a maximal partial ovoid of H(3, q2) has size at least q2 + 1,
and examples of that size exist.

(b) [15] If q is even, then there are no maximal partial ovoids of H(3, q2) having size
in the interval [q2 + 2, q2 + 1 + 4q/9].

(c) [15] A maximal partial ovoid of H(3, q2), q odd, has size at least q2 + 1 + 4q/9.
(d) [16] A maximal partial ovoid of H(4, q2) has size at least q2 + q + 2.

We now focus on small maximal partial ovoids of H(2n, q2), n ≥ 3, and of H(2n +
1, q2), n ≥ 2. These are the hermitian polar spaces of rank at least three.

We first discuss H(2n, q2), n ≥ 3, and show that maximal partial ovoids of H(2n, q2),
n ≥ 3, contain at least q2 + q + 1 points.

Theorem 2.2 A maximal partial ovoid of H(2n, q2), n ≥ 3, contains at least q2 + q + 1
points.

Proof Assume that O is a maximal partial ovoid of H(2n, q2), n ≥ 3, of size at most
q2 + q.

Let π be a free generator with respect to O, that is a generator missing O. Then the
tangent hyperplane P⊥ to a point P of O intersects π in a hyperplane of π . Since O is
a maximal partial ovoid of H(2n, q2), the hyperplanes P⊥ ∩ π , P ∈ O, cover all points
of π ; in other words, they form a dual blocking set of π , see [5].

The smallest dual blocking set of π consists of the q2 +1 hyperplanes of π through a
fixed (n − 3)-dimensional space of π [4]. The theory of blocking sets learns us that the
smallest dual blocking set of π not containing all hyperplanes of π through a common
(n − 3)-dimensional space is a dual Baer subplane of size q2 + q + 1, see [5].

So, since |O| ≤ q2 +q, there is an (n−3)-dimensional space π ′
1 of π lying in a pencil

of q2 + 1 hyperplane intersections P⊥ ∩ π , P ∈ O.
Consider the polar space π ′⊥

1 of π ′
1 with respect to H(2n, q2). This intersects

H(2n, q2) in a cone with vertex π ′
1 and base a four-dimensional hermitian variety

H(4, q2). The points of π ′⊥
1 ∩O are projected from π ′

1 onto a partial ovoid O′ of H(4, q2).
Since a maximal partial ovoid of H(4, q2) has at least q2 + q + 2 points (Result

2.1 (d)), O′ is not maximal. So there exists a point R in H(4, q2) extending the partial
ovoid O′. Then the points of 〈π ′

1, R〉 \ π ′
1 are not collinear with a point of π ′⊥

1 ∩ O.
Since O is a maximal partial ovoid, they all must be collinear with one of the, at most
q − 1, points of O \ π ′⊥

1 .
Let S ∈ O \ π ′⊥

1 , then S⊥ intersects π ′
1 in a hyperplane of π ′

1. So for such a point
S, S⊥ intersects 〈π ′

1, R〉 in a hyperplane. These, at most q − 1, hyperplanes in 〈π ′
1, R〉

must cover all the points in 〈π ′
1, R〉 \ π ′

1. This is impossible. 
�
Theorem 2.3 A maximal partial ovoid of H(2n+1, q2), n ≥ 2, contains at least q2+q+1
points.

Proof Assume that O is a maximal partial ovoid of H(2n + 1, q2), n ≥ 2, of size at
most q2 + q. We repeat the beginning of the proof of the preceding theorem. Every
free generator π contains an (n − 2)-dimensional space π ′

1 lying in a pencil of q2 + 1
hyperplanes P⊥ ∩ π , P ∈ O, which cover all the points of π .
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The polar space π ′⊥
1 of π ′

1 with respect to H(2n + 1, q2) intersects H(2n + 1, q2) in a
cone with vertex π ′

1 and base a hermitian variety H(3, q2). Since H(3, q2), q even, has
partial ovoids of size q2 + 1 (Result 2.1(b)), and only the lower bound q2 + 1 + 4q/9
is known on the size of maximal partial ovoids of H(3, q2), q odd, (Result 2.1(c)), a
different approach has to be used than in the proof of the preceding theorem.

