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FINITELY ADDITIVE EXTENSIONS OF DISTRIBUTION FUNCTIONS AND
MOMENT SEQUENCES: THE COHERENT LOWER PREVISION APPROACH

ENRIQUE MIRANDA, GERT DE COOMAN, AND ERIK QUAEGHEBEUR

ABSTRACT. We study the information that a distribution function provides about the
finitely additive probability measure inducing it. We show that in general there is an infinite
number of finitely additive probabilities associated with the same distribution function.
Secondly, we investigate the relationship between a distribution function and its given
sequence of moments. We provide formulae for the sets of distribution functions, and
finitely additive probabilities, associated with some moment sequence, and determine under
which conditions the moments determine the distribution function uniquely. We show that
all these problems can be addressed efficiently using the theory of coherent lower previsions.

1. INTRODUCTION

This paper consists of two parts, each devoted to one of two specific, but related,
problems.

The first problem is: To what extent does a distribution function determine a probability
measure? This question has a well-known answer when we are talking about probabil-
ity measures that are σ -additive. We believe the corresponding problem for probability
measures that are only finitely additive has received much less attention. This paper tries
to remedy that situation somewhat by studying the particular case of finitely additive
probability measures on the real unit interval [0,1] (or equivalently, after an appropriate
transformation, on any compact real interval). For this study, it will be very convenient to
use the mathematical machinery behind Walley’s [27] theory of coherent lower previsions,
for which we introduce the basics in Section 2.

We shall see that, generally speaking, there is an infinite (closed and convex) set M (F)
of finitely additive probability measures that correspond to a given distribution function F .
However, by their very nature, and contrary to the sigma-additive case, finitely additive
probabilities on an infinite set that extend ‘something’ are usually inconstructibles, meaning
that they cannot actually be constructed, but that their existence may be inferred from the
Hahn–Banach Theorem (or even stronger, the Axiom of Choice); see [25, Sections 12.31
and 6.6] for more details. It was one of Walley’s achievements to show that we can efficiently
and constructively deal with them not by looking at the members of M (F) individually,
but by working with their lower envelope EF , which in his language is called the natural
extension of the distribution function F .1 Not only can this lower envelope always be
constructed explicitly, but it is the closest we can get in a constructive manner to the finitely
additive probabilities themselves. It turns out to be a coherent lower prevision with very
special properties.

Key words and phrases. Coherent lower prevision, lower distribution function, lower Riemann–Stieltjes
integral, complete monotonicity, moment sequence.

1This natural extension is quite closely related to the Minkowski functional that appears in the more usual
formulations of the Hahn–Banach theorem. Not surprisingly, it also makes its appearance, although in a different
guise, as the lower bound in de Finetti’s Fundamental Theorem of Probability [13, Sections 3.10–12].
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The set of finitely additive probabilities with a given distribution function has been
considered before by Bruno de Finetti [13, Chapter 6], who seems to suggest2 that the value
EF( f ) of this natural extension in a function f is actually given by the lower Riemann–
Stieltjes integral (RS)

∫ 1
0

f (x)dF(x) of f with respect to the distribution function F . We
study the relationship between EF and lower Riemann–Stieltjes integrals in Section 3, and
we shall see in Theorem 1 that de Finetti’s suggestion needs some qualification, as it is
essentially only correct when F is right-continuous.

In the second part, from Section 4 onwards, we address the second question: Is a
distribution function uniquely determined by the corresponding sequence of moments? In a
companion paper [21], we have studied the set of finitely additive probabilities M (m) that
produce a given moment sequence m. The fundamental step we take there is analogous to
the one followed in the present paper for distribution functions. It consists of not considering
the finitely additive probabilities in M (m) themselves, but to study their lower envelope Em,
which is a coherent lower prevision with very special properties too. In answering the
second question, we build on those results, but by looking at distribution functions we are
also able to extend them.

We shall establish that a distribution function F uniquely determines its moment se-
quence m. In Section 4 then, we investigate to what extent, conversely, a moment sequence
determines the distribution function. For distribution functions coming from σ -additive
probability measures, the relation between moment sequences and distribution functions is
well-known to be one-to-one, but again, the answer is not so clear when we let go of the
assumption of σ -additivity. We shall prove that in general there may be an infinite number
of distribution functions with the same moment sequence, and investigate under which
conditions the distribution function is unique.

It will perhaps not come as too much of a surprise, at this point, that we can show that the
set of finitely additive probability measures M (m) that corresponds to a moment sequence
is the union of the sets M (F) over all the distribution functions F that are compatible with
the moment sequence m. This is also done in Section 4 (see Theorem 6). In Section 5, we
further exploit the connection between distribution functions and moment sequences to
come up with a number of quite interesting formulae expressing Em (i) as a convex mixture
of a lower Riemann–Stieltjes integral and so-called lower oscillation functionals associated
with point probability masses (see Theorem 14); and (ii) as a σ -additive convex mixture of
completely monotone lower previsions associated with neighbourhood filters, which express
that all probability mass is concentrated in arbitrarily small neighbourhoods of elements of
the unit interval (see Theorem 16). In passing, we give an alternative, constructive proof of
the F. Riesz Representation Theorem (see Theorem 8 and Remark 4).

2. COHERENT AND COMPLETELY MONOTONE LOWER PREVISIONS

Let us give a short introduction to those concepts from the theory of coherent lower
previsions that we shall use in this paper. We refer to Walley’s book [27] for their behavioural
interpretation, and for a much more complete introduction and treatment.

Consider a non-empty set Ω. Then a gamble on Ω is a bounded real-valued function
on Ω. We denote the set of all gambles on Ω by L (Ω). It is a linear space, and actually a
Banach space when provided with the topology of uniform convergence of gambles.

2See [13, Section 6.4.11] where de Finetti states for the bounds on the prevision of a random quantity obtained
for a given distribution function from his Fundamental Theorem of Probability, that “we are, of course, dealing with
the upper and lower integrals in the Riemann sense”. Before, in [13, Section 6.4.4] he refers to these same bounds
as “in the Riemann–Stieltjes sense”, so the omission of ‘Stieltjes’ in the first quote appears to be an oversight.
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A lower prevision P is a real-valued map defined on some subset K of L (Ω). If
the domain K of P only contains indicators IA of events A, then P is also called a lower
probability. We also write P(IA) as P(A), the lower probability of the event A. The conjugate
upper prevision P of P is defined on −K by P( f ) :=−P(− f ) for every − f in K . If the
domain of P contains indicators only, then P is also called an upper probability.

A lower prevision P defined on the set L (Ω) of all gambles is called coherent if,
with f ,g in L (Ω), it is super-additive: P( f +g)≥ P( f )+P(g), positively homogeneous:
P(λ f ) = λP( f ) for all λ ≥ 0, and positive: P( f )≥ inf f . A lower prevision P on an arbitrary
domain K is then called coherent if it can be extended to some coherent lower prevision
on all gambles. This is the case if and only if sup [∑n

i=1 fi−m f0] ≥ ∑
n
i=1 P( fi)−mP( f0)

for any n,m≥ 0 and f0, f1, . . . , fn in K . For a coherent lower prevision P, defined on a
set K , it holds that P( f )≤ P( f ) for all f ∈K ∩−K . Also, a coherent lower prevision
is monotone: f ≤ g⇒ P( f )≤ P(g), and uniformly continuous: if a sequence of gambles
fn,n≥ 0 converges uniformly to another gamble f , then P( fn)→ P( f ).

A linear prevision P on L (Ω) is a self-conjugate coherent lower prevision: P(− f ) =
−P( f ). In other words, a linear prevision is a positive and normalised (P(1) = 1) linear
functional (we also use 1 as the constant function with value 1). A functional defined
on an arbitrary subset K of L (Ω) is called a linear prevision if it can be extended
to a linear prevision on L (Ω). This is the case if and only if sup[∑n

i=1 fi−∑
m
j=1 g j] ≥

∑
n
i=1 P( fi)−∑

m
j=1 P(g j) for any n,m ≥ 0 and f1, . . . , fn, g1, . . . , gm in K . We let P(Ω)

denote the set of all linear previsions on L (Ω).
The restriction Q of a linear prevision P on L (Ω) to the set of all events is a finitely

additive probability (probability charge). Linear previsions are completely determined by
the values they assume on events; they are simply expectations with respect to finitely
additive probabilities. This can be expressed using a Dunford integral (see, for instance,
[3]): for any gamble h in L (Ω) we have P(h) = (D)

∫
hdQ.

The natural extension EP to L (Ω) of a coherent lower prevision P defined on K , is the
point-wise smallest coherent lower prevision that extends P to all gambles. It is equal to the
lower envelope of the set M (P) of all linear previsions that point-wise dominate P on its
domain K : for any gamble f in L (Ω)

EP( f ) = min
Q∈M (P)

Q( f ).

Observe that the set M (P) is convex, and closed (compact) in the relativisation to P(Ω) of
the weak* topology on the topological dual L (Ω)∗ of the Banach space L (Ω). Moreover,
M (EP) = M (P). Indeed, if P is a coherent lower prevision on L (Ω) and P is its conjugate
upper prevision, then for any gamble f and for any a ∈ [P( f ),P( f )] there exists a linear
prevision P ∈M (P) such that P( f ) = a.

The procedure of natural extension is transitive: if we consider E1 the point-wise smallest
coherent lower prevision on some domain K1 ⊇K that dominates P on K (i.e., the natural
extension of P to K1) and then the natural extension E2 of E1 to all gambles, then E2 is also
the natural extension of P to L (Ω). Moreover, M (E2) = M (E1) = M (P). In particular,
if P is a linear prevision on a negation invariant K that has a unique extension P1 to some
larger negation invariant domain K1, then a linear prevision on all gambles will dominate
(agree with) P on K if and only if it dominates (agrees with) P1 on K1.

Let us introduce next the notion of n-monotonicity. A thorough study of the properties
of n-monotone coherent lower previsions can be found in earlier papers [9; 10]. Here, we
only mention those properties that we shall need further on.
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A lower prevision defined on a lattice K of gambles (a set of gambles closed under
point-wise minima ∧ and maxima ∨) is called n-monotone if, for all 1≤ p≤ n, and all f ,
f1,. . . , fp in K it holds that

∑
I⊆{1,...,p}

(−1)|I|P

(
f ∧
∧
i∈I

fi

)
≥ 0.

A lower prevision is completely monotone when it is n-monotone for any n≥ 1. This is for
instance the case for linear previsions. Another example is given by the so-called vacuous
previsions. The vacuous prevision PA relative to an event A is given by PA( f ) = infx∈A f (x)
for any gamble f . A convex combination or a Moore–Smith limit of completely monotone
and coherent lower previsions is again a completely monotone and coherent lower prevision.

