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Skin Effect Modeling Based on a Differential
Surface Admittance Operator
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Abstract—An important issue in high-frequency signal integrity
prediction is the modeling of the skin effect of thick conductors.
A new differential surface admittance concept is put forward al-
lowing to replace the conductor by equivalent electric surface cur-
rents and to replace the material of the conductor by the mate-
rial of the background medium the conductor is embedded in. This
new concept is studied in detail for the two-dimensional TM case
starting from the Dirichlet eigenfunctions of the cross section. De-
tailed expressions are derived for the important practical case of a
rectangular cross section. Next, the differential surface admittance
operator is exploited to determine the resistance and inductance
matrices of a set of multiconductor lines. A first set of numerical re-
sults provides the reader with some insight into the behavior of the
surface admittance matrix. A second set of results demonstrates
the correctness and versatility of the new approach to determine
inductance and resistance matrices.

Index Terms—Inductance matrix, resistance matrix, skin effect,
surface admittance.

I. INTRODUCTION

FOR CLOCK rates in the gigahertz range and for associated
rise times of the order of 100 ps, signal integrity predic-

tions on RF boards, packages, and on-chip interconnects are in-
creasingly dependent on dedicated electronic design automation
(EDA) tools offering the combination of powerful circuit simu-
lators and accurate electromagnetic simulators. For an overview
of recent efforts in the combined use of circuit analysis and
full-wave electromagnetic analysis, we refer the reader to a re-
cent special issue of this TRANSACTIONS [1]. Moreover, the evo-
lution toward smaller chip features and increasing clock rates
continues as the International Technology Roadmap for Semi-
conductors (ITRS)1 predicts that the smallest on-chip features
will shrink from 150 nm in 2003 to 50 nm by 2012, while the
clock rate will increase from 1.5 to 10 GHz.

One very important issue in the representation of the signal
conductors and their coupling is the correct modeling of the
so-called skin effect. When considering the current distribu-
tion in the cross section of a conductor of width , thickness

, and conductivity , one can roughly distinguish be-
tween three frequency ranges. In the low-frequency range, the
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skin depth is much larger than both and . The current dis-
tribution in the conductor is then governed by the solution of
the Laplace equation with zero normal derivative at the outer
conductor surface. For a conductor with invariant cross section,
e.g., in the -direction, this, of course, leads to a uniform cur-
rent distribution with associated per unit length dc resistance

m . Recall that the skin depth for nonmagnetic
conductors is given by with being
the angular frequency. With increasing frequency, inductive ef-
fects come into play, pushing the currents toward the surface
of the conductor and leading to an increase of the resistance
and a decrease of the internal inductance. This is the case when
the skin depth becomes comparable to the (smallest) dimension
of the conductor’s cross section (at intermediate frequencies).
Moreover, when several closely spaced conductors are consid-
ered (possibly in the presence of a ground plane), this current
redistribution in each conductor is also influenced by the nearby
presence of the other conductors. Only for the highest frequen-
cies and provided the skin depth becomes much smaller than
both and , the well-known skin effect occurs. In this case, the
current is flowing in a small surface layer and the behavior of the
conductor is usually described in terms of the surface impedance

[2].
It is clear that accurate electromagnetic modeling tools need

to correctly account for the redistribution of the conductor cur-
rent. This has, of course, been recognized by many authors and
numerous publications address this so-called current crowding
problem, see e.g., [3]–[6]. We would especially like to draw the
attention of the reader to [6]. In that paper, the current crowding
problem is treated in the context of the partial-element equiva-
lent-circuit (PEEC) method and the introduction of that paper
provides a good overview of previous research and of the
physics of the problem. Generally speaking, one has to com-
pletely solve Maxwell’s equations inside the conductor, while
simultaneously taking into account the outside field problem.
To circumvent this coupled problem, planar electromagnetic
solvers use the surface impedance [7] concept to relate the
current at each point of the conductor’s surface to the tangential
electric field at the same point. A typical expression for this
surface impedance is with as
defined above. This surface impedance yields a dc value of

and a high-frequency value of . Acceptable results are
obtained at low and high frequencies if and only if . This
simple model is no longer correct when the aspect ratio of
the conductor is of the order of unity. Especially for on-chip
interconnections, this is precisely the range of aspect ratios we
are most interested in. Moreover, the behavior describing
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the current crowding in going from the low-frequency regime
to the high-frequency regime is rather heuristic.