Consider the points of O \ π ′⊥
1 . There are at most q − 1 such points S. The tangent

hyperplane to S ∈ O \ π ′⊥
1 intersects π ′

1 in a hyperplane of π ′
1. These, at most q − 1,

hyperplanes cannot cover all the points of π ′
1. Let P be a point of π ′

1 not collinear with
a point of O \ π ′⊥

1 , then P⊥ ∩ O = π ′⊥
1 ∩ O. Project P⊥ ∩ O from P onto its quotient

geometry H(2n − 1, q2). This gives a new partial ovoid O′ of H(2n − 1, q2).
Suppose that O′ is not a maximal partial ovoid of H(2n − 1, q2). Then there is a

point R of H(2n − 1, q2) extending O′ to a larger partial ovoid. Hence, no point of the
set PR \ {P} is collinear with a point of O ∩ π ′⊥

1 . The polar hyperplane of a point of
O \ π ′⊥

1 covers only one point of PR \ {P}. So at least q2 − q + 1 points of PR \ {P}
are not collinear with a point of the maximal partial ovoid O. This is a contradiction.

So, O′ indeed is a maximal partial ovoid of H(2n − 1, q2). Proceeding in this way, a
maximal partial ovoid O′′ of H(5, q2) of size at most q2 + q is obtained.

Consider this maximal partial ovoid O′′ of H(5, q2) of size at most q2 +q. The proof
of the preceding theorem shows that every free generator π to O′′ contains a point P
lying on q2 + 1 lines S⊥ ∩ π , S ∈ O′′, covering all the points of π . As |O′′| ≤ q2 + q,
the point P is uniquely determined by π . We call a point P ∈ H(5, q2) \ O a special
point, if it is perpendicular to at least q2 + 1 points of O. Then every free plane has a
unique special point. A special point P lies on (q + 1)(q3 + 1) planes of H(5, q2) but at
least |P⊥ ∩ O|(q + 1) ≥ (q2 + 1)(q + 1) contain a point of O. Thus the number of free
planes on a special point is at most (q3 − q2)(q + 1). The total number of free planes
is (q5 + 1 − |O|)(q + 1)(q3 + 1). Hence the number of special points is at least

(q5 − q2 − q + 1)(q + 1)(q3 + 1)

(q3 − q2)(q + 1)
> q5 + q4 + q3 + q2.

As partial ovoids of H(5, q2) have less than q5 + 1 points (that is the size of an ovoid),
it follows that we find two special points P and Q that are perpendicular. As the line
PQ lies on q + 1 planes of H(5, q2), at most q + 1 points of O are perpendicular to P
and Q. As P and Q are special, it follows that |O| ≥ 2(q2 + 1) − (q + 1) = 2q2 − q + 1.
But |O| ≤ q2 + q, a contradiction. 
�

3 Large partial ovoids

It is known that every partial ovoid of H(3, q2) with more than q3 + 1 − q points
can be extended to an ovoid. We will develop an analogous result for H(5, q2). It is
known that H(4, q2) has no ovoids [17]. An upper bound on the size of partial ovoids
in H(4, q2) is known [11]. We will improve on this result. We first mention two results.

Result 3.1

(a) Every partial ovoid of H(3, q2) of size larger than q3 − q + 1 is extendable in a
unique way to an ovoid of H(3, q2).

(b) A partial ovoid of H(4, q2) has size smaller than q5 − (4q − 1)/3.
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Proof

(a) This was proven by Klein and Metsch in the dual setting of Q−(5, q) [13]. They
proved that a partial spread of Q−(5, q) of size larger than q3−q+1 is extendable
to a spread of Q−(5, q).
The uniqueness of this extension to a spread follows from the fact that S is
extended by less than q + 1 lines to a spread.

(b) See [11]. 
�
Our next theorem improves Result 3.1(b). We mention that no large partial ovoids

of H(4, q2) are known to us. The largest example we know about exists in characteristic
three, so for q = 3h, and has size q4 + 1 (Mazzocca et al. [14]).

Theorem 3.2 A partial ovoid of H(4, q2) has at most q5 − q4 + q3 + 1 points.

Proof Let O be a partial ovoid of H(4, q2) with s = q5 + 1 − δ ≥ 2 points. Then
there are δ(q3 +1) free generators, that is generators missing O. We count the number
of ordered triples (P1, P2, g), where P1 and P2 are different points of O and g is
a free generator, such that P1 and P2 are in H(4, q2) collinear with the same point of g.

For a free generator g, every point of O has a unique neighbour on g. So on the
average, a point of g has A := s/(q2 + 1) neighbours in O. It follows that the number
of ordered pairs (P1, P2) of different points of O with the same neighbour on g is at
least A(A − 1)(q2 + 1) = s(A − 1).