We can easily characterise the natural extension of a completely monotone coherent
lower prevision P. If P is defined on a lattice of events A that includes /0 and Ω, its natural
extension to all events is again completely monotone, and coincides with its inner set
function P∗, where

P∗(A) = sup{P(B) : B ∈A ,B⊆ A} .
Moreover, given a completely monotone coherent lower prevision P defined on a linear
lattice of gambles K that contains all constant gambles, its natural extension E to all
gambles coincides with its inner extension P∗, where

P∗( f ) = sup{P(g) : g ∈K ,g≤ f} ,

and E is again completely monotone.
A completely monotone coherent lower prevision P on all gambles satisfies a number

of interesting properties. First, it is comonotone additive: we have P( f +g) = P( f )+P(g)
for any two gambles f and g that are comonotone, meaning that for all ω and ϖ in Ω if
f (ω) < f (ϖ) then also g(ω)≤ g(ϖ). Secondly, it is completely determined by the values
it assumes on events. Actually, it is equal to the Choquet functional associated with the set
function (a completely monotone coherent lower probability) that is the restriction of P to
events: for all gambles f on Ω

P( f ) = (C)
∫

f dP = inf f +(R)
∫ sup f

inf f
P({h≥ t})dt,

where the first integral is a Choquet and the second a Riemann integral. Thirdly, the class of
P-integrable gambles, that is, those gambles h satisfying P(h) = P(h), is a uniformly closed
linear lattice that contains all constant gambles. In particular, the class of P-integrable events
is a field. Interestingly, a gamble h is P-integrable if and only if its cut sets { f ≥ t} :=
{x ∈ [0,1] : f (x)≥ t} are P-integrable for all but a countable number of t.

3. THE NATURAL EXTENSION OF LOWER AND UPPER DISTRIBUTION FUNCTIONS

Since we shall be dealing with the unit interval and its subintervals throughout, it will
be well to establish a number of relevant conventions here. We consider the (Euclidean)
topology T of open sets on [0,1] that is the relativisation to [0,1] of the Euclidean topology
on the set of real numbers R. By an open interval we shall mean a subinterval of [0,1] that
is open (belongs to T ), or in other words, that is the intersection of [0,1] with some open
interval of R. Thus for x and y in [0,1], (x,y) is an open interval, but so are [0,1], [0,x) and
(y,1]. For any set A⊆ [0,1], we denote its topological interior by int(A) and its topological
closure by cl(A).
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We are now ready to tackle the first problem, mentioned in the Introduction: To what
extent does a distribution function determine a finitely additive probability?

3.1. A precise distribution function. Since we are dealing in this paper with the unit
interval, this shall be the domain we consider for the notion of distribution function:

Definition 1. A distribution function on [0,1] is a non-decreasing function F : [0,1]→ [0,1]
that satisfies the normalisation condition F(1) = 1.

The interpretation of such a distribution function is as follows: we consider a random
variable X : [0,1]→ [0,1] and assume that F provides information about the accumulated
probability of X . This means that we can define a functional PF (the probability induced
by the random variable X) such that for any x ∈ [0,1], the (lower and upper) probability
PF([0,x]) of [0,x] is equal to F(x). Consequently, the probability PF((x,1]) of (x,1] is equal
to 1−F(x). In other words, specifying a distribution function F is tantamount to specifying
a set function PF on the set of events

H := {[0,x] : x ∈ [0,1]}∪{(x,1] : x ∈ [0,1]} , (1)

and since F satisfies the properties of a distribution function, this PF can be seen as a linear
prevision on (the set of indicator functions of) the elements of H [26, Lemma 3.58]. This
linear prevision can be uniquely extended to a linear prevision on the lattice Q of subsets of
[0,1] generated by H ,3 where all elements of Q have the form

[0,x1]∪ (x2,x3]∪·· ·∪ (x2n−2,x2n−1]∪ (x2n,1], or

(x2,x3]∪·· ·∪ (x2n−2,x2n−1]∪ (x2n,1],

where 0 ≤ x1 < x2 ≤ x3 < · · · ≤ x2n−1 < x2n ≤ 14. If we also denote this unique linear
prevision on Q by PF , then we have that

PF([0,x1]∪ (x2,x3]∪·· ·∪ (x2n−2,x2n−1]∪ (x2n,1])

= F(x1)+
n−1

∑
k=1

[F(x2k+1)−F(x2k)]+1−F(x2n), (2)

and similarly

PF((x2,x3]∪·· ·∪ (x2n−2,x2n−1]∪ (x2n,1]) =
n−1

∑
k=1

[F(x2k+1)−F(x2k)]+1−F(x2n). (3)

The natural extension EF of PF is the smallest coherent lower prevision on all gam-
bles that extends PF . It is the lower envelope of the set M (F) := M (PF) of all linear
previsions Q with distribution function F , i.e., for which Q([0,x]) = F(x), x ∈ [0,1]. For
any gamble h on [0,1], [EF(h),EF(h)] is the range of the value Q(h) for all such linear
previsions Q.

Since the domain Q of PF is a lattice of events containing both /0 and [0,1], and since
any linear prevision on such a lattice of events is in particular completely monotone, we
deduce from the discussion in Section 2 that (i) the natural extension EF is a completely

3To see this, observe that (i) there is a unique extension as a linear (finitely additive) set function, and (ii) there
always is an extension to a linear prevision on all gambles by [27, Theorem 3.4.2], and in particular to Q, because
PF is a linear prevision.

4As remarked by one of the referees, there is also a unique extension as a linear prevision to the algebra
generated by H . See [14, Proposition 2.10] and [5, Theorem 11.2.2]. For the purposes of this paper, it suffices to
use the expression of the unique extension to the lattice Q given in Equations (2) and (3).
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monotone and comonotone additive coherent lower prevision; (ii) that the restriction of EF
to events is the inner set function PF,∗ of PF , given by

PF,∗(A) = sup{PF(B) : B ∈Q,B⊆ A} (4)

for all A⊆ [0,1]; and (iii) that for all gambles h on [0,1],

EF(h) = (C)
∫

hdEF = infh+(R)
∫ suph

infh
PF,∗({h≥ t})dt. (5)

We can also draw a number of conclusions about the gambles h to which the linear
prevision PF can be extended uniquely:

Definition 2. A gamble h on [0,1] is said to be F-integrable when EF(h) = EF(h). The set
of F-integrable gambles is denoted by LF .

Then we also know that (iv) LF is a uniformly closed linear lattice containing all constant
gambles, and that (v) a gamble h is F-integrable if and only if its cut sets {h ≥ t}, or
equivalently its strict cut sets {h > t}, are F-integrable for all but a countable number of t
in R.

Remark 1 (The non-uniqueness of finitely additive probability measures with a given distri-
bution function). If we consider the set Q∩ [0,1] of all rational numbers between zero and
one, then it is clear that {0}= [0,0] is the only element of Q that is included in this set, and
therefore EF(Q∩ [0,1]) = PF,∗(Q∩ [0,1]) = F(0). On the other hand, /0 is the only element
of Q that is included in its complement (Q∩ [0,1])c , which is the set of all irrational
numbers between zero and one, so we see that EF(Q∩ [0,1]) = 1−EF((Q∩ [0,1])c) = 1.
This shows that the natural extension of any distribution function F is not a linear previ-
sion (precise probability) unless all the probability mass is concentrated in 0. So, unless
F(0) = 1, there is an uncountable infinity of linear previsions (finitely additive probabil-
ities) Q with distribution function F , and for each a ∈ [F(0),1], there is some such Q
for which Q(Q∩ [0,1]) = a. To put it differently, a linear prevision on L ([0,1]) is not
completely determined by its distribution function unless it corresponds to the degenerate
distribution on 0. �

Example 1. Define the simple break function β (·;d,a) : [0,1]→ [0,1] by

β (x;d,a) :=


0 if x < d
a if x = d
1 if x > d

for d and a in [0,1]. If d < 1 then β (·;d,a) is a distribution function on [0,1], which has one
‘break’ (discontinuity) at d unless d = 0,a = 1. For d = 1, β (·;d,a) is a distribution function
if and only if a = 1. In the language of de Finetti [13, Section 6.5], the distribution function
β (·;d,a) has adherent mass 1 at d: any open interval that contains d has probability 1, but
we do not know exactly (due to the lack of σ -additivity) the probability of {d}: it may
be 1, but then it may also be 0, and all the mass may then be left- or right-adherent to d.
In general, the adherent mass at d will distribute between the left-adherent mass at d, the
right-adherent one, and P(d). See also Remark 6.

As we shall show in Section 5, in the case of the distribution function of the probabilities
with a sequence of moments m, we know the masses adherent to any of the discontinuity
points, but not exactly the mass allocated at the discontinuity point. De Finetti argues that
we should regard the distribution functions as indeterminate in those discontinuity points.
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Let us, as an example, determine the natural extension EF when F = β (·;d,a) where
0 < d < 1. Clearly F = (1−a)β (·;d,0)+aβ (·;d,1), and using Lemma 9 further on, we
see that

EF = (1−a)Eβ (·;d,0) +aEβ (·;d,1),

so it suffices to determine Eβ (·;d,0) and Eβ (·;d,1). Since β (·;d,0) and β (·;d,1) only assume
the values 0 and 1, so do the restrictions of their natural extensions to events; see Equa-
tions (2)–(4). For any event A, we have that Eβ (·;d,0)(A) = 1 if and only if (d,x) ⊆ A for
some d < x≤ 1, and it then follows from Equation (5) that

Eβ (·;d,0)(h) = sup
d<x≤1

inf
z∈(d,x)

h(z).

Similarly, Eβ (·;d,1)(A) = 1 if and only if (x,d]⊆ A for some 0≤ x < d, and therefore

Eβ (·;d,1)(h) = sup
0≤x<d

inf
z∈(x,d]

h(z) = min

{
h(d), sup

0≤x<d
inf

z∈(x,d)
h(z)

}
.

We shall come back to these break functions in Section 4. �

As we already stated in the Introduction, de Finetti [13, Section 6.4.4, p. 235] suggests
that what we call the lower natural extension EF of a distribution function F coincides with
the lower Riemann–Stieltjes integral with respect to that distribution function. We devote
some attention to (lower) Riemann–Stieltjes integrals in the next section.