Similar to the approach in [6], the purpose of this paper is to
provide a surface admittance description of the conductor. At
each frequency, this description associates a fictitious electric
surface current density at each point on the surface
of the conductor to the tangential electric fields at
every other point on the surface, i.e., we cast the problem in
a surface admittance operator format. When combined, for ex-
ample, with the method of moments (MoM), this operator yields
a surface admittance matrix. The operator allows to replace each
conductor by equivalent surface currents and to replace the con-
ductor medium by the medium of the material layer it is em-
bedded in. The remaining field problem can then be solved by
solely considering the interactions between the equivalent sur-
face currents. It should be noted that the admittance operator de-
scription only depends on the geometry of each individual con-
ductor and on the frequency and does not depend on the pres-
ence of other conductors.

In Section II, the general idea behind the differential admit-
tance concept is outlined. We restrict ourselves to two-dimen-
sional (2-D) configurations and to the TM case, i.e., the config-
uration is invariant in the -direction and currents are flowing in
this direction. In [6], the TM case is treated using a finite-dif-
ference solution of the Helmholtz equation in the conductor’s
cross section. In this paper, we opt for an approach based on
the Dirichlet–Neumann operator. It turns out that this approach
yields analytical results in the important practical case of a con-
ductor with rectangular cross section (and, indeed, also for a
circular cross section). The theoretical derivations leading to the
differential surface admittance operator based on the Dirichlet
eigenfunctions of the cross section are given in Section III. In
Section IV, the general theory is applied to conductors with rect-
angular cross section and an explicit MoM–Galerkin admittance
matrix for this problem is derived. In Section V, this admittance
matrix description is used to determine the resistance and in-
ductance matrices of a set of parallel conductors by means of an
electric field integral equation (EFIE). Section VI presents two
sets of numerical results. The results of Section VI-A are in-
tended to provide the reader with some insight into the behavior
of the differential surface impedance matrix. The examples of
Section VI-B demonstrate the correctness and versatility of the
proposed concepts for the determination of the inductance and
resistance matrices of two-dimensional interconnect structures.
Particular attention is devoted to comparison with previously
published approaches and data. Finally, Section VII presents a
number of conclusions and avenues for future work.

II. DIFFERENTIAL SURFACE ADMITTANCE CONCEPT

Consider, in the case of time–harmonic ( dependence)
transverse magnetic polarization, the electric field inside a
simply connected imperfectly conducting nonmagnetic cylinder
with homogeneous cross section , as in Fig. 1. The conductor
is characterized by its constitutive parameters and . Fur-
ther suppose that the conductor is embedded in a planar strati-
fied medium (the extension to a more general piecewise homo-

Fig. 1. Cross section S with boundary c of a conducting cylinder embedded
in a layered medium.

geneous medium is straightforward). The particular layer the
conductor is embedded in is characterized by the constitutive
parameters and . The reasonings put forward in
the sequel remain valid for the limiting case whereby the con-
ductor is exactly located on top of a layer. However, when the
conductor is partly contained in one layer and partly in another,
the conductor will have to be divided in two separate parts, as
correctly remarked by one of the reviewers. Inside , satis-
fies

(1)

with

(2)

On the boundary of , we have that

(3)

with the index referring to the tangential component of the
magnetic field. The expression stands for the limit of the
normal derivative of the electric field tending from the inside of
the cylinder to . We can rewrite (3) as [8]

Y (4)

Y is the surface admittance operator and is the
Dirichlet–Neumann operator, mapping the values of the
field on to the values of the normal derivatives of the field on
. When is not a Dirichlet eigenvalue for , it is known that

the Dirichlet–Neumann operator is a self-adjoint pseudo-
differential operator of order 1 [9].

Now suppose that the constitutive parameters of the con-
ducting cylinder are replaced by those of the medium outside
the conductor, in particular, of the material layer the conductor
is embedded in. The corresponding fictitious electric field in ,

now satisfies

(5)

with

(6)
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Fig. 2. Equivalent longitudinal currents replacing the conductor of Fig. 1 with
the material �; � ; � of the conductor replaced by the material � ; � ; � of
the layer it is embedded in.

On the boundary of , we now have that

(7)

and in the same vein as above,

(8)

If we want to replace the conductor by the material of its sur-
rounding layer, in this way restoring the planar stratified nature
of the medium and undoing the discontinuity in conductivity
and permittivity due to the conductor’s presence, it suffices to
introduce an equivalent surface current density related to the
value of the field on the boundary by means of the differ-
ential surface admittance operator defined as

(9)