Thus, the total number of ordered triples is at least δ(q3 + 1)s(A − 1). It follows
that there exist two different points P1, P2 ∈ O that occur in at least

δ(q3 + 1)s(A − 1)

s(s − 1)
= δ(q3 + 1)(A − 1)

s − 1

of these triples. Let l be the line on P1 and P2 of PG(4, q2). Then π := l⊥ is a plane
meeting H(4, q2) in a hermitian curve H(2, q2). No point of O lies in π . Denote by k
the number of points of O on l.

Next count the number of pairs (X, Y), with X in H(2, q2) = H(4, q2) ∩ π and Y
a point of O but not on l. By first choosing X, we see that the number of pairs is
the number of non-free generators that meet π , but not l ∩ O. The number of
generators meeting π is (q3+1)(q3+1). Exactly (q3+1)k of these generators meet O∩l.
The choice of P1 and P2 yields that at least δ(q3 + 1)(A − 1)/(s − 1) of these generators
are free generators. Thus, the number of pairs (X, Y) we are counting is at most

(q3 + 1)2 − (q3 + 1)k − δ(q3 + 1)(A − 1)

s − 1
.

Now we find a lower bound. For a point Y ∈ O \ l, the line Y⊥ ∩ π is either a tangent
line of H(2, q2) = π ∩ H(4, q2) or a secant line of H(4, q2). So such a point Y yields
either one or q + 1 pairs (X, Y).

The first case occurs if and only if Y lies on a generator that meets l and π . There
are (q3 +1)(q+1) such generators but (q3 +1)k of these meet O in a point on l. So the
first case can occur at most (q3 + 1)(q + 1 − k) times. It follows that the total number
of pairs is at least

(q3 + 1)(q + 1 − k) · 1 + (s − k − (q3 + 1)(q + 1 − k))(q + 1)

= (s − k)(q + 1) − (q3 + 1)(q + 1 − k)q.
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Comparing the two bounds, we find

(s − k)(q + 1) − (q3 + 1)(q + 1 − k)q

≤ (q3 + 1)2 − (q3 + 1)k − δ(q3 + 1)(A − 1)

s − 1
.

As k ≥ 2, this remains true when k is replaced by two. Doing this and replacing
A = s/(q2 + 1) and s = q5 + 1 − δ gives

q(q + 1)(δ − q4 + q3)(q5 + q3 − δ)

(q2 + 1)(q5 − δ)
≥ 0.

Hence δ ≥ q4 − q3. 
�

Theorem 3.3 Every partial ovoid of H(5, q2) with q5 +1− δ points and δ ≤ (q2 − 1
4 q+

1)/
√

2 is a subset of an ovoid.

Proof Let O be a maximal partial ovoid with q5 + 1 − δ points and δ > 0. We shall
show that δ > 1√

2
(q2 − 1

4 q + 1).

We call a point P ∈ H(5, q2) \ O big when |P⊥ ∩ O| > q3 + 1 − q; otherwise it is
called small. We call a plane of H(5, q2) free, if it misses O. A totally isotropic line will
be called free, if all totally isotropic planes on it are free planes.

We first show that |P⊥ ∩ O| ≥ q3 + 1 − δ for every point P ∈ H(5, q2) \ O. For this,
we use that the maximality of O implies that P lies on a line l of H(5, q2) meeting O in
a point Q. Then every point of O \ {Q} is connected to exactly one point of l \ {Q} by a
line of H(5, q2). As each point of l lies on at most q3 +1 lines meeting the partial ovoid
O (because in the quotient geometry of such a point P we see a hermitian variety
H(3, q2) and partial ovoids of a hermitian variety H(3, q2) have at most q3 +1 points),
it follows that P is connected to at least |O| − (q2 − 1)q3 = q3 + 1 − δ points of O by
a line of H(5, q2).

For the rest of the proof, consider a free plane π . We show for each point P of π that
the number of free planes on P that meet π in a line is at most q + δ − 1. Each point
of P⊥ ∩ O lies in a unique totally isotropic plane that meets π in a line, and this line
contains P. Since the number of totally isotropic planes on P that meet π in a line is
(q2+1)q, it follows that at most (q2+1)q−(q3+1−δ) = q−1+δ of these are free planes.

We use the following notations:

• fp is the number of free planes that meet π in a line.
• b is the number of big points of π .
• s is the number of small points of π .
• fl is the number of free lines in π .
• z is the smallest number of small points on a free line of π .