3.2. Lower and upper Riemann–Stieltjes integrals. With a distribution function F , we
can also associate integrals of the Riemann–Stieltjes type. Let us recall briefly how this is
done. We refer to [19] for an excellent and more detailed exposition of this and other types
of integrals. Consider a subdivision of [0,1], i.e., a finite collection S of adjacent closed
intervals [0,x1], [x1,x2], . . . , [xn−1,xn], [xn,1] that cover [0,1], where 0 = x0 < x1 < x2 <
· · ·< xn < xn+1 = 1. Say that a subdivision S2 refines a subdivision S1, which we denote
as S2 � S1, if every closed interval in S2 is a subset of some closed interval in S1. Then
the refinement relation � is reflexive and transitive, and the set S of all subdivisions is
directed under the refinement relation, meaning that for any two subdivisions S1 and S2
there is a third subdivision S3 that refines both: S3 � S1 and S3 � S2. This implies that
we can consider Moore–Smith limits with respect to this directed set; see [22] for more
information. Consider, for a gamble h on [0,1], the net {IS(h;F) : S ∈S } which associates
the real number

IS(h;F) :=
n

∑
k=0

[F(xk+1)−F(xk)] inf
z∈[xk,xk+1]

h(z), (6)

with any subdivision S of [0,1]. This net is bounded above by suph and increasing: if
S2 � S1 then IS2(h;F)≥ IS1(h;F). This implies that it Moore–Smith-converges to some real
number (its Moore–Smith limit), and this real number is called the lower Riemann–Stieltjes
integral of h with respect to F , denoted by:

(RS)
∫ 1

0
h(x)dF(x) = lim

S∈S
IS(h;F) = sup

S∈S
IS(h;F). (7)

The real functional that maps any gamble h in L ([0,1]) to its lower Riemann–Stieltjes
integral (RS)

∫ 1
0
h(x)dF(x) can be interpreted as a lower prevision. It is not difficult to show,
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using Equations (6) and (7), that it is super-additive and positively homogeneous, and that
moreover

[F(1)−F(0)] infh≤ (RS)
∫ 1

0
h(x)dF(x)≤ [F(1)−F(0)]suph,

so (RS)
∫ 1

0
·dF(x) will be a coherent lower prevision on L ([0,1]) if and only if F(1)−

F(0) = 1, or equivalently, F(0) = 0. We see from Equations (6) and (7) that in that
case (RS)

∫ 1
0
·dF(x) is a point-wise limit of convex mixtures of vacuous lower previsions.

Such vacuous lower previsions are completely monotone, and so is, therefore, the lower
Riemann–Stieltjes integral; see [9; 10; 11] for more details.

But when F(0) = 0, its coherence and complete monotonicity allows us to say much
more interesting things about the associated lower Riemann–Stieltjes integral. Indeed, as
we have already had occasion to mention before, it ensures that this lower integral is the
Choquet integral with respect to its restriction to events. Moreover, let C be the lattice of
events generated by all closed intervals of [0,1], i.e., the set consisting of /0 and all finite
unions of closed intervals of [0,1], and for any C = [x1,x2]∪ ·· · ∪ [x2n−1,x2n] in C with
x1 ≤ x2 ≤ ·· · ≤ x2n in [0,1], let

QF(C) := (RS)
∫ 1

0
IC(x)dF(x) =

n

∑
k=1

[F(x2k)−F(x2k−1)], (8)

and let QF( /0) = 0. Then C is a lattice of events containing both /0 and [0,1], and the
set function QF is the restriction of the lower Riemann–Stieltjes integral to C , and is
therefore a coherent and completely monotone lower probability. Moreover, we infer from
Equations (6) and (7) that for any event A

(RS)
∫ 1

0
IA(x)dF(x) = sup{QF(C) : C ∈ C ,C ⊆ A}= QF,∗(A),

so the lower Riemann–Stieltjes integral coincides on events with the inner set function
(the natural extension) QF,∗ of QF . Finally, since the lower Riemann–Stieltjes integral is a
coherent and completely monotone lower prevision, it coincides with the Choquet integral
of its restriction to events, whence

(RS)
∫ 1

0
h(x)dF(x) = (C)

∫
hdQF,∗ = infh+(R)

∫ suph

infh
QF,∗({h≥ t})dt

for any gamble h on [0,1].
The upper Riemann–Stieltjes integral (RS)

∫ 1
0h(x)dF(x) is defined similarly, with the

infima in Equation (6) replaced by suprema. Alternatively, because

(RS)
∫ 1

0
h(x)dF(x) =−(RS)

∫ 1

0
−h(x)dF(x),

it can be seen as a conjugate upper prevision. If the lower and the upper Riemann–Stieltjes
integrals coincide for some gamble h, we say that h is Riemann–Stieltjes integrable with
respect to F , and we call the common value the Riemann–Stieltjes integral of h with respect
to F . It follows from the complete monotonicity and coherence of F (when F(0) = 0) that
the set of all Riemann–Stieltjes integrable gambles constitutes a uniformly closed linear
lattice, and that a gamble is Riemann–Stieltjes integrable if and only if (the indicators of)
its cut sets {h≥ t} are Riemann–Stieltjes integrable for all but a countable number of real
numbers t.
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We are now able to investigate de Finetti’s suggestion that the natural extension EF of a
distribution function F can be written as the lower Riemann–Stieltjes integral with respect
to F . The following theorem shows that this is not always the case! It was first proven by
Troffaes in his doctoral dissertation [26, Theorem 4.59]. We give an alternative proof here
that is much shorter than his, because we are able to harness the power of the mathematical
machinery behind completely monotone coherent lower previsions.

Theorem 1. For any distribution function F on [0,1], EF(h) = (RS)
∫ 1

0
h(x)dF(x) for all

gambles h on [0,1] if and only if F is right-continuous (i.e., it has no right adherent masses)
and F(0) = 0.

Proof. We begin with the ‘necessity’ part. Take any x ∈ [0,1]. It follows from the definition
of the lower Riemann–Stieltjes integral that (RS)

∫ 1
0
I(x,1](t)dF(t) = 1−F(x+) whereas

EF((x,1]) = PF((x,1]) = 1−F(x). This shows that F must be right-continuous on [0,1].
Similarly, consider [0,x] for any x in [0,1], then (RS)

∫ 1
0
I[0,x](t)dF(t) = F(x)−F(0) and

EF([0,x]) = PF([0,x]) = F(x), so we also must have that F(0) = 0.
We now turn to the ‘sufficiency’ part. Assume that F(0) = 0 and that F is right-

continuous. First check, using Equations (2), (3) and (8) that in this case PF(B) = QF,∗(B)
for any B in Q and QF(C) = PF,∗(C) for any C in C . Then for any A⊆ [0,1],

PF,∗(A) = sup{PF(B) : B ∈Q,B⊆ A}= sup{QF,∗(B) : B ∈Q,B⊆ A}
= sup

B∈Q,B⊆A
sup{QF(C) : C ∈ C ,C ⊆ B}

≤ sup{QF(C) : C ∈ C ,C ⊆ A}= QF,∗(A),

and a completely symmetrical argument shows that QF,∗(A)≤ PF,∗(A). Hence the coherent
lower probabilities PF,∗ and QF,∗ coincide on all events, and so do therefore their natural
extensions EF and (RS)

∫ 1
0
·dF(x) on all gambles. �

3.3. Moments of a distribution function. Interestingly, any distribution function F pro-
duces precise moments, i.e., the polynomials pk defined by pk(x) := xk, k > 0 and p0(x) := 1
are always F-integrable. To see this, verify that for k > 0, {pk > t} is equal to (t

1
k ,1] if

t ≥ 0 and to [0,1] if t < 0, and that {p0 > t} equals [0,1] if t < 1 and /0 if t ≥ 1, so all the
strict cut sets belong to H , and are therefore F-integrable.

Using Equation (5), we find for the corresponding moments mk that for k > 0, after an
appropriate change of variables in the Riemann integral, and integration by parts,

mk := EF(pk) = EF(pk) = (R)
∫ 1

0
[1−F(t

1
k )]dt

= 1− (R)
∫ 1

0
kxk−1F(x)dx = (RS)

∫ 1

0
xk dF(x),

(9)

since PF,∗((t
1
k ,1]) = PF((t

1
k ,1]) = 1−F(t

1
k ). For k = 0 on the other hand, we have that

m0 = 1 and that

(RS)
∫ 1

0
x0 dF(x) = (RS)

∫ 1

0
1dF(x) = F(1)−F(0)

so we see that m0 = (RS)
∫ 1

0 x0 dF(x) if and only if F(0) = 0.
Let us therefore assume that F(0) = 0. Then all polynomials p on [0,1] are both F-

integrable and Riemann–Stieltjes integrable with respect to F . Since we have seen that
both EF and (RS)

∫ 1
0
·dF(x) are coherent and completely monotone lower previsions, it
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follows that both the F-integrable and the Riemann–Stieltjes integrable gambles constitute
a uniformly closed linear lattice. This implies that all continuous gambles are both F-
integrable and Riemann–Stieltjes integrable with respect to F . We conclude that for all
continuous gambles h ∈ C ([0,1]),

EF(h) = EF(h) = (RS)
∫ 1

0
h(x)dF(x),

and we can use the Riemann–Stieltjes integral to calculate the natural extension of F to
continuous gambles. We might be tempted to extrapolate this result and surmise that
more generally, we can use the lower Riemann–Stieltjes integral to calculate EF for all
gambles. Theorem 1 tells us however that we cannot expect this to be the case unless F is
right-continuous besides F(0) = 0. We shall have occasion to come back to the intriguing
connection between (lower) Riemann–Stieltjes integrals and the natural extensions of
distribution functions (and moment sequences) in the following sections.

3.4. Lower and upper distribution functions. Let us now turn to a more general problem.
Suppose we have two maps F ,F : [0,1]→ [0,1], which we interpret as a lower and an upper
distribution function, respectively. This means that F and F determine a lower probability
PF ,F on the set H given by Equation (1) as follows:

PF ,F([0,x]) = F(x) and PF ,F((x,1]) = 1−F(x)

for all x ∈ [0,1]. Walley has mentioned [27, Section 4.6.6] and Troffaes [26, Theorem 3.59,
p. 93] has shown that PF ,F is a coherent lower probability if and only if F ≤ F and both
F and F are distribution functions, i.e., non-decreasing and normalised. We shall assume
in what follows that these conditions are satisfied. Lower probabilities of this type are
sometimes called probability boxes, see for instance [16].

The natural extension EF ,F of the coherent lower probability PF ,F to all gambles is the
smallest coherent lower probability that coincides with PF ,F on H , or in other words, that
has lower and upper distribution functions F and F . It is the lower envelope of the set
M (F ,F) := M (PF ,F) = M (EF ,F) of all linear previsions whose distribution function F
satisfies F ≤ F ≤ F . In fact, we have the following result.5 Denote by

Φ(F ,F) =
{

F : F distribution function and F ≤ F ≤ F
}

(10)

the set of all distribution functions (non-decreasing and normalised) on [0,1] that lie between
F and F .

Theorem 2. M (F ,F) =
⋃

F∈Φ(F ,F) M (F), and so EF ,F is the lower envelope of all natural
extensions EF of the distribution functions F in Φ(F ,F): for all gambles h on [0,1],

EF ,F(h) = inf
{

EF(h) : F ∈Φ(F ,F)
}

.