This is depicted in Fig. 2. The layered medium now permeates
the conductor. When solving the field problem external to the
conductor, the effect of the conductor is exactly accounted for
by the presence of the surface currents provided and the
surface current are forced to satisfy (9) on . As a matter of
fact, by enforcing (9), we ensure that the ratio of the total tan-
gential electric field to the total tangential magnetic field just
outside the conductor’s surface is exactly the ratio enforced by
the presence of the conductor. This guarantees a unique field so-
lution, notwithstanding possible resonances in . When solving
the field problem of Fig. 2, the obtained result is only identical
to the one for the original configuration of Fig. 1, taken out-
side the conductor. Inside the conductor, a fictitious field is ob-
tained. However, in order to obtain relevant data such as total
joule losses, total conduction current, or inductance and resis-
tance matrices, the sole knowledge of the surface current den-
sity suffices. If needed at all, the actual electric field inside
the conductor can be reconstructed from the knowledge of
on the boundary . Remark that the surface current does not in-
troduce a discontinuity in the electric field. Hence, we have that
on the boundary and only on .

III. DIRICHLET CHARACTERIZATION

There are several possibilities to characterize the operator
in (9). We briefly come back to this point in Section VII. In
the sequel, we opt for a solution based on the Dirichlet eigen-
functions of the cross section . To this end, consider the two
Helmholtz Dirichlet problems

(10)

(11)

Putting , we can write

(12)

Since on , we may expand in terms of the orthonormal
Dirichlet eigenfunctions for , which is supposed to form
a complete orthonormal basis in . From (12), we obtain

(13)

with , the eigenvalue corresponding to . Now since
, it is a simple matter to show that

(14)

resulting in

(15)

and, hence, by taking normal derivatives

(16)

In shorthand notation, we have

(17)

where the contrast parameter is

(18)

Result (17) is the analytical expression for the differential sur-
face admittance operator operating on the tangential electric
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field on . is expressed in terms of an expan-
sion in the normal derivatives on the boundary of the Dirichlet
eigenfunctions of the conductor’s cross section .

A. Joule Losses and Total Surface Current

The surface joule losses are given by

(19)

which is equal to the difference between the joule volume losses.
Relationship (19) follows straightforwardly from Green’s iden-
tity for functions satisfying the Helmholtz equation (10) with
a complex wavenumber , namely,

(20)

Finally, it should be noted that the total surface current is

(21)

which is equal to the difference between the volume currents
(including the displacement currents). Relationship (21) follows
straightforwardly from the Gauss divergence theorem applied to
Helmholtz equation (10), namely,

(22)

and, similarly, for . In the sequel, attention is focused on
good conductors embedded in a lossless layer, i.e.,
and . In that case, the contrast parameter (18)

and the total surface current (21) reduces to the total
conduction current in the conductor. The surface joules losses
(19) are the total joule losses in the conductor.

B. Pouillet’s Law

In our derivations, represents the electric field on the
boundary . In the dc case , we may expect to be con-
stant on and, as a consequence, we then have that is con-
stant over the entire cross section . When , (17) becomes,
with constant and ,

(23)

Integrating over and using the Gauss identities

(24)

we obtain for the total current

(25)

Now the unit function can be developed as

(26)

By Parseval’s identity, we, therefore, obtain

(27)

Note that this could also have been obtained by exploiting result
(21). With , this can be written as , where

is the per unit length resistance , which is the
well-known Pouillet law.

C. Example: Circular Region

The circular region with radius exhibits very simple
formulas. Expanding in a Fourier series as

(28)

we straightforwardly obtain

(29)

where are the Bessel functions and, hence,

(30)

Note that, in order to obtain (30) for the surface current , we
did not, in fact, need the Dirichlet eigenfunctions for the circular
region, which is exceptional.

IV. RECTANGULAR REGION

A. Analytical Solution

Consider the practically important rectangular region
and . To obtain the differential admittance op-

erator (17), we need the Dirichlet eigenfunctions and eigen-
values of the rectangle, which are

(31)

The normal derivatives are

side 1 (32)

side 2 (33)
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side 3 (34)

side 4 (35)

It is clear that, on all four sides, the field data preferably have
to be developed in a Fourier sine series. Hence, consider on
side 1 (the other sides can be treated similarly) given by one sine
mode

(36)

and on the other sides. We readily obtain the surface
current density

(37)

where

(38)

and

(39)

Explicit analytic expressions for the function and its
derivative with respect to are given in the Appendix. From
(37), we easily derive that

side 1 (40)

side 2 (41)

side 3 (42)

side 4 (43)

where denotes the derivative of (38) with respect to its
argument .