A point is perpendicular to at most q3 + 1 points of O with equality if and only if
every generator on P meets O. Thus, the points of the free plane π are perpendicular
to at most q3 points of O, since they lie in a free plane; also the s small points of π are
perpendicular to at most q3 − q + 1 points of O. As each point of O is perpendicular
to q2 + 1 points of π , we conclude that

|O|(q2 + 1) ≤ bq3 + s(q3 + 1 − q) = (q4 + q2 + 1)(q3 + 1 − q) + b(q − 1)
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and this gives

q5 − q4 + q − δ(q2 + 1)

q − 1
≤ b. (1)

Consider a big point P of π . In the quotient geometry of P, we see a hermitian
variety H(3, q2). Also P⊥ ∩ O gives rise to a partial ovoid of this H(3, q2). As
q3 − q + 1 < |P⊥ ∩ O| < q3 + 1, this partial ovoid can be extended uniquely to
an ovoid, see Result 3.1(a). As π is a free plane on P, it follows that a unique line of
π on P has the property that every totally isotropic plane on that line is missing O.
This shows that the free lines of π cover every big point of π exactly once. As a free
line of π has at most q2 + 1 − z big points, we conclude that

b ≤ fl(q
2 + 1 − z). (2)

As each point of O is perpendicular to exactly one line of π , then exactly |O| of the
planes that meet π in a line are not free. Hence, the number of free planes that meet
π in a line is

fp = (q4 + q2 + 1)q − |O| = q3 + q − 1 + δ. (3)

As every free line of π lies in q of these free planes, we have

flq ≤ fp. (4)

We have seen above that every point of π lies on at most q − 1 + δ free planes that
meet π in a line. This implies that every point of π can lie on at most (q − 1 + δ)/q
free lines of π . Also, as we have seen above, a big point of π lies on a unique free line.
Consider a free line l of π containing exactly z small points. Then each of the fl − 1
other free lines contains one of these z small points and hence

fl − 1 ≤ z
(

q − 1 + δ

q
− 1

)
⇒ fl ≤ q + z(δ − 1)

q
. (5)

Comparing the lower bound (2) for fl with the upper bound (4), using (3), gives

b
q2 + 1 − z

≤ q3 + q − 1 + δ

q
.

This gives

z ≤ z0 := q2 + 1 − bq
q3 + q − 1 + δ

. (6)

Comparing the lower bound (2) for fl with the upper bound (5) gives

bq ≤ (q2 + 1 − z)(q + z(δ − 1)). (7)

We conclude that δ �= 1, since otherwise b ≤ q2 +1−z contradicting (1). Hence δ ≥ 2.

Case 1 Here we consider the case when q ≥ 5. We may assume that δ ≤ q2. Then
(1) and (6) imply that z0 ≤ 1

2 (q2 + 1 − q). Since δ ≥ 2, the right-hand side of (7),
considered as a function of z, is monotone increasing for z ≤ 1

2 (q2 + 1 − q). Thus (7)
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remains true, if we replace z by z0. We do this and estimate b in the formula of z0
using (1). This results in

0 ≤ (q5 − q4 + q − δq2 − δ)q2

(q − 1)2 (q3 + q − 1 + δ)2

· (qδ − δ − 3δq2 + 2δ2q2 − qδ2 + δ2 + q5 − q4 + q3 + q2 − q6).

Hence f (δ) ≥ 0 where

f (x) = qx − x − 3xq2 + 2x2q2 − qx2 + x2 + q5 − q4 + q3 + q2 − q6.

The left-hand side is a polynomial of degree two in x with positive leading coefficient.
As f (0) < 0 and f ((q2 − 1

4 q + 1)/
√

2) < 0, it follows that δ > (q2 − 1
4 q + 1)/

√
2.

Case 2 Here we consider the case when q ∈ {2, 3, 4}. Each case can be easily done by
hand. We demonstrate the case q = 2 and leave q ∈ {3, 4} to the reader. For q = 2,
we have to prove that δ ≥ 3. As we already know that δ ≥ 2, we just have to exclude
δ = 2. Assume that δ = 2. Then (1), (6) and (7) read as follows

8 ≤ b, z ≤ 5 − 2b
11

, 2b ≤ (5 − z)(2 + z).

Hence, 16 ≤ (5 − z)(2 + z) for some z ≤ 3. This is clearly impossible. 
�
The bounds on H(4, q2) and H(5, q2) imply bounds on partial ovoids of H(d, q2) for
d ≥ 6, at least in the case when d is even. For odd d, the situation is more complicated
as we explain below.

Lemma 3.4 Denote by o(H(d, q2)) the largest cardinality of a partial ovoid of H(d, q2).
Then for d ≥ 5,

o(H(d, q2)) ≤ q2 · o(H(d − 2, q2)) − q2 + 1.