Proof. Recall that for any linear prevision Q on L ([0,1]), Q has distribution function F
if and only if Q ∈M (F). Now Q ∈M (F ,F) if and only if the distribution function of Q
lies between F and F , so if and only if there is some F in Φ(F ,F) such that Q ∈M (F).
This means that indeed M (F ,F) =

⋃
F∈Φ(F ,F) M (F). Taking lower envelopes yields the

desired expression involving the natural extensions, since EF ,F is the lower envelope of
M (F ,F) and EF is the lower envelope of M (F). �

5This result was mentioned by Walley [27, Section 4.6.6]; we give a (straightforward) proof here for the sake
of completeness.
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4. DISTRIBUTION FUNCTIONS DETERMINED BY A MOMENT SEQUENCE

We have seen that a distribution function F always has precise moments, that is, if we
know the values that the prevision PF takes in H , there is a unique extension to the class
of polynomials, and as a consequence also to the class of continuous gambles, in which
the set of polynomial gambles is uniformly dense. In this section, we are going to study
the converse problem: to what extent do the values of the moments of a finitely additive
probability determine its distribution function? This is related to the so-called moment
problem, which we now turn our attention to.

4.1. Basic results for the moment problem. Let P be a linear prevision on the set

Vp([0,1]) :=
{

pk : k ≥ 0
}

.

The value mk := P(pk) is called the (raw) moment of order k of the distribution P. Then,
using linearity, we can determine the value of P in the set V ([0,1]) of all polynomial
gambles on [0,1], and since any continuous gamble is the uniform limit of a sequence
of polynomials, these determine the values of P on all elements of the set C ([0,1]) of
continuous gambles on [0,1]. Since trivially a linear prevision on C ([0,1]) determines the
values of all the moments, we see that there is a one-to-one correspondence between linear
previsions on Vp([0,1]) and those on C ([0,1]).

In a companion paper [21], we have investigated to which extent a sequence of moments
determines a finitely additive probability measure. Let us give a short survey of the results
we found there, as they will be useful in addressing the problem at hand.

First, we recalled a number of necessary and sufficient conditions for a real sequence
m := (mk)k≥0 in [0,1] to be the sequence of moments of some finitely additive probability
measure on the subsets of [0,1]. One such condition is the complete monotonicity of the
sequence m:

Definition 3. A sequence m in [0,1] is said to be completely monotone when m0 = 1 and
(−1)n∆nmk ≥ 0 for all k,n≥ 0, the ∆nmk are the n-th order differences defined recursively
by ∆nmk := ∆n−1mk+1−∆n−1mk and ∆0mk := mk.

We shall also call a completely monotone sequence a Hausdorff moment sequence,
referring to Hausdorff’s [17; 18] original study of the moment problem for σ -additive
probabilities. In these works, Hausdorff proved that the complete monotonicity of m is
also necessary and sufficient for the existence of a σ -additive probability measure with this
sequence of moments, which is moreover unique.

Secondly, we also studied to which extent a Hausdorff moment sequence m determines
its inducing probability measure. Observe that such a sequence uniquely determines a linear
prevision P̂m on the set C ([0,1]). This implies that the linear previsions on all gambles
with the given moment sequence m are precisely those linear previsions that extend P̂m.
Let M (m) denote the set of all these linear previsions. The lower and upper envelopes of
M (m) are given for any gamble h on [0,1] by

Em(h) = sup
{

P̂m(g) : g ∈ C ([0,1]),g≤ h
}

Em(h) = inf
{

P̂m(g) : g ∈ C ([0,1]),h≤ g
}

.
(11)

Any linear prevision on L ([0,1]) induces the moment sequence m if and only if it dom-
inates Em. Note that only one of the restrictions of these finitely additive probabilities
in M (m) to the Borel sets is also σ -additive. We shall denote this probability by Pσ

m , and
by Fσ

m its (right-continuous) distribution function.
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Next, we list some properties of Em and Em (proven in [21]). For this, let us define, for
any gamble h on [0,1], the gambles

h↑(x) = sup{g(x) : g ∈ C ([0,1]),g≤ h} ,

h↓(x) = inf{g(x) : g ∈ C ([0,1]),h≤ g} .
(12)

Theorem 3. [21] Consider a Hausdorff moment sequence m, and let Em be the functional
given by Equation (11). The following statements hold.
1. For any gamble h on [0,1], Em(h) = Em(h↑) and Em(h) = Em(h↓). In particular, for

any event A⊆ [0,1], Em(A) = Em(int(A)) and Em(A) = Em(cl(A)).
2. For any set A,

Em(A) = Em(int(A)) = ∑
I∈I (A)

Em(I), (13)

where I (A) is a countable family of disjoint open intervals whose union is int(A).
3. Em is a completely monotone and comonotone additive coherent lower prevision on

L ([0,1]), and for all gambles h on [0,1],

Em(h) = (C)
∫

hdEm := infh+(R)
∫ suph

infh
Em({h≥ t})dt

= infh+(R)
∫ suph

infh
Em({h > t})dt,

where the first integral is the Choquet integral associated with the restriction of Em to
events, and the second and third integrals are Riemann integrals.

Definition 4. Let m be a Hausdorff moment sequence, and let Em and Em be the lower and
upper previsions defined in Equation (11). The associated lower distribution function Fm
and upper distribution function Fm on [0,1] are given by

Fm(x) := Em([0,x]) and Fm(x) := Em([0,x])

for all x ∈ [0,1].

As we said before, a linear prevision has moment sequence m if and only if it belongs
to M (m); in that case, its distribution function belongs to the set Φ(Fm,Fm) that we can
define using Equation (10). We shall see in Theorem 6 later on that the converse also holds:
a linear prevision whose distribution function belongs to Φ(Fm,Fm) will always produce
the moment sequence m.

For any function f on [0,1] and any x ∈ [0,1] let f (x−) := limt→x,t<x f (t) denote the
left limit of f in x (if it exists) when x > 0, and let f (0−) := f (0). Similarly, let f (x+) :=
limt→x,t>x f (t) denote the right limit of f in x (if it exists) when x < 1, and let f (1+) :=
f (1). Let then DFm := {x ∈ [0,1] : Fm(x−) 6= Fm(x+)} denote the set of all points of
discontinuity of Fm, and DFm

=
{

x ∈ [0,1] : Fm(x−) 6= Fm(x+)
}

denote the set of points
where Fm is not continuous. Let Dm := DFm ∪DFm

denote their union. It follows from the
non-decreasing character of Fm and Fm that DFm and DFm

are countable subsets of [0,1],
and as a consequence so is their union Dm.

Proposition 4. [21] Let m be a Hausdorff moment sequence, and let Fm,Fm be its associ-
ated lower and upper distribution functions. The following statements hold:

(1) For any x ∈ [0,1], Fm(x+) = Fm(x) = Fm(x+).
(2) For any x ∈ (0,1), Fm(x−) = Fm(x) = Fm(x−).
(3) Fm(1−) = Fm(1−)≤ Fm(1) = Fm(1) = 1.
(4) Fm(0−) = Fm(0) = 0≤ Fm(0−) = Fm(0).
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We are now ready to find out what are the distribution functions that correspond to a
given Hausdorff moment sequence m. We shall see that the coherent lower prevision Em
helps us solve this problem.

4.2. First results.

Definition 5. A gamble h on [0,1] is called m-integrable when Em(h) = Em(h). We shall
denote by Em the restriction of Em (or Em) to the class of m-integrable gambles.

The transitivity of the natural extension ensures that Em is the natural extension of Em.
Since it follows from Theorem 3 that Em is determined by its restriction to events and these
are in turn determined by the values in open intervals, we only need to be interested in the
values that Em takes in the lattice Om generated by the open m-integrable intervals. Denote
by P̃m the restriction of Em (and therefore also Em) on Om. It is easy to see that the elements
of this lattice take the form

O = [0,x1)∪ (x2,x3)∪·· ·∪ (x2n−2,x2n−1)∪ (x2n,1] (14)

where 0≤ x1 ≤ x2 < x3 ≤ ·· · ≤ x2n−2 < x2n−1 ≤ x2n ≤ 1, xk 6∈Dm, and that

P̃m(O) = Fm(x1)+
n−1

∑
k=1

[Fm(x2k+1)−Fm(x2k)]+1−Fm(x2n). (15)

We now proceed to show that Em is actually equal to the natural extension EFm,Fm
of

the lower and upper distribution functions Fm and Fm, or in other words, that these two
functions already capture, in a very specific way, all the information that is present in the
moments. We first cite the following lemma, which follows immediately from Proposition 4.

Lemma 5. Consider a Hausdorff moment sequence m, and let F ∈Φ(Fm,Fm). Then
1. Fm(x) = F(x) = Fm(x) for all x 6∈Dm;
2. F(x−) = Fm(x−) = Fσ

m (x−) for all x ∈ (0,1];
3. F(x+) = Fm(x) = Fσ

m (x) for all x ∈ [0,1].

We see then that the distribution functions of the finitely additive probabilities with a
given sequence of moments m may only differ in the countable set Dm of discontinuity
points of Fm,Fm. On such points d, the difference between the distribution functions will
come from the distribution of the mass jumps between the left-adherent and right-adherent
parts, and P(d). That Φ(Fm,Fm) has such structure6 can be perhaps better understood if we
think of the moments produced by a distribution function by means of a Riemann-Stieltjes
integral, and the fact that this integral ‘flattens out’ adherent masses. We shall be more
precise about this in Proposition 15 further on.

Remark 2 (The uniqueness of the σ -additive probability measure with a given moment
sequence). This lemma allows for a very simple proof of the fact that there is only one
σ -additive probability with a given moment sequence m that satisfies the Hausdorff moment
condition, or in other words that there is only one σ -additive probability measure that
extends a linear prevision on the set of all continuous gambles on [0,1] (which is, essentially,
the F. Riesz Representation Theorem in the form mentioned by Feller [15, Section V.1]). On
the one hand, by the first statement in Proposition 4, the distribution function Fm is right-
continuous, and the associated σ -additive probability measure has moment sequence m. On
the other hand, let Pσ be any σ -additive probability on the Borel sets of [0,1] with moment
sequence m. Then its distribution function Fσ is right-continuous (by σ -additivity), and it

6We are grateful to one of the referees for drawing our attention to this.
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must belong to Φ(Fm,Fm). By the third statement of Lemma 5, we see that Fσ = Fm, so F
is uniquely determined, and therefore so is Pσ .7 �

Theorem 6. Consider a Hausdorff moment sequence m, and let Φ(Fm,Fm) be given by
Equation (10). Then the following statements hold.
1. For all F in Φ(Fm,Fm), the restriction of EF to the lattice of events Om generated by

the m-integrable open intervals is equal to P̃m.
2. For all F in Φ(Fm,Fm), EF dominates Em and therefore all m-integrable gambles are

also F-integrable: Lm ⊆LF .
3. Em = inf

{
EF : F ∈Φ(Fm,Fm)

}
= EFm,Fm

.