B. Discretized Form of the Solution

In Section IV-A, an analytical description of the differential
surface admittance operator was obtained. To determine resis-
tance and inductance matrices of multiconductor transmission
lines (the topic of Section V), this operator will be combined
with an integral-equation approach to solve the exterior field
problem. Hence, some form of discretization of the operator is
needed. When using an EFIE for the surface current , it is well
known that a pulse basis representation for this surface current
suffices for its correct discretization (whereas in the TE case,
piecewise linear basis functions would be needed). Moreover, to
solve the integral equation, it is advantageous to use a Galerkin
weighting procedure in order to assure good convergence and
to obtain a symmetric system matrix. Hence, this section is de-
voted to the derivation of a discretized form of the differential

surface admittance, whereby both the surface current and the
electric field are projected on a pulse basis. Starting with ,
we have that

(44)

where

elsewhere (45)

and . is the number of pulse basis functions
along each horizontal side of the rectangle. To connect the pulse
basis expansion with the sine basis formulation, we first project
(44) onto the sine basis in by putting

(46)

and imposing the Galerkin testing procedure

(47)

Grouping the coefficients and , respectively, in the
column vectors and , we find that

(48)

where the entries of the matrix are given by

(49)

The next step is to project , as defined in (40)–(43), by a similar
Galerkin testing procedure, onto the pulse basis on each side of
the rectangle. This means we need to find coefficients such
that on

side 1 (50)

side 2 (51)

side 3 (52)

side 4 (53)

where

elsewhere (54)



DE ZUTTER AND KNOCKAERT: SKIN EFFECT MODELING BASED ON DIFFERENTIAL SURFACE ADMITTANCE OPERATOR 2531

and . The surface current representations
(50)–(53) are such that the coefficients are the weighted
values of over each interval, as required by the Galerkin
procedure. is the number of pulse basis functions along each
vertical side of the rectangle. Grouping the coefficients into
four column vectors, we readily obtain for side 1 that

(55)

where is the diagonal matrix with elements

(56)

Similarly, for side 3, we obtain

(57)

with the elements of the diagonal matrix given by

(58)

The results for sides 2 and 4 are less straightforward. After some
tedious algebra, we find for side 2 that

(59)

where is the diagonal matrix with entries
, where is the diagonal matrix with

entries and where the entries of the
matrix and of the matrix are defined as

(60)

In using the same dimensions for and , we have tacitly
assumed that the same number of sine functions is used on all
sides of the rectangle. Finally, for side 4, we have

(61)

with the diagonal elements of given by .
This then defines the differential surface admittance operator for
the pulse basis excitation on side 1.

The solution to the complete problem can be obtained by re-
peating the process for the other three sides and applying super-
position. In block diagonal form, the final result can be written
as

(62)

or, in an easily understood notation,

J E (63)

with , as introduced above and with and
being the corresponding column vectors formed by the pulse

basis expansion coefficients on sides 2–4. The block matrices in
(62) are given by

(64)

with

(65)

with the diagonal elements of given by and
with the elements of and defined in the same way as in
(56) and (58), but with replaced by .

is the differential surface admittance matrix (all entries
of have dimension ). As expected when applying the
Galerkin’s procedure, a symmetric matrix is obtained. The
reader easily verifies from the formulas given above that is
indeed symmetric.

To conclude, an important remark must be added. Note that in
(44) and (46), the number of pulse functions and the number
of sine functions are not identical. The advantage of pro-
jecting the pulse basis on the sine basis comes from the fact
that the orthogonality of the sine functions on each side of the
rectangle can then be exploited in calculating the boundary inte-
gral in (17). On the other hand, the sine functions are zero at the
corner points and Gibbs’s phenomena will occur when repre-
senting the nonvanishing surface currents at those corner points.
The problem is easily circumvented by choosing (e.g.,

and – ). This does not impair the (speed of
the) method as the number of sine functions does not influence
the number of unknowns that will be used to solve the external
field problem. only occurs in the matrix multiplications in
(64). The effect of the choice of will further be discussed in
one of the examples of Section VI-A.

V. DETERMINATION OF RESISTANCE AND

INDUCTANCE MATRICES

Here, the differential surface impedance concept is exploited
to determine the resistance and inductance matrices of a set of

parallel conductors extending along the -axis. The way to
tackle this problem, using an EFIE approach, has been treated
extensively in the literature, see, e.g., [3]–[6]. Following the ap-
proach in [4], the relevant EFIE is

(66)

is the longitudinal electric field, is the vector potential,
is the scalar potential, and . The above expression
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will be valid as long as the cross-sectional dimensions remain
small with respect to the wavelength such that the transversal
currents are negligible. Using the differential surface admittance
approach, the conductors can be replaced by equivalent surface
currents , as explained in Section II. The vector potential of
these currents is given by

(67)