Proof Consider a line l of H(d, q2) meeting O in a point P. Then every point of O\{P}
is perpendicular to a unique point of l \ {P}. As the points of O perpendicular to the
point X ∈ l \ {P} form a partial ovoid in the hermitian polar space H(d − 2, q2) seen
in the quotient geometry at X, the result follows. 
�

It is not known whether H(5, q2) has an ovoid. If ever it can be proven that ovoids
do not exist, then the preceding lemma in conjunction with Theorem 3.3 gives an
upper bound on the size of a maximal partial ovoid of H(2n + 1, q2), n ≥ 2.

By Theorem 3.2, a partial ovoid of H(4, q2) has at most q5 − q4 + q3 + 1 points.
Applying Lemma 3.4 thus shows that a partial ovoid of H(2n, q2), n ≥ 2, has at most
q2n+1 + 1 − q2(n−2)(q4 − q3) points. However, the following lemma gives a better
recursive bound than Lemma 3.4.

Lemma 3.5

|H(2n − 2, q2)| · (o(H(2n − 2, q2)) − 2)

≥ (o(H(2n, q2)) − 2)|H(2n − 3, q2)| − (q − 1) · o(H(2n − 2, q2)) · q2n−3.

Proof Suppose that O is a partial ovoid of H(2n, q2) of size o(H(2n, q2)). Consider a
secant line l of H(2n, q2) meeting O in k ≥ 2 points, and put π = l⊥.
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We count the number of pairs (X, Y), with X in H(2n − 2, q2) = H(2n, q2) ∩ π

and Y a point of O but not on l. By first choosing X, we find the upper bound
|H(2n − 2, q2)| · (o(H(2n − 2, q2)) − k), since each of the points of H(2n − 2, q2) is
perpendicular to at most o(H(2n − 2, q2)) points of O.

Now we first choose Y. If Y is not perpendicular to one of the points of l∩H(2n, q2),
then 〈l, Y〉 meets H(2n, q2) in a hermitian curve and thus Y⊥ ∩ π meets H(2n, q2) in
a hermitian polar space H(2n − 3, q2). If Y is perpendicular to one of the points of
l ∩ H(2n, q2) (this must be one of the q + 1 − k points of l ∩ H(2n, q2) not in O), then
Y⊥ ∩ π meets H(2n, q2) in a cone with a point vertex over a H(2n − 4, q2) as base. In
the first case, Y occurs in |H(2n − 3, q2)| pairs (X, Y) but in the second case it occurs
only in 1 + q2|H(2n − 4, q2)| such pairs; this is q2n−3 less than in the first case. The
second case can occur for at most (q + 1 − k)o(H(2n − 2, q2)) points Y, since each
of the q + 1 − k points of l ∩ H(2n, q2) that are not in O is perpendicular to at most
o(H(2n − 2, q2)) points of O. Thus we find

(o(H(2n, q2)) − k)|H(2n − 3, q2)| − (q + 1 − k) · o(H(2n − 2, q2)) · q2n−3

as a lower bound on the number of pairs. Comparing the upper and lower bound,
we find an inequality, which gets stronger for large k. For the smallest possible value
k = 2, we find the statement. 
�

Applying this with n = 3 using that partial ovoids of H(4, q2) have at most q5+1−d2
points with d2 = q4 −q3, we find that partial ovoids of H(6, q2) have at most q7 +1−d3
points with d3 = q6 − q5 + q3 − 1 points. For n ≥ 4, we find recursively upper bounds
q2n+1 + 1 − dn for partial ovoids of H(2n + 1, q2) with dn = q2dn−1 + q3; we omit the
technical calculations. This leads to the following corollary.

Corollary 3.6 A partial ovoid of the hermitian polar space H(2n, q2), n ≥ 3, has at most

q2n+1 + 1 − q2(n−3)(q6 − q5 − 1) − q3 · q2(n−2) − 1
q2 − 1

points.

4 Partial spreads

In ref. [18], Thas proved the upper bound q2n+1 − qn+1 + qn + 1 for partial spreads of
H(2n + 1, q2), n ≥ 1 odd. In this section, we first improve this result and then prove
a similar result for H(2n + 1, q2), n ≥ 2 even. To our knowledge, a better bound is
known only for H(5, q2), see [7], where the exact upper bound q3 + 1 was found by
De Beule and Metsch for the size of partial spreads of H(5, q2). A main ingredient
for our argument is the following beautiful property of hermitian spaces proven by
Thas [18].

Result 4.1 Let π1, π2 and π be mutually skew generators of H(2n + 1, q2). Then the
points of π that lie on a line of H(2n+1, q2) meeting π1 and π2 form a hermitian variety
H(n, q2) in π .