Proof. We begin with the first statement. Consider any distribution function F in the set
Φ(Fm,Fm) and any finite union O ∈ Om of m-integrable open intervals. Such a union
has the form given by Equation (14). If we now apply Equations (2) and (4), we find in
particular that for this union, if x1 > 0,

EF(O) = PF,∗(O) = F(x1−)+
n−1

∑
k=1

[F(x2k+1−)−F(x2k)]+1−F(x2n)

= Fm(x1)+
n−1

∑
k=1

[Fm(x2k+1)−Fm(x2k)]+1−Fm(x2n),

where the last equality follows from Lemma 5 and Proposition 4. Similarly, if x1 = 0, we
get

EF(O) = PF,∗(O) =
n−1

∑
k=1

[F(x2k+1−)−F(x2k)]+1−F(x2n)

=
n−1

∑
k=1

[Fm(x2k+1)−Fm(x2k)]+1−Fm(x2n).

If we compare these expressions with Equation (15), we see that EF(O) = P̃m(O), so P̃m
(and therefore Em) and EF coincide on Om. This proves the first statement.

Since Em is the natural extension of P̃m, and therefore the smallest coherent lower
prevision that extends P̃m, we see that EF ≥ Em. So for any gamble h on [0,1], Em(h) ≤
EF(h)≤ EF(h)≤ Em(h). If h is m-integrable gamble, then Em(h) = Em(h), whence also
EF(h) = EF(h), so h is F-integrable as well. This completes the proof of the second
statement.

To prove the third statement, use Theorem 2 to deduce from EF ≥ Em that EFm,Fm
≥ Em.

For the converse inequality, recall that since the coherent lower prevision Em has lower
distribution function Fm and upper distribution function Fm, it must dominate the smallest
coherent lower prevision EFm,Fm

with these lower and upper distribution functions, so
Em ≥ EFm,Fm

. �

We see from this Theorem that, given a distribution function F in Φ(Fm,Fm), and
a linear prevision P with distribution function F , the linear prevision P belongs to the

7An astute reader might worry at this point about the appearance of Fσ
m in Lemma 5, which might lead him

to suspect that our reasoning here is circular. But there is no real cause for concern: in no essential part of the
development so far have we needed the existence nor uniqueness of a σ -additive probability measure that produces
the moment sequence m. We could essentially have dropped every mention of Pσ

m and Fσ
m until now, and used

Lemma 5 to prove their existence and uniqueness.
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class M (EF) ⊆M (Em), and as a consequence the moment sequence of P is m. Hence,
Φ(Fm,Fm) is exactly the class of distribution functions whose moment sequence is m.

Next, we establish a number of necessary and sufficient conditions for the equality
Fm = Fm, or, equivalently, for the uniqueness of the distribution function with a given
sequence of moments. As it could be expected, it amounts to the m-integrability of all the
sets in H , which in turn means that the only distribution function inducing these moments
is (except for maybe at 1) continuous.

Corollary 7. Consider a Hausdorff moment sequence m. Then the following statements
are equivalent.
1. Fm = Fm whence in particular Fm(0) = 0;
2. Fm, Fm and Fσ

m are continuous on [0,1);
3. Em = EF for some F ∈Φ(Fm,Fm);
4. Em = EF for all F ∈Φ(Fm,Fm);
5. Em = (RS)

∫ 1
0
·dF(x) for all F ∈Φ(Fm,Fm).

Proof. It is clear from Proposition 4 that the first two statements are equivalent.
We now give a circular proof of the equivalence of statements 1, 3 and 4. The fourth

statement implies the third. To show that the third statement implies the first, consider any
x ∈ [0,1] and the distribution function F for which Em = EF . Then it follows from the
assumption that Fm(x) = Em([0,x]) = EF([0,x]) = F(x). But it follows by conjugacy that
also Em = EF , so Fm(x) = Em([0,x]) = EF([0,x]) = F(x). This means that Fm = Fm. So
we are left to show that the first statement implies the fourth. It follows from Fm = Fm that
Φ(Fm,Fm) only contains one distribution function Fm = Fm, and Theorem 6 then tells us
that indeed Em = EFm

= EFm
.

To complete the proof, assume that any (and hence all) of the first four statements hold.
Then in particular Em = EFm

(statement 4). Now, since Fm is right-continuous and satisfies
Fm(0) = 0 (statement 1), we know from Theorem 1 that also EFm

= (RS)
∫ 1

0
·dFm(x).

Since Fm is the only element of Φ(Fm,Fm) (statement 1), we see that the fifth statement
holds. Conversely, it follows from the assumption that Em = (RS)

∫ 1
0
·dFm(x). In particular,

1 = Em(1) = (RS)
∫ 1

0
1dFm(x) = Fm(1)−Fm(0), so Fm(0) = 0 = Fm(0). Moreover, for all

0 < x≤ 1, Fm(x) = (RS)
∫ 1

0
I[0,x](t)dFm(t) = Fm(x)−Fm(0) = Fm(x). �

Remark 3 (Distribution functions are more informative than moment sequences). Let us
then argue that, for finitely additive probabilities, specifying a distribution function F is
generally speaking more informative than specifying a moment sequence (contrary to what
we are used to for σ -additive probabilities). Indeed, let F be a distribution function on [0,1].
We have seen in Section 3.3 that F produces a precise moment sequence m with m0 = 1
and mk = (RS)

∫ 1
0 xk dF(x), k > 0; and it is clear that this moment sequence satisfies the

Hausdorff moment condition. By Theorem 6, EF ≥ Em and Lm ⊆LF , so EF is indeed
generally more informative than Em. And Corollary 7 makes us conclude that Em = EF
only if EF is equal to the lower Riemann–Stieltjes integral associated with F , which (due to
Theorem 1) holds if and only if F is continuous on [0,1) and F(0) = 0. �

In Section 3.1, we have studied the relationship between the natural extension of a
distribution function F and the lower and upper Riemann-Stieltjes integrals. We now
consider the more general situation where our information is given by a moment sequence m.
We have already argued that in that case the linear previsions with that moment sequence are
those that lie between Em and Em, and that the corresponding distribution functions are those
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that lie between Fm and Fm. We may be tempted to think that Em and Em coincide with
the lower and upper Riemann–Stieltjes integrals with respect to Fm and Fm, respectively.
However, this is generally not the case. The relationship between them is given by the
following theorem.

Theorem 8. Consider a Hausdorff moment sequence m. For any F ∈Φ(Fm,Fm) such that
F(0) = 0 and any gamble h on [0,1],

Em(h)≤ (RS)
∫ 1

0
h(x)dF(x)≤ (RS)

∫ 1

0
h(x)dF(x)≤ Em(h).

Moreover, we have that

Em(h) = inf
F∈Φ(Fm,Fm)

(RS)
∫ 1

0
h(x)dF(x)

for all gambles h on [0,1] if and only if Fm(0) = 0, or equivalently, 0 6∈Dm.

Proof. We begin with the first part. Consider any finite union O ∈ Om of m-integrable open
intervals, which always has the form given by Equation (14). Consider any F ∈Φ(Fm,Fm),
then it follows from the definition of the lower Riemann–Stieltjes integral that if x1 > 0,
(RS)

∫ 1
0
IO(x)dF(x) is equal to

F(x1−)−F(0)+
n−1

∑
k=1

[F(x2k+1−)−F(x2k+)]+1−F(x2n+)

= Fm(x1)−F(0)+
n−1

∑
k=1

[Fm(x2k+1)−Fm(x2k)]+1−Fm(x2n)

= P̃m(O)−F(0),

where the first equality follows from Lemma 5, and the fact that xk /∈Dm for all k, and the
second one from Equation (15). A similar reasoning allows us to deduce that P̃m(O) =
(RS)

∫ 1
0
IO(x)dF(x) if x1 = 0. So if F(0) = 0, we see from Section 3.2 that (RS)

∫ 1
0
·dF(x) is

a coherent lower prevision, and the above developments imply that it coincides with the
coherent lower probability P̃m on Om, and therefore dominates the smallest coherent lower
prevision Em that coincides with P̃m on Om: (RS)

∫ 1
0
·dF(x) ≥ Em. The other inequalities

follow immediately from conjugacy.
We now turn to the equality involving lower Riemann–Stieltjes integrals. Consider

0 < a < 1. Then, for any F ∈ Φ(Fm,Fm), (RS)
∫ 1

0
I[0,a)(x)dF(x) = F(a−)− F(0) =

Fm(a)−F(0) by Lemma 5 and the second statement of Proposition 4, so

inf
F∈Φ(Fm,Fm)

(RS)
∫ 1

0
I[0,a)(x)dF(x) = Fm(a)−Fm(0)

and this is equal to Em([0,a)) = Fm(a) [use Proposition 4 and the monotonicity of Em]
only if Fm(0) = 0. Hence, the condition is necessary. Let us prove now that it is also
sufficient. Assume therefore that Fm(0) = 0, or equivalently, 0 6∈Dm. Consider any F in
Φ(Fm,Fm). Then by assumption F(0) = 0, so we know from Section 3.2 that the lower
Riemann–Stieltjes integral with respect to F is a completely monotone lower prevision
on all gambles, which is therefore the natural extension of its restriction QF,∗ to events.
QF,∗ is the natural (inner) extension to events of QF , which is defined on the lattice C of
events generated by all closed intervals of [0,1] by Equation (8). Now observe that for
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any event C = [x1,x2]∪ ·· ·∪ [x2n−1,x2n] in C we have, taking into account Equations (2)
and (3), F(0) = 0 and F(1) = 1, that

QF(C) =
n

∑
k=1

[F(x2k)−F(x2k−1)] = PF((x1,x2]∪·· ·∪ (x2n−1,x2n])≤ PF,∗(C).

Consequently, we find for any event A⊆ [0,1] that

QF,∗(A) = sup{QF(C) : C ∈ C ,C ⊆ A} ≤ sup{PF,∗(C) : C ∈ C ,C ⊆ A}
= sup

C∈C ,C⊆A
sup{PF(B) : B ∈Q,B⊆C} ≤ sup{PF(B) : B ∈Q,B⊆ A}

= PF,∗(A),

and therefore also (RS)
∫ 1

0
h(x)dF(x)≤ EF(h) for all gambles h on [0,1]. From Theorem 6,

we then deduce that

Em(h) = inf
F∈Φ(Fm,Fm)

EF(h)≥ inf
F∈Φ(Fm,Fm)

(RS)
∫ 1

0
h(x)dF(x)

for any gamble h. The converse inequality follows from the first part. �

Remark 4 (On the F. Riesz Representation Theorem). It follows from Theorem 8 that if
a gamble h is m-integrable, then it is Riemann–Stieltjes integrable with respect to any
F ∈Φ(Fm,Fm) such that F(0) = 0, and moreover

Em(h) = Em(h) = (RS)
∫ 1

0
h(x)dF(x) = EF(h) = EF(h). (16)

This holds in particular for all continuous gambles on [0,1], which strengthens the conclu-
sions in Section 3.3. We shall be able to further strengthen this statement in Corollary 17
below.