The integration runs over the boundaries of the conduc-
tors. Generally speaking, is the Green’s function of
the medium the conductors are embedded in. Here, we will
restrict ourselves to a homogeneous nonmagnetic space or to
a half-space bounded by a perfectly electric conducting (PEC)
ground plane. In those cases, is given by

for infinite space (68)

for a half-space (69)

with being the image of with respect to the PEC ground
plane. As must be dimensionless, 1 m must be sup-
posed in the denominator of the Green’s function for infinite
space. In solving (66) for good conductors, one supposes that

remains constant over the cross section of each
conductor. The relationship between these constant values and
the total currents through each conductor is

R L (70)

In (70), is an column vector formed by the con-
stant potentials of each conductor cross section with

. is also an column vector formed by the
total currents through each conductor and R and L, respec-
tively, represent the resistance and inductance matrix. As
a matter of fact, (70) defines the resistance and inductance ma-
trices, i.e., there exists a linear relationship between the total cur-
rents flowing through each conductor and the derivatives with
respect to the longitudinal coordinate of the potentials of each
of these conductors. In our numerical procedure, the total cur-
rents will be judiciously enforced and, from the resulting po-
tentials on each conductor, all elements of the resistance and
inductance matrices can then be derived.

We discretize (66) using a point-matching technique and
pulse basis functions for the unknown surface currents . To
this end, the circumferences of the conductors are divided into
equal segments, and the surface current takes a constant value
on each segment. The fact that we restrict ourselves to equal
segments is not due to restrictions imposed by the differential
surface admittance formulation. Indeed, result (63) remains
valid for arbitrary pulse functions as at the start of the calcu-
lations (44), a nonuniform set of pulse functions is assumed.
Here, we made the particular choice of uniform sampling to
simplify the numerical implementation of the EFIE. In all

of the numerical examples, we have taken care to check the
convergence of the numerical results for an increasing number
of pulses on each side. When trying to restrict the number of
pulses per side for a prescribed accuracy, one can, however,
expect that, e.g., an edge mesh, as used in the modeling of
planar circuits, might be advantageous. This remains to be
further investigated.

The total number of segments, taken over all conductor
boundaries, is . Taking into account (70) then leads to

R L (71)

represents the value of the electric field at the center of seg-
ment and . results from the discretization
of the boundary integrals in (67) and expresses the interaction
between segment and segment (remark that ).
Further suppose that segment is located on conductor . In the
right-hand-side member of (71), the summation runs over all
conductors and involves the self-coupling and mutual-coupling
resistances and inductances between conductor and all other
conductors. Also remark that the resistance and inductance ma-
trix are symmetrical and, hence, R R and L L .
To simplify the further discussion, we finally collect all ’s
into a column vector E and all ’s into a column
vector J. The ’s are collected in a matrix G. The
right-hand-side members of (71) can be concisely written as a

column vector U whereby element is identical for all
segments on the same conductor. With the above definitions,
the set of equations that govern the problem can be compactly
represented as

E G J U (72)

To take into account (63), relating all electric fields on the same
conductor to the equivalent surface currents on the boundary of
that conductor, a block-diagonal total differential surface admit-
tance matrix Y is formed as follows:

Y (73)

with being the differential surface admittance matrix for
conductor . The final result is now obtained by left-multiplying
(72) with Y , i.e.,

J Y G J Y U (74)

The values of the elements of the resistance and inductance ma-
trices can now be obtained by solving (74) times, enforcing
the fact that, for each of these solutions, the total current running
through one of the conductors is equal to unity, while all other
total currents remain zero. As Y and G are symmetrical, the
symmetry of R and L is guaranteed.
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Fig. 3. (a) 20 �m � 5 �m copper conductor (� = 5:8 � 10 (
m) ))
(test example also used in [6]). (b) 15 mil � 1.4 mil copper conductor (� =
5:8� 10 (
m) )) (test example also used in [5]).

Fig. 4. Contour plot of the normalized absolute value of the elements of theY
differential surface admittance matrix of the conductor of Fig. 3(a) at 79.1 MHz.