Theorem 4.2 Let S be a partial spread of H(2n + 1, q2).
(a) If n = 1, then |S| ≤ 1

2 (q3 + q + 2).
(b) If n ≥ 3 is odd, then |S| ≤ q2n+1 − q(3n+4)/2 + q(3n+3)/2.
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Proof For i ∈ N, put Ti := (q2i+2 − 1)/(q2 − 1). Suppose that S is a partial spread of
H(2n + 1, q2) and put |S| = q2n+1 + 1 − δ. Then the number of points of H(2n + 1, q2)

that are not covered by generators of S is h := δTn. We call these points the holes.
Consider the triples (S1, S2, P), where S1 and S2 are different elements of S and P is

a hole. We shall estimate how many of these triples have the property that the unique
line of PG(2n + 1, q2) on P that meets S1 and S2 (that is, the line 〈P, S1〉 ∩ 〈P, S2〉)
belongs to H(2n + 1, q2).

To do so, we consider a hole P. Then P lies on |H(2n − 1, q2)| lines of H(2n + 1, q2).
The number of points on these lines that are covered by an element of S is |S|Tn−1.
If xi, i = 1, . . . , |H(2n − 1, q2)|, is the number of points on the ith line on P that are
covered by an element of S, then we have

∑
xi = |S|Tn−1 and hence

∑
xi(xi − 1) ≥ |S|Tn−1

|H(2n − 1, q2)|
( |S|Tn−1

|H(2n − 1, q2)| − 1
)

|H(2n − 1, q2)|

= |S|Tn−1

( |S|Tn−1

|H(2n − 1, q2)| − 1
)

. (8)

Since the number of holes is δTn, we find a lower bound on the number of triples
considered above. Now we choose a pair (S1, S2) of distinct spread elements such
that the number α of considered triples (S1, S2, P) is as large as possible. We find that
α ≥ α0 with α0 defined by

|S|(|S| − 1)α0 = δTn|S|Tn−1

( |S|Tn−1

|H(2n − 1, q2)| − 1
)

= |S|δTnTn−1 · |S| − q2n−1 − 1
q2n−1 + 1

.

Consider all lines of H(2n+1, q2) that meet S1 and S2. There are TnTn−1 such lines.
Thus, the number of points outside of S1 and S2 that lie on a line of H(2n + 1, q2)

meeting S1 and S2 is TnTn−1(q2 − 1). Each S ∈ S \ {S1, S2} contains |H(n, q2)| of these
points by Result 4.1. Also, at least α0 of these points are holes. Hence

(|S| − 2)|H(n, q2)| + α0 ≤ TnTn−1(q
2 − 1).

Hence

(|S| − 1)(|S| − 2)|H(n, q2)| + δTnTn−1
|S| − q2n−1 − 1

q2n−1 + 1
≤ TnTn−1(q

2 − 1)(|S| − 1).

As n is odd, we have |H(n, q2)| = (qn + 1)(qn+1 − 1)/(q2 − 1) and thus we find

(|S| − 1)(|S| − 2) + δ
(qn − 1)(qn+1 + 1)

q2 − 1
· |S| − q2n−1 − 1

q2n−1 + 1

≤ (qn − 1)(qn+1 + 1)(|S| − 1).

Replace |S| − 2 by q2n+1 − 1 − δ to find

(|S| − 1)(qn+1 − qn − δ) + δ
(qn − 1)(qn+1 + 1)

q2 − 1
· |S| − q2n−1 − 1

q2n−1 + 1
≤ 0.

For n = 1, we multiply this by (q + 1)2 and find after simplification

(q3 − 2δ − q)(q3 + q2 − δ)q ≤ 0.
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Hence for n = 1, we have δ ≥ 1
2 (q3 − q), that is |S| ≤ 1

2 (q3 + q + 2). For odd n ≥ 3,
we multiply by (q2 − 1)(q2n−1 + 1)/q2 and find

δ2(qn−2 − 1)(qn−1 + 1) + δ(q2 − 1)qn−2(qn − qn−1 + 1)(2qn + q − 1)

≥ q3n−1(q − 1)(q2 − 1)(q2n−1 + 1).

It can be verified that this implies that δ ≥ q(3n+4)/2 − q(3n+3)/2 + 1. 
�
Remark 4.3 The argument gives a slightly better bound for δ but to avoid presenting
a complicated lower bound on δ, we opted for this more elegant bound on δ.