But Equation (16) for continuous gambles is actually a statement of the original form
of the F. Riesz Representation Theorem ([23], see also [24, Section 50]). Indeed, we
already know that specifying a Hausdorff moment sequence m is equivalent to considering a
positive (normalised) linear functional P̂m on the set C ([0,1]) of all continuous gambles on
[0,1]. And for such a functional, we now see that P̂m = (RS)

∫ 1
0 ·dF(x) for all distribution

functions F in Φ(Fm,Fm) such that F(0) = 0. Since it is clear that there are such distribution
functions (for instance Fm), we have indeed proven that any positive linear functional
on C ([0,1]) can be written as the Riemann–Stieltjes integral with respect to some non-
decreasing function.8 Conversely, it is trivial that the Riemann–Stieltjes integral associated
with a distribution function F such that F(0) = 0 is the restriction of the lower Riemann–
Stieltjes integral (a coherent lower prevision) to the uniformly closed linear lattice of all
Riemann–Stieltjes integrable gambles. Hence, the Riemann–Stieltjes integral is a linear
prevision on this lattice, and therefore a positive linear functional.

Observe that this proof is, as far as we can see, constructive, because it is based on the
constructible natural extension Em (and on the constructive version of the Stone–Weierstraß
theorem using approximations of continuous gambles by Bernstein polynomials). Contrary
to Banach’s fairly well-known unconstructive proof [2] it does not rely on the Hahn–Banach
Theorem. Observe, by the way, that there is a small and easily correctable mistake in
Banach’s proof which involves, interestingly and tellingly, the assumption F(0) = 0.9 It is
also of historical interest to note that in F. Riesz’s approach, as reported in [24, Section 50],

8Normalisation is not an issue here.
9We owe this remark to Eric Schechter.
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as well as in Daniell’s [6] more general treatment of the extension problem, the proof
proceeds by analogy of Dedekind’s construction of the reals (see for instance [7, Chapter 2]
for an interesting discussion of so-called Dedekind–MacNeille completion of partially
ordered sets to complete lattices) showing that the linear functional on the continuous
gambles can be extended uniquely to a linear functional satisfying monotone convergence10

on the convex cone of lower semi-continuous gambles, and then proceeding from there
using the, by now familiar, inner and outer extensions. Since we cannot generally assume
monotone convergence for our finitely additive extensions, we do not have uniqueness of
the extending positive linear functionals on the cone of lower semi-continuous functions,
and we have to use inner extension earlier in the process to get to Em. But interestingly,
we do still have that the natural extension Em is completely determined by the values it
assumes on lower semi-continuous gambles; see Theorem 3. In fact, we shall see further on
in Theorem 16 that Em coincides on the convex cone of lower semi-continuous gambles
with the unique extension satisfying monotone convergence constructed in the manner of
F. Riesz and Daniell described above. Dual (conjugate) statements can be made for Em. �

5. INTERESTING EXPRESSIONS FOR Em

We are now going to combine all the previous results in order to derive a very elegant
expression for Em. In order to get there, we only need to take a closer look at distribution
functions and their discontinuity points.

Consider any distribution function F in Φ(Fm,Fm). Then since F is non-decreasing
its set of discontinuities is a countable subset of [0,1]. From Lemma 5, it is moreover a
subset of Dm. Let us introduce a new distribution function F− by letting F−(x) := F(x−)
if x ∈ (0,1] and F−(0) := 0.11 Then we may infer from Lemma 5 that the sum of the
probability masses concentrated in the discontinuity points

∑
d∈Dm

[F(d+)−F−(d)] = ∑
d∈Dm

[Fm(d)−Fm(d−)] =: µm (17)

is the same for every F in Φ(Fm,Fm), and completely determined by Fm and Fm (and
therefore by the moment sequence m). Since µm is the sum of the jumps of F at its
discontinuity points, we must have that 0≤ µm ≤ 1.

Then we can write F as a convex mixture

F = µmFb +(1−µm)Fc (18)

of a continuous distribution function Fc and a ‘pure break function’ Fb, which is a uniformly
and absolutely convergent sum (convex mixture) of simple break functions.12 Explicitly, we

10We say that a linear functional L satisfies monotone convergence on some set of gambles K if for any
monotone sequence of gambles fn in K that converges point-wise to some gamble f in K , it holds that
L( fn)→ L( f ).

11We introduce this new notation because if d is a discontinuity point of F then the mass jump in d is
F(d+)−F(d−) if d > 0. But if d = 0, then this mass jump is F(0+), and we introduced the convention before
that F(0−) := F(0), which may be different from zero whereas F−(0) is defined to be zero. So the new notation
allows us to write F(d+)−F−(d) for the mass jump in every d.

12This idea is explained more extensively in [13, Section 6.2] and [19, Section II.13].
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have for all x ∈ [0,1]

µmFb(x) := ∑
d∈Dm

[F(d+)−F−(d)]β
(

x;d,
F(d)−F−(d)

F(d+)−F−(d)

)
= ∑

d∈Dm

[Fm(d)−Fm(d−)]β (x;d,sm(F,d))

= F(x)−Fm(x−)+ ∑
d∈Dm,d<x

[Fm(d)−Fm(d−)] (19)

using Lemma 5, where we let

sm(F,d) :=
F(d)−Fm(d−)

Fm(d)−Fm(d−)
, (20)

and β is the simple break function defined in Example 1. On the other hand,

(1−µm)Fc(x) := F(x)−µmFb(x) = Fm(x−)− ∑
d∈Dm,d<x

[Fm(d)−Fm(d−)].

We see that the continuous part Fc is the same for all distributions F in Φ(Fm,Fm), and
completely determined by the lower and upper distribution functions Fm and Fm. We shall
denote it by Fm. Observe that Fm(0) = 0. The pure break parts are identical in all the
continuity points of Fm and Fm, and differ only by the values F(d) they assume in the
countably many discontinuity points d ∈Dm. Indeed, we can get to all F in Φ(Fm,Fm) by
for each such break point d assigning to F(d) any value in [Fm(d),Fm(d)] (independently
of all the other break points) if d < 1, or equivalently, assigning to sm(F,d) any value in
[0,1]; if d = 1 is a break point, then there is of course only one possible choice F(1) = 1, or
sm(F,1) = 1.

We then find in particular for F = Fm and F = Fm that, with obvious notations,

Fm = µmFm,b +(1−µm)Fm and Fm = µmFm,b +(1−µm)Fm (21)

where for all x ∈ [0,1)

µmFm,b(x) = ∑
d∈Dm,d≤x

[Fm(d)−Fm(d−)] (22)

and
µmFm,b(x) = ∑

d∈Dm,d<x
[Fm(d)−Fm(d−)], (23)

and where we have also used the second statement in Proposition 4. In particular, for any
break point d < 1, we have that sm(Fm,d) = 0 and sm(Fm,d) = 1. It is not hard to see
(check also Proposition 13 further on) that Fm,b and Fm,b are exactly the lower and upper
distribution functions produced by the moment sequence mb, where

(mb)k = ∑
d∈Dm

Fm(d)−Fm(d−)
µm

dk = ∑
d∈Dm

[Fm,b(d)−Fm,b(d−)]dk

which corresponds to a discrete σ -additive probability measure with probability mass
Fm,b(d)−Fm,b(d−) concentrated in the elements d of Dm.

Indeed, we shall see that we can decompose the moment sequence m into a ‘continuous’
part mc and a ‘discrete’ part mb. This is due to the convexity property of the natural extension
established in the following two lemmas.
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Lemma 9. Let F1 and F2 be two distribution functions on [0,1], and let, for α ∈ [0,1],
the distribution function F = αF1 +(1−α)F2 be a convex mixture of F1 and F2. Then
(RS)

∫ 1
0
·dF(x) = α(RS)

∫ 1
0
·dF1(x)+(1−α)(RS)

∫ 1
0
·dF2(x) and EF = αEF1

+(1−α)EF2
.

Proof. For the lower Riemann–Stieltjes integral, observe that the subdivisions of [0,1] form
a directed set under the refinement relation, and that consequently, such a lower integral is a
Moore–Smith limit. Since the limit of a convex mixture is the convex mixture of the limits,
the result follows.

For the natural extensions, the reasoning is similar, if somewhat more involved. First of
all, consider the natural extension to all events. Since the set Q is a lattice of events, it is
closed under unions, and therefore constitutes a directed set under the inclusion relation.
This ensures that the supremum in Equation (4) is actually a Moore–Smith limit. Since
the limit of a convex mixture is the convex mixture of the limits, the result follows for
the natural extension to events. For the natural extension to gambles, the proof is now an
immediate consequence of Equation (5) and the linearity of the Riemann integral. �

Lemma 10. Let m′ and m′′ be two Hausdorff moment sequences, and consider, for any
α ∈ [0,1], the moment sequence m := αm′+(1−α)m′′ (a convex mixture). Then m satisfies
the Hausdorff moment condition as well, and Em = αEm′ +(1−α)Em′′ .

Proof. First of all, m0 = α1 +(1−α)1 = 1 and moreover (−1)n∆nmk = α(−1)n∆nm′k +
(1−α)(−1)n∆nm′′k ≥ 0 for any k,n ≥ 0, so m satisfies the Hausdorff moment condition.
Observe (i) that P̂m = αP̂m′ +(1−α)P̂m′′ , (ii) that Equation (11) tells us that the natural
extension of a moment sequence is a Moore–Smith limit, and (iii) that the limit of a convex
mixture is the convex mixture of the limits. �

Applying these results, we deduce that

mk = (1−µm)(mc)k + µm(mb)k

= (1−µm)(RS)
∫ 1

0
xk dFm(x)+ ∑

d∈Dm

[Fm,b(d)−Fm,b(d−)]dk,

for all k ≥ 0 [for the first term, observe that Fm(0) = 0 and recall the results of Section 3.3]
and that

Em = (1−µm)Emc + µmEmb
= (1−µm)EFm + µmEmb

.

Remark 5. It is instructive to derive these results in an alternative manner. We may infer
from Theorem 8 that any distribution function F in Φ(Fm,Fm) produces the moment
sequence m. But then Equation (9) leads to the conclusion that for k > 0,

mk = (RS)
∫ 1

0
xk dF(x) = (RS)

∫ 1

0
xk dFm(x) = (RS)

∫ 1

0
xk dFm(x).