VI. NUMERICAL RESULTS

A. Differential Surface Admittance Matrix

A first set of results is intended to provide the reader with
some insight into the behavior of the differential surface ad-
mittance matrix (63). Consider a copper conductor

m measuring 20 m 5 m [see Fig. 3(a)].
The circumference is subdivided into intervals along
the length and intervals along the width, i.e., a total
of 50 intervals. The number of sine functions used on each
side is . A similar example is put forward in [6].
Fig. 4 shows a contour plot of the normalized absolute value
of the elements of the 50 50 matrix at 79.1 MHz. The
numbering on the axes corresponds to the numbering shown on
Fig. 3(a) and the plotted values have been normalized with re-
spect to the absolute value of the largest element in the matrix
2.7315 10 . This numbering implies that the

value is displayed in the lower left-hand-side corner of the figure

Fig. 5. Contour plot of the normalized absolute value of the elements of theY
differential surface admittance matrix of the conductor of Fig. 3(a) at 10 GHz.

and the value in the upper right-hand-side corner.
Hence, the highest impedance values are to be found along the
main diagonal running from the lower left-hand-side corner to
the upper right-hand-side corner. The skin depth m.
Fig. 5 shows the corresponding result at 10 GHz ( m,
maximum value: 1.4390 10 ). One clearly observes a similar
behavior, as reported in [6], for the global surface impedance.
The off-diagonal elements quickly decrease with increasing fre-
quency and the influence of the corners is clearly visible. To pro-
vide some further quantitative data as a function of frequency,
we next consider the 15 mil (381 m) 1.4 mil (35.56 m)
copper conductor m example discussed
in [5] [see Fig. 3(b)]. The circumference is now subdivided into

and intervals, i.e., a total of 112 intervals
and . The chosen value of will be further dis-
cussed below. The solid lines in Fig. 6 show the real part of
the following elements of the -matrix:
and . As can be seen in Fig. 3(b), interval 26 is located in
the middle of the bottom side, interval 54 in the middle of the
right-hand side, and interval 82 in the middle of the top side. The

-element has been selected to illustrate the behavior near a
corner. Results have been plotted as a function of the skin depth

and the frequency ranges between 0.1 MHz
( m) and 100 GHz ( m). The plotted
values are normalized with respect to the value of the real part
of at 0.1 MHz, i.e., 1.5 10 . The dashed lines show
the corresponding results for the absolute value of the imagi-
nary parts. The numerical results clearly show that the real parts
are dominant and almost constant when the skin depth is large
with respect to the width of the conductor. For increasing fre-
quencies, the imaginary parts gain in importance. When the skin
depth becomes very small, all nondiagonal elements have died
out and the absolute value of the real and imaginary parts of the
diagonal elements become identical. This behavior cannot only
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Fig. 6. Normalized value of the real parts of the (Y ) elements (solid line)
and absolute value of the imaginary parts of the (Y ) elements (dashed line)
of the differential surface admittance matrix as a function of skin depth for the
conductor of Fig. 3(b).

be verified numerically, but as a matter of fact, follows directly
from the high-frequency limit of the coefficient of
in (40), namely,

(75)

for . This limiting value is the well-known scalar surface
admittance value. In [5], the behavior of the internal impedance
of a good conductor as a function of frequency is
examined. For the 15 1.4 mil example, the authors observe a
difference of 20% between the per-unit-length internal inductive
reactance and the per-unit-length resistance when the skin
effect is well developed. At the highest frequency considered by
Antonini et al. [5], i.e., 1 GHz or m, Fig. 6 shows
a difference of approximately 40% between the real and imagi-
nary parts of the diagonal matrix elements located in the middle
of the sides, even increasing to approximately 65% for the
matrix element. Although it is clear that the internal impedance
considered in [5] and the differential surface admittance consid-
ered here are different quantities, our results confirm the obser-
vations put forward in [5]. Furthermore, by still increasing the
frequency, i.e., for sufficiently small skin depths, the differen-
tial surface admittance matrix becomes purely diagonal with all
diagonal elements given by (75). This seems to imply that the
internal inductive reactance and internal resistance, as consid-
ered in [5], will also become identical provided the skin depth
is small enough.

Before turning to the calculation of the resistance and induc-
tance matrices of some sample configurations, we would like
to illustrate the effect of the number of sine functions used

Fig. 7. Illustration of the influence of the numberM of sine functions used in
the analytical treatment of the rectangular conductor for the case considered in
Fig. 6. The displayed percentages are defined with respect to the values obtained
forM = 204.

in the procedure outlined in Section IV-B. To this end, con-
sider the and elements already discussed above.
These elements are now calculated for three different -values,
i.e., (i.e., exactly the number of intervals used on
the top and bottom side), , and . The
result for is taken as the reference result as the
absolute change in the obtained values is negligible for larger

. Fig. 7 shows the relative differences between this refer-
ence result and the results for and (i.e.,

value value value ) and
this, again, as a function of the skin depth. As already remarked
at the end of Section IV-B, choosing sufficiently larger than
the number of divisions per side is essential in order to obtain
correct results, especially at the higher frequencies and for the
corner elements.