Remark 4.4 An interesting feature of the upper bound (q3 + q + 2)/2 on the size of
partial spreads of H(3, q2) is that this bound is sharp for q = 2 and q = 3. For q = 2,
Dye [9] constructed a maximal partial spread of size 6 on H(3, 4) by constructing a
maximal partial ovoid of size 6 on Q−(5, q).

For q = 3, Ebert and Hirschfeld [10] proved by an exhaustive computer search
that a maximal partial spread on H(3, 9) has size at most 16. Their computer search
showed many properties of this maximal partial spread S of size 16. It is linked to the
Kummer surface. Every line of H(3, 9) not in S intersects either four or ten lines in
S. There are 16 lines not in S intersected by ten lines in S; these latter 16 lines form
themselves a maximal partial spread of size 16 of H(3, 9).

These properties which arose from the computer search can be proven theoreti-
cally by our arguments. We do this for general q. Suppose that S is a partial spread of
H(3, q2) of size 1

2 (q3 +q+2). Then there is equality in all the calculations of the proof
of Theorem 4.2. In particular, there is equality in (8), so xi = |S|/(q+1) = 1

2 (q2−q+2),
i = 1, . . . , q+1. We conclude that if a line contains a hole, then it intersects 1

2 (q2−q+2)

lines of S.
Consider a point P on a line l of S. Then P lies on q further lines of H(3, q2). If such

a line contains a hole, then it meets 1
2 (q2 − q) further lines of S. Otherwise it meets q2

further lines of S. As |S| − 1 = 1
2 (q3 + q), it readily follows that exactly one of the q

lines on P does not contain a hole. Hence, if S ′ denotes the set of all lines of H(3, q2)

which do not lie in S and which do not contain a hole, the lines of S ′ are mutually
skew and cover the same points as the lines of S. Hence |S ′| = |S| = 1

2 (q3 + q + 2). In
other words, S ′ is a second partial spread with the same number of lines and covering
the same points as S. Also S ∩ S ′ = ∅.

Consider two different lines l1, l2 ∈ S. Then H(3, q2) has q2 + 1 lines hi, i =
1, . . . , q2 + 1, meeting l1 and l2 and these lines are mutually skew. If a line hi lies in S ′,
then it meets q2 + 1 lines of S, and otherwise it meets 1

2 (q2 − q + 2) lines of S. On the
other hand, Result 4.1 says that every line l3 ∈ S \ {l1, l2} meets exactly q + 1 of the
lines hi. Hence, if λ is the number of lines hi that belong to S ′, then

2(q2 + 1) + (|S| − 2)(q + 1) = λ(q2 + 1) + (q2 + 1 − λ) · 1
2
(q2 − q + 2).

Hence, λ = 2q. Clearly, every line of one of the partial spreads S and S ′ meets
precisely q2 + 1 lines of the other partial spread. Thus, the incidence structure whose
points are the lines of S and whose blocks are the lines of S ′ and incidence defined as
having non-trivial intersection, is a symmetric 2-(v, k, λ) design with v = 1

2 (q3 + q + 2)

points, block size k = q2 + 1, and λ = 2q.



Des Codes Crypt

Corollary 4.5 If H(3, q2) possesses a partial spread of size 1
2 (q3+q+2), then there exists

a symmetric 2-(v, k, λ) design with parameters v = 1
2 (q3 +q+2), k = q2 +1 and λ = 2q.

Notice that k −λ = (q − 1)2 is a perfect square, so no non-existence results on designs
show that such a design might not exist. We mention also that there exist designs for
q = 5 and q = 7 with these parameters!

The following result proves a similar bound for even n. We recall that for n = 2
much more is known. It was shown in [7] that a partial spread of H(5, q2) has at most
q3 + 1 planes, and this upper bound is sharp.

Theorem 4.6 Let S be a partial spread of H(2n + 1, q2). If n ≥ 4 is even, then
|S| = q2n+1 + 1 − δ with

δ > −qn(q − 1) +
√

q3n+1(q − 1) + q2n(q − 1)2.

Proof For i ∈ N, put Ti := (q2i+2 − 1)/(q2 − 1). Suppose that S is a partial spread of
H(2n + 1, q2) and put |S| = q2n+1 + 1 − δ. Then the number of points of H(2n + 1, q2)

that are not covered by generators of S is h := δTn. We call these points the holes.
Consider the triples (S1, S2, P), where S1 and S2 are different elements of S and

P is a hole. We again estimate how many of these triples have the property that the
unique line of PG(2n + 1, q2) on P that meets S1 and S2 belongs to H(2n + 1, q2).