Now Equations (18)–(23), together with a property of Riemann–Stieltjes integrals, which
gives a decomposition for the Riemann–Stieltjes integral as a convex mixture of a continuous
and a break part (see for instance [19, Theorem 13.8, p. 60]), allow us to rewrite any of
these Riemann–Stieltjes integrals as

(1−µm)(RS)
∫ 1

0
xk dFm(x)+ ∑

d∈Dm

[Fm,b(d)−Fm,b(d−)]dk. �

Proposition 13 below provides a ‘converse’ to these results. Before we can prove it, we
need to introduce some additional concepts.



FINITELY ADDITIVE EXTENSIONS OF DISTRIBUTION FUNCTIONS AND MOMENT SEQUENCES 21

Definition 6. Define, for d ∈ [0,1], the functionals oscd and oscd on L ([0,1]) by

oscd(h) := sup
d∈B∈T

inf
z∈B

h(z) and oscd(h) := inf
d∈B∈T

sup
z∈B

h(z)

for all gambles h on [0,1], where T is the topology of the open subsets of [0,1].

The functional oscd is a completely monotone coherent lower prevision on L ([0,1])
and oscd is its conjugate upper prevision. Indeed, for any open interval B ⊂ [0,1], the
vacuous lower prevision PB(h) = infz∈B h(z) is coherent and completely monotone, and
oscd is a Moore–Smith limit of such vacuous lower previsions, which is consequently also
completely monotone and coherent. It is easy to prove that for any gamble h on [0,1],

oscd(h)−oscd(h) = inf
d∈B∈T

sup
z,z′∈B

|h(z)−h(z′)| := oscd(h)

is the so-called oscillation of h in d (see for instance [25, Section 18.28]), and it is known
that h is continuous in d if and only if oscd(h) = 0, or in other words if oscd(h) = oscd(h).
Because of this, we shall call oscd(h)≤ h(d) the lower oscillation of h in d, and oscd(h)≥
h(d) the upper oscillation. Also, if h has a left and right limit in d, we get oscd(h) =
min{h(d−),h(d),h(d+)}.

The following lemma tells us that the gamble osc(h) which maps any x in [0,1] to
oscx(h) is the point-wise greatest lower semi-continuous gamble that is dominated by h,
and similarly that osc(h) is the point-wise smallest upper semi-continuous gamble that
dominates h. They coincide moreover with the gambles h↑,h↓ defined in Equation (12).
Also, the gamble osc(h) that maps any x in [0,1] to oscx(h) is upper semi-continuous as the
sum of two upper semi-continuous gambles osc(h) and −osc(h) = osc(−h).

Lemma 11. Consider any gamble h on [0,1]. Then h↑ = osc(h) is the point-wise greatest
lower semi-continuous gamble on [0,1] that is dominated by h. Similarly, h↓ = osc(h) is
the point-wise smallest upper semi-continuous gamble on [0,1] that dominates h.

Proof. It follows from the definition of osc(h) that for any real t, {osc(h)> t}= int({h > t}).
This implies that {osc(h) > t} is open, so osc(h) is lower semi-continuous. Now let g be
a lower semi-continuous gamble on [0,1] that is dominated by h. Then for any real t,
{g > t} ⊆ {h > t}, whence {g > t} = int({g > t}) ⊆ int({h > t}) = {osc(h) > t}. This
implies that for any d ∈ [0,1],

g(d) = sup{t : d ∈ {g > t}} ≤ sup{t : d ∈ {osc(h) > t}}= oscd(h),

so g ≤ osc(h). This already tells us that osc(h) is the point-wise greatest lower semi-
continuous gamble on [0,1] that is dominated by h. We now prove that h↑ = osc(h).
Observe that h↑ is lower semi-continuous, as a point-wise supremum of continuous gambles.
Hence h↑ ≤ osc(h). To prove the converse inequality, consider any d in (0,1), and consider
a B ∈ T that contains d. Then there is some B′ ⊂ B in T that also contains d and such
that infB′ > infB and supB′ < supB. Define the gamble g to be constant and equal to infh
outside B, constant and equal to infz∈B h(z) on B′ and linear on the intervals (infB, infB′]
and [supB′,supB). Then g≤ h and g is continuous, so it follows from the definition of h↑

that h↑(d)≥ g(d) = infz∈B h(z). Hence h↑(d)≥ supd∈B∈T infz∈B h(z) = oscd(h). The case
where d ∈ {0,1} is similar. �

Lemma 12. Let h be a gamble on [0,1]. Then for any d ∈ [0,1],

(R)
∫ suph

infh
Iint({h≥t})(d)dt = oscd(h)− infh.
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Proof. It follows from the equality {oscd(h) > t}= int({h > t}), valid for all t. �

Proposition 13. Consider a countable subset D of [0,1], and (strictly) positive real αd ,
d ∈D that sum to one. Let the moment sequence m be given by m0 = 1 and mk = ∑d∈D αddk,
k > 0. Then this moment sequence satisfies the Hausdorff moment condition. Moreover,
µm = 1, Dm = D and for any x ∈ [0,1],

Fm(x−) = Fm,b(x−) = ∑
d∈D ,d<x

αd and Fm(x) = Fm,b(x) = ∑
d∈D ,d≤x

αd . (24)

Finally, for any gamble h on [0,1],

Em(h) = ∑
d∈D

αd oscd(h) (25)

Proof. Let Pσ be the σ -additive probability measure on the Borel sets of [0,1] with proba-
bility mass Pσ ({d}) = αd in d ∈D . Then this probability measure has moment sequence m,
so m must satisfy the Hausdorff moment condition, and Pσ is the only σ -additive probabil-
ity measure with this moment sequence, i.e., Pσ = Pσ

m . We denote the (right-continuous)
distribution function of this Pσ

m by Fσ
m . By σ -additivity, we have for all x ∈ [0,1] that

Fσ
m (x) = Pσ

m ([0,x]) = ∑
d∈D ,d≤x

αd ,

and Equation (24) now follows from Proposition 4 and Lemma 5. The set DFm of discontinu-
ity points of Fm is therefore given by D and similarly DFm

= D \{0}. Hence Dm = DFm ∪
DFm

= D . For any d ∈D we also infer from Equation (24) that Fm(d)−Fm(d−) = αd , so
µm = ∑d∈D αd = 1 by Equation (17). Then, because µm = 1, it also holds that Fm = Fm,b
and Fm = Fm,b.

We now prove Equation (25). Use Theorem 3 and Equation (24) to show that for any
B ∈T , Em(B) = ∑d∈B∩D αd . We can then use Theorem 3 to find that for any A⊆ [0,1],

Em(A) = ∑
d∈D∩int(A)

αd = ∑
d∈D

αdIint(A)(d).

(Recall that osc(IA) = I↑A = Iint(A).) Now consider any gamble h on [0,1], and label the
elements of D with natural numbers, so D = {dk : k ≥ 0}. Define the gambles gn on R by
gn(t) := ∑

n
k=0 αdk Iint({h≥t})(dk). Then 0≤ gn ≤ 1, so this sequence is uniformly bounded.

Moreover, for each t ∈ R,

lim
n→∞

gn(t) =
∞

∑
k=0

αdk Iint({h≥t})(dk) = ∑
d∈D

αdIint({h≥t})(d) = Em({h≥ t}).

Since we know by Theorem 3 that Em is the Choquet functional associated with its restriction
to events, we can invoke a known convergence result for Riemann integrals (Osgood’s
Theorem, see for instance [19, Theorem 15.6, pp. 71–74]) to pull the limit through the
integral and deduce that

Em(h) = infh+(R)
∫ suph

infh
Em({h≥ t})dt

= infh+ lim
n→∞

n

∑
k=0

αdk(R)
∫ suph

infh
Iint({h≥t})(dk)dt

= ∑
d∈D

αd

[
infh+(R)

∫ suph

infh
Iint({h≥t})(d)dt

]
= ∑

d∈D
αd oscd(h),

where the last equality follows from Lemma 12. �
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If we combine all the foregoing results in this section, we get the following central result,
which is one of the ‘interesting formula for Em’ we promised to derive.

Theorem 14. Consider a Hausdorff moment sequence m. Then for any gamble h on [0,1]

Em(h) = (1−µm)EFm(h)+ ∑
d∈Dm

[Fm(d)−Fm(d−)]oscd(h), (26)

where osc is the lower oscillation given by Definition 6. Moreover, it holds in general that
EFm = (RS)

∫ 1
0
·dFm(x), but we have

Em = inf
{

(RS)
∫ 1

0
·dF(x) : F ∈Φ(Fm,Fm)

}
⇔ Fm(0) = 0.

Proof. The first statement follows from Lemmas 9 and 10, and Proposition 13; the second,
from Corollary 7. Finally, the equivalence is a consequence of Theorem 8. �

Proposition 15. Consider a continuous distribution function F on [0,1] such that F(0) = 0,
and the associated moment sequence m given by mk = (RS)

∫ 1
0 xk dF(x), k ≥ 0. Then

Fm = Fm = Fm = F and Em = EF = (RS)
∫ 1

0
·dF(x). Moreover, the following statements

are equivalent for any gamble h on [0,1]:
1. h is m-integrable;
2. h is F-integrable;
3. h is Riemann–Stieltjes-integrable with respect to F.
Finally, for all gambles f on [0,1],

Em( f ) = EF( f ) = (RS)
∫ 1

0
f (x)dF(x)

= (RS)
∫ 1

0
oscx( f )dF(x) = (LS)

∫ 1

0
oscx( f )dF(x).

Proof. From Lemma 5, we deduce that Fm(x) = Fm(x) for all x ∈ (0,1]. Moreover, the
lemma also implies that Fm(0) = F(0) = 0. The equivalence between the first three
statements follows then from Corollary 7.

Finally, the first three equalities in the last chain follow from Theorem 3 and the first part
of this proposition. For the last equality, let us prove that Em and the (LS) integral coincide
on lower semi-continuous gambles.

First, consider an open set A. Then, there is a countable family of pair-wise disjoint
open intervals In such that A =

⋃
n In. For any n, we know that (LS)

∫ 1
0 IIn(x)dF(x) =

F(sup In)−F(inf In) = Em(In), where the last equality follows from the first part of this
corollary. Moreover,

(LS)
∫ 1

0
IA(x)dF(x) = (LS)

∫ 1

0
I⋃n In(x)dF(x) = lim

n→∞
(LS)

∫ 1

0
I⋃n

k=1 Ik(x)dF(x)

= lim
n→∞

n

∑
k=1

(LS)
∫ 1

0
IIk(x)dF(x) = lim

n→∞

n

∑
k=1

Em(Ik) = Em(A),

where the second equality is a consequence of the monotone convergence of the Lebesgue–
Stieltjes functional and the last one follows from Equation (13).