B. Resistance and Inductance Matrices

As our first example, we revisit the isolated square copper
conductor m with side 4.62 mm also
treated in [3]. Fig. 8 shows its resistance in /m as a function
of frequency. On the scale of this figure, this result almost com-
pletely coincides with the hybrid technique (solid line) result
calculated and displayed in [3]. In our case, this result was ob-
tained using uniformly spaced divisions per side
and . This particular example has been selected to ad-
dress the following concern raised by the reviewers. In a surface
integral-equation approach of the kind presented here, it could
perhaps be expected that a discretization step of, at most, half the
skin depth is necessary to obtain correct results. As will be evi-
dent from the results given below, this does not really seem to be
the case. We believe that the reason for this is the following. In
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Fig. 8. Resistance in m
/m as a function of frequency for an isolated square
copper conductor (� = 5:72 � 10 (
m) )) with side 4.62 mm (example
also used in [3]).

TABLE I
RESISTANCE VALUES IN m
/m AS A FUNCTION OF FREQUENCY FOR THE

SQUARE, 4.62-mm SIDE, COPPER (� = 5:72� 10 (
m) )) CONDUCTOR

ALSO CONSIDERED IN FIG. 8 AND FOR FOUR DIFFERENT DISCRETIZATIONS

a coupled integral-equation approach, such as in [3], which uses
both the Green’s function of the conductor and the Green’s func-
tion of the surrounding medium or in a volume integral equation
approach, discretization of the order of the skin depth is neces-
sary to capture the current crowding. In our approach, we be-
lieve this current crowding is already captured in the differen-
tial surface admittance provided enough sine functions are used.
Of course, the equivalent surface current exhibits the typical be-
havior at corner points, i.e., this current will be higher at the cor-
ners and, hence, a sufficient discretization is needed to capture
this effect, e.g., as is the case for a perfect conductor. Hence, the
typical discretization needed in our approach is mainly domi-
nated by the wavelength in the surrounding medium and by the
need to capture corner effects. To further illustrate this, Table I
gives some numerical data for the example of Fig. 8 for different
uniform discretizations

and (for ). The skin depth
at the highest frequency is 66.5 m. For , each
interval is 30.8 m, i.e., about half the skin depth at the highest
frequency. From this table, it is clear that the 10 10 discretiza-
tion indeed underestimates the losses and that, for the 20 20

Fig. 9. Two pairs of copper signal conductors (20 mm� 0.2 mm and 2 mm�
2 mm, � = 5:6�10 (
m) )) with variable separation distance s (examples
also used in [3] and [6]).

Fig. 10. Resistance inm
=m as a function of frequency for the configurations
of Fig. 9 and for different separations s.

discretization, the error is already small. As remarked by the
reviewers, a nonuniform discretization will further enhance the
convergence of the results. This will be investigated in the fu-
ture.

As a second example, we consider the copper two-conductor
system m depicted in Fig. 9, treated
in [3] and [6]. We considered both the 2 mm 0.2 mm case
(case 1) and the 2 mm 2 mm case (case 2) for separation dis-
tances mm, mm, and mm. The number of divi-
sions was 20 on each side and .
Fig. 10 shows the resistance results as a function of frequency
between 100 Hz–10 GHz. The dc value is, of course, indepen-
dent of the separation distance. For case 2, the resistance curves
start to differ at a lower frequency as compared to case 1 and
the difference between the curves for increasing separation dis-
tances is much more important. For case 1, the resistance curves
remain very close to each other. For clarity, we have left out
the mm result for case 1. One can also observe that,
for case 1, the curves cross each other near 1 MHz. We have
carefully verified the influence of changing different parameters

, confirming that the observed phenomenon is not an
artifact of the calculations. For increasing values of , the re-
sistance values increase by a small percentage (in an analogous
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Fig. 11. Inductance in nanohenrys/meter as a function of frequency for the
configurations of Fig. 9 and for different separations s.

way as denoted by the results in Table I). In Fig. 10, this is hardly
visible and the crossing of the curves still occurs at (almost) the
same frequency. Fig. 11 shows the corresponding results for the
inductance. Observe that the inductance results are much more
sensitive to the distance between the conductors. For case 1, the
separation distance used in [3] is mm. The result for
this distance is also shown on the plot (dashed line). Using the
surface integral-equation approach presented in [10] for PEC
multiconductor lines, we could verify that the high-frequency
inductance results in Fig. 11 coincide with the results obtained
for perfect conductors, as expected. To conclude the discussion
of this first example, the reader will remark that our results co-
incide with those (case 1-0.8 mm and case 2-2 mm) presented
in [10], but that the low-frequency values in [6] for case 1-1 mm
and case 2-2 seem to underestimate the inductance. As pointed
out by a reviewer, this is due to the fact that, in [6], a zero tangen-
tial electric field has been assumed at the conductor’s surface,
while this is avoided by the differential admittance procedure
only imposing that on . This leads to an under-
estimation of the contribution of the internal inductance to the
overall inductance and this contribution is more important at the
lower frequencies.