Consider all lines of H(2n + 1, q2) that meet S1 and S2. There are TnTn−1 such
lines. Thus the number of points outside of S1 and S2 that lie on a line of H(2n + 1, q2)

meeting S1 and S2 is TnTn−1(q2 − 1). Each S ∈ S \ {S1, S2} contains |H(n, q2)| of these
points by Result 4.1. Hence, if h0 is the number of holes on these lines, then

(|S| − 2)|H(n, q2)| + h0 = TnTn−1(q
2 − 1). (9)

In other words: for any two different elements S1 and S2 of S, there exist exactly
h0 holes which lie on a line of H(2n + 1, q2) meeting S1 and S2.

Now fix an element S1 ∈ S. We have seen that every second spread element S2
gives rise to h0 holes that lie on a line of H(2n + 1, q2) meeting S1 and S2. Clearly
every hole P can occur for at most q2n − 1 different elements S2, because the space
〈P, P⊥ ∩ S1〉 has dimension n. Hence

h(q2n − 1) ≥ h0(|S| − 1).

Replacing h0, using (9), and replacing h by δTn results in

δTnTn−1(q
2 − 1) ≥

[
TnTn−1(q

2 − 1) − (|S| − 2) · |H(n, q2)|
]
(|S| − 1).

This is divisible by |H(n, q2)|. Dividing this term out and using |S| = q2n+1 + 1 − δ,
the resulting expression simplifies to

δ2 + 2δqn(q − 1) − δ ≥ q3n+1(q − 1).

This implies that

δ2 + 2δqn(q − 1) > q3n+1(q − 1).

Solving this quadratic inequality for δ gives the desired bound on δ. 
�
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5 Tables

To present an overview of the current results on small or large maximal partial ovoids
and maximal partial spreads in hermitian polar spaces, we collect the results in two
tables. The similar results for the orthogonal and symplectic polar spaces are presented
in [8].

In Table 1, the results on H(3, q2) are proven in [2,7,15]. The results on H(d, q2),
d ≥ 4, arise from the present paper. We remark that the bounds for H(3, q2), q even,
are sharp. Also the upper bound for H(3, q2), q odd, is sharp.

In Table 2, the lower bounds for H(d, q2), d ≥ 5, have been proven in Theorem
8.1 of [8]. The lower bound for H(3, q2) is proven in [10], and the lower bound for
H(4, q2) in [16]. The upper bound q3 + 1 for H(5, q2) was proven in [7] and this upper
bound is sharp. The upper bound for H(2n, q2), n ≥ 2, is just the size of a spread,
whose existence is still open and one of the main problems in this field. The upper
bounds for H(2n + 1, q2), n ≥ 1, have all been proven in the present paper.

Remark 5.1 Next to the upper bounds on the size of maximal partial ovoids in hermi-
tian polar spaces, presented in Table 1, there are the important bounds of Blokhuis and
Moorhouse [3]. For large values of n, these upper bounds of Blokhuis and Moorhouse
are better than the bounds of Table 1. It is however difficult to make an exact com-
parison between the bounds of Table 1 and those of Blokhuis and Moorhouse. For
this reason, we refer to [3] for the bounds of Blokhuis and Moorhouse.

Table 1 Bounds on maximal partial ovoids

Polar space Lower bounds Upper bounds

H(3, q2), q even q2 + 1 q3 + 1
H(3, q2), q odd q2 + 1 + 4

9 q q3 + 1
H(4, q2) q2 + q + 2 q5 − q4 + q3 + 1

H(2n, q2), n ≥ 3 q2 + q + 1
q2n+1 + 1 − q2(n−3)(q6 − q5 − 1)

−q3 · q2(n−2)−1
q2−1

H(2n + 1, q2), n ≥ 2 q2 + q + 1 q2n+1 + 1

Table 2 Bounds on maximal partial spreads

Polar space Lower bounds Upper bounds

H(3, q2) 2q + 1, for q ≤ 3 1
2 (q3 + q + 2)

2q + 2, for q ≥ 4
H(4, q2) q3 + q

√
q − 1

2 q
− 3

8
√

q + 7
8 q5 + 1

H(5, q2) q + 1 q3 + 1
H(2n, q2), n ≥ 3 q3 + 1 q2n+1 + 1
H(2n + 1, q2), n ≥ 3, n odd q + 1 q2n+1 − q(3n+4)/2 + q(3n+3)/2

H(2n + 1, q2), n ≥ 3, n even q + 1 q2n+1 + 1 + qn(q − 1)

−qn
√

qn+1(q − 1) + (q − 1)2
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