Now, let us consider a gamble f on [0,1], and let osc( f ) be its lower oscillation. Then,
the strict cut sets {osc( f ) > t} of osc( f ) are open for all real t. Since both Em and the
Lebesgue–Stieltjes integral operator are completely monotone and coherent functionals
(see [10]), they are equal to the Choquet integrals with respect to their restrictions to
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events. From this, we deduce that Em( f ) = (LS)
∫ 1

0 oscx( f )dF(x), also taking into account
that osc( f ) is Borel-measurable (its strict cut sets are), and therefore Lebesgue–Stieltjes
integrable. �

Theorem 16. Consider a Hausdorff moment sequence m. Then for all gambles h on [0,1],

Em(h) = (LS)
∫ 1

0
oscx(h)dFσ

m (x). (27)

Proof. It follows from Theorem 14 and Proposition 15 that, since Fm is by construction
continuous and satisfies Fm(0) = 0,

Em(h) = (1−µm)(LS)
∫ 1

0
oscx(h)dFm(x)+ ∑

d∈Dm

[Fm(d)−Fm(d−)]oscd(h)

for any gamble h on [0,1]. Now using Equations (21) and (22), and the fact that Fm = Fσ
m

[Lemma 5], we see that for all x ∈ [0,1)

Fσ
m (x) = (1−µm)Fm(x)+ ∑

d∈Dm,d≤x
[Fm(d)−Fm(d−)].

Combining these two equalities leads to the desired result. �

Corollary 17. Consider a Hausdorff moment sequence m. Then the following statements
are equivalent for any gamble h on [0,1]:
1. h is m-integrable;
2. h is continuous in all the discontinuity points d ∈ Dm, as well as Riemann–Stieltjes-

integrable with respect to Fm (or equivalently Fm-integrable) if µm < 1;
3. (LS)

∫ 1
0 oscx(h)dFσ

m (x) = 0, i.e., h is continuous almost everywhere with respect to the
unique σ -additive probability measure induced by the moment sequence m.

4. Em(osc(h)) = 0.
Moreover, for any m-integrable gamble h we have

Em(h) = (RS)
∫ 1

0
h(x)dFm(x) = (RS)

∫ 1

0
h(x)dFm(x)

= (1−µm)(RS)
∫ 1

0
h(x)dFm(x)+ ∑

d∈Dm

[Fm(d)−Fm(d−)]h(d).

Proof. We derive from Equations (26) and (27) that

Em(h)−Em(h) = (1−µm)[EFm(h)−EFm(h)]+ ∑
d∈Dm

[Fm(d)−Fm(d−)]oscd(h)

= (LS)
∫ 1

0
oscx(h)dFσ

m (x),

also using that osc(h) is upper semi-continuous and therefore Borel-measurable. This shows
that the first three statements are equivalent. We now prove that the first statement implies
the fourth. Since Em is coherent and therefore monotone and sub-additive, we get

0≤ Em(osc(h)) = Em(osc(h)−osc(h))≤ Em(osc(h))+Em(−osc(h))

= Em(osc(h))−Em(osc(h)) = Em(h)−Em(h),

where the last equality follows from Theorem 3 and Lemma 11. So if h is m-integrable,
then Em(h) = Em(h) and therefore also Em(osc(h)) = 0. Let us also prove that the fourth
statement implies the third; the rest of the proof is then obvious. Observe that the positive
and normed linear continuous functional on the Borel-measurable gambles on [0,1], given
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by (LS)
∫ 1

0 ·dFσ
m (x) has moment sequence m, and is therefore dominated by Em on all

Borel-measurable gambles. Since osc(h)≥ 0,

Em(osc(h))≥ (LS)
∫ 1

0
oscx(h)dFσ

m (x)≥ 0,

for any gamble h on [0,1]. �

Remark 6 (On discrete probability mass). If follows in particular from Proposition 13 that
for a given d ∈ [0,1], the natural extension of the moment sequence mk = dk, k ≥ 0 is given
by Em = oscd . Similarly, suppose we have a linear prevision Pd on the set of all continuous
gambles C ([0,1]) given by Pd(h) = h(d). Then the natural extension of this linear prevision
to the set of all gambles is again oscd .

Intuitively, the situation above may be described by the phrase “all the mass of the
probability distribution is concentrated in d”. The discussion in this remark aims at making
this interesting case more intelligible to the reader.

Let us consider a non-empty set F of subsets of [0,1], and define the lower probabil-
ity PF by

PF (A) :=

{
1 if A ∈F

0 if A 6∈F

Then PF is coherent if and only if F is a proper filter, i.e., a proper subset of the powerset
of [0,1] that is increasing and closed under finite intersections.13 Its natural extension to the
set of all gambles on [0,1] will also be denoted by PF , and is given by14

PF ( f ) = sup{t ∈ R : { f ≥ t} ∈F}= sup
A∈F

inf
x∈A

f (x). (28)

If we consider the neighbourhood filter Nd of d, i.e., the filter of all neighbourhoods of d,
or in other words, of all subsets of [0,1] that include some open interval containing d, then
it follows from Equation (28) that

PNd
= oscd ,

so oscd is actually the smallest coherent lower prevision that assumes the value one on
any neighbourhood of d (and zero elsewhere). So “all probability mass concentrated in d”
should actually be formulated more exactly as “all probability mass located within any
neighbourhood of d”.

But there is more. A linear prevision Q coincides with Pd , or in other words, satisfies
Q(h) = h(d) for all continuous gambles h, if and only if it dominates PNd

= oscd , and it is
not so difficult to show that15

M (oscd) = M (Pd) = co{PU : U → d} . (29)

where co denotes ‘convex closure’ in the weak* topology, the U denote ultrafilters, or
maximal proper filters, and U → d means that Nd ⊆U , or in the language of topology,
that U converges to d. This means that the linear previsions PU with U → d constitute

13See Walley’s book [27, Section 2.9.8] for a proof. Walley also shows there that PF is a linear prevision if
and only if F is actually an ultrafilter.

14To see this, check that the coherent lower probability PF is actually completely monotone, so its natural
extension is the Choquet integral associated with this lower probability, which is again completely monotone.
Evaluating this Choquet integral then yields Equation (28), if we also take into account that the lower probability
PF only assumes the values zero and one.

15To see this, combine Theorems 3.6.2 and 3.6.4 in [27, Section 3.6]. The linear previsions PU with F ⊆U
are the extreme points of the convex weak*-compact set M (PF ).
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the extreme points of the convex weak*-closed set of all linear previsions with moments
mk = dk.

Among the ultrafilters U converging to d, there is only one for which PU is σ -additive
on events, namely the fixed ultrafilter U = {A⊆ [0,1] : d ∈ A}. Any other ultrafilter U
converging to d is free, meaning that the intersection of all the sets in U is the empty
set. For those, the corresponding linear previsions PU are only finitely additive, because
σ -additivity of PU is easily seen to imply that {d} ∈U .

If for a given ultrafilter U we define d := inf{x ∈ [0,1] : [0,x) ∈U }, then U → d, so
every ultrafilter converges to some element of [0,1]. Moreover, for any ultrafilter U → d
one of the three mutually exclusive possibilities holds: (i) [0,d) ∈U ; (ii) (d,1] ∈U ; or (iii)
{d} ∈U . Case (iii) singles out the unique fixed ultrafilter, with PU (A) = 1 if and only if
d ∈ A. The distribution function for this linear prevision is given by β (·;d,1), where β is the
simple break function defined in Example 1. For case (i), we see that PU ((d−ε,d)) = 1 for
all ε > 0 and PU ([d,1]) = 0, and the distribution function for this linear prevision is given
by β (·;d,1). We say that U represents probability mass left-adherent to d. In the language
of non-standard analysis, we can say that all probability mass is concentrated in some
non-standard real number infinitesimally close to, and to the left of, d. Similarly, case (ii)
describes probability mass that is right-adherent to d, with distribution function β (·;d,0).
It follows from these considerations and Equation (29) that the distribution function of any
linear prevision with moments mk = dk is β (·;d,a) with a ∈ [0,1]. �

Remark 7 (On Choquet–Maaß representation). We can now extend the results mentioned
in the previous remark to general moment sequences m, and not just the ones associated
with ‘discrete probability mass’. Indeed, it is a consequence of results by Choquet [4,
Section 45] and Maaß [20, Section 2.4] that any coherent and completely monotone lower
prevision can be written as a ‘σ -additive convex mixture’ of the extreme points of the set of
all coherent and completely monotone lower previsions. Now, it follows, again from results
by Choquet [4, Section 43.7], that the extreme coherent and completely monotone lower
previsions are precisely the lower previsions PF associated with proper filters F . If we
rewrite Equation (27) as follows

Em(h) = (LS)
∫ 1

0
PNx( f )dFσ

m (x),

we see that for the completely monotone and coherent natural extension Em of the moment
sequence m, we can actually identify the ‘σ -additive convex mixture’ and the extreme
points that participate in it: the mixture is precisely the one associated with the unique
σ -probability measure induced by the moment sequence m, and the extreme points are
the lower previsions associated with the neighbourhood filters Nx, x ∈ [0,1]. As we have
seen above, the latter express that all probability mass is located within any neighbourhood
of x. Note that the representation in terms of extreme points of the constructible Em is
constructible as well.

We want to point out here that this result can be generalised quite easily. If P is a linear
prevision on the set of continuous gambles C (K) on some metrisable compact space K,
then the lower envelope EP of all linear previsions that extend P to L (K) is given by
EP( f ) = (L)

∫
PN· dµ , where µ is the unique σ -additive ‘extension’ of P to all Borel-

measurable gambles on K, and Nx the neighbourhood filter of x ∈ K. See [8] for more
details. �
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6. CONCLUSION

A σ -additive probability measure is uniquely determined by its distribution function,
and also by its sequence of moments. In this paper, together with [21], we have investigated
if the same holds when we consider finitely additive probability measures.

Our results show that, in terms of the amount of information they provide, distribution
functions are located between probability measures and sequences of moments. On the
one hand, for any given distribution function there is an infinite number of finitely additive
probability measures inducing it. Only one of these, of course, is σ -additive. On the other
hand, a distribution function uniquely determines a sequence of moments, but in general
there will be an infinite number of different distribution functions with the same moments.
Again, only one of these distribution functions corresponds to a σ -additive probability
measure. Interestingly, that is also the greatest distribution function with those moments.
This is because of the assumption of right-continuity made in the (classical) definition of a
distribution function.

We have also investigated under which conditions the moments uniquely determine the
distribution function. We have proven that they do if and only if the distribution function
is continuous on [0,1). In that case, we can characterise the (infinite) set of probability
measures associated to the distribution by means of a Riemann-Stieltjes integral.

More generally, the complete monotonicity of the linear prevision we can associate with
a distribution function allows us to represent the corresponding set of linear previsions
by means of a Choquet integral, which in turn can be expressed in terms of a Riemann
integral. The complete monotonicity also implies that we can characterise this set by
the corresponding restrictions to events. This then provides an alternative equivalent
representation of the information given by a distribution function.
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