Next consider the four conductor (Al–oxide,
m configuration depicted in Fig. 12.

All dimensions are in micrometers and the boundaries were
discretized using ten divisions per micrometer. We first cal-
culated the 4 4 resistance and inductance matrix and then
selected the large “ground” conductor 4 to be the reference
conductor (zero potential and ). The
resulting configuration is characterized by a 3 3 resistance
and inductance matrix. Fig. 13 shows the resistance elements

and (in m ) as a function
of frequency between 10 MHz–1 THz. The corresponding

Fig. 12. Three signal and reference Al–oxide (� = 1=2:8 � 10 (
m) ))
conductor configuration (all dimensions are in micrometers).

Fig. 13. Resistance matrix elements in 
/m as a function of frequency for the
configuration of Fig. 12 and with conductor 4 as the reference conductor.

elements of the inductance matrix
and (in nH m ) are displayed in Fig. 14.

The configuration of the last example is depicted in Fig. 15.
It is the cross section of a coaxial line with two copper signal
conductors surrounded by a copper outer conductor

m . All dimensions are in units of 0.1 mm and a dis-
cretization of four divisions per 0.1 mm is used. As our method
can only handle rectangular conductors, the outer conductor is
subdivided into four separate conductors, as indicated in Fig. 15.
However, the gap between the conductors is kept extremely
small (less than one-tenth of a micrometer, and we verified nu-
merically that, for such small gaps, stable numerical results are
obtained). The total number of segments amounts to 528. Sim-
ilarly, as for the previous example, we now assign a zero refer-
ence potential to the four conductors forming the outer coaxial
shield and determine the 2 2 resistance and inductance matrix
of the resulting configuration. The final results are displayed in
Fig. 16. The dc value for is 1.734 08 /m, i.e.,
the sum of the dc resistance of the outer coaxial shield and
one of the signal conductors. The dc value for is
2.9829 10 /m, i.e., the dc resistance of the outer coaxial
shield. We further remark that the low-frequency value of
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Fig. 14. Inductance matrix elements in nanohenrys per meter as a function of
frequency for the configuration of Fig. 12 and with conductor 4 as the reference
conductor.

Fig. 15. Cross section of a copper (� = 5:8 � 10 (
m) )) coaxial line
with two signal conductors (all dimensions are in units of 0.1 mm).

Fig. 16. Resistance (solid line: 
/m) and inductance (dashed line: nanohenrys
per meter) matrix elements as a function of frequency for the configuration of
Fig. 15 and with the outer conductor as the reference conductor.

is negative. This is allowed as long as the 2 2 inductance
matrix remains positive-definite. This positive-definite nature
has been verified for the complete frequency range and implies
that the magnetic energy always remains positive whatever the
currents used to excite the configuration. We have also deter-
mined the inductance matrix for the case of perfect conductors
using a finite-difference technique to solve Laplace’s equation
for the capacitance problem and using the fact that the product
of the inductance and capacitance matrix equals . The
obtained results are nH/m and nH/m,
while the present technique yields nH/m and

nH/m.

VII. CONCLUSION

In this paper, we have presented the differential surface admit-
tance operator concept for the 2-D TM case. One way to obtain
this operator is to use the Dirichlet eigenfunctions of the con-
ductor’s cross section, as explained in Section III. This approach
is ideally suited for the circular and rectangular cylinder case, as
the Dirichlet eigenfunctions are readily available. Another ap-
proach, which will be examined in the future, is to derive the
admittance operator using an integral-equation approach. The
advantage of the latter approach is that general cross sections
can be handled more easily. We have explicitly shown that the
differential surface admittance operator leads to a correct de-
scription of the behavior of the conductor from dc to very high
frequencies. Furthermore, it has been demonstrated how the dif-
ferential surface admittance description can be combined with
an EFIE to obtain the resistance and inductance matrices of a
set of multiconductor lines. Further research also remains nec-
essary to assess the effect of a nonuniform discretization of the
surface current.

APPENDIX

We need expressions for and
. For , we have [11, Table A.2]

(A1)

and for ,

(A2)

For , we have

(A3)

and for ,

(A4)
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Furthermore, we have for ,

(A5)

(A6)

and for ,

(A7)

(A8)

For , we have

(A9)

(A10)

and for ,

(A11)
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