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We extend Routh’s reduction procedure to an arbitrary Lagrangian system �that is,
one whose Lagrangian is not necessarily the difference of kinetic and potential
energies� with a symmetry group which is not necessarily Abelian. To do so, we
analyze the restriction of the Euler–Lagrange field to a level set of momentum in
velocity phase space. We present a new method of analysis based on the use of
quasivelocities. We discuss the reconstruction of solutions of the full Euler–
Lagrange equations from those of the reduced equations. © 2008 American Insti-
tute of Physics. �DOI: 10.1063/1.2885077�

I. INTRODUCTION

Routh’s procedure, in its original form �as described in his treatise13�, was concerned with
eliminating from a Lagrangian problem the generalized velocities corresponding to so-called ig-
norable or cyclic coordinates. Let L be a Lagrangian on Rn that does not explicitly depend on m
of its base variables, say, the coordinates �a. From the Euler–Lagrange equations for these coor-
dinates,

d

dt� �L

��̇a� −
�L

��a = 0,

we can immediately conclude that the functions �L /��̇a are constants, say,

�L

��̇a
= �a.

These equations express the conservation of generalized momentum. Routh’s idea is to solve these

equations for the variables �̇a and to introduce what he calls the “modified Lagrangian function,”
the restriction of the function

L� = L −
�L

��̇a
�̇a

to the level set where the momentum is �a. One can easily verify that the �n−m� Euler–Lagrange
equations for the remaining variables xi can be rewritten as

d

dt
� �L

�ẋi� −
�L

�xi = 0 ⇒
d

dt
� �L�

�ẋi � −
�L�

�xi = 0.

For example, if the Lagrangian takes the form
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L�x,�, ẋ, �̇� = 1
2kij�x�ẋiẋ j + kia�x�ẋi�̇a + 1

2kab�x��̇a�̇b − V�x� ,

the conservation of momentum equations read kiaẋi+kab�̇b=�a, and they can be solved for the

variables �̇a if �kab� is a nonsingular matrix. The modified Lagrangian function is

L��x, ẋ� = 1
2 �kij − kabkiakjb�ẋiẋ j + kabkia�bẋi − �V + 1

2kab�a�b� ,

where kab denotes a component of the matrix inverse to �kab�, in the usual way. Clearly, the
advantage of this technique is that the reduced equations in L� involve only the unknowns xi and
ẋi; they can, in principle, be directly solved for the xi, and the �a may then be found �if required�
from the momentum equation.

A modern geometric interpretation of this reduction procedure can be found in, e.g., Ref. 8.
The above Lagrangian L is of the form T−V, where the kinetic energy part is derived from a
Riemannian metric �i.e., we are dealing with a so-called simple mechanical system�. The function
L is defined on the tangent manifold of a manifold of the form M =S�G �in this case Rn� and it
is invariant under an Abelian Lie group G �in this case the group of translations Rm�. The main
feature of the procedure is that the modified Lagrangian function and its equations can be defined
in terms of the coordinates on S only. However, to give the definition of the modified function an
intrinsic meaning, we should define this function, from now on called the Routhian, rather as the
restriction to a level set of momentum of

R = L −
�L

��̇a
��̇a + �i

aẋi� ,

with �i
a=kabkib, i.e.,

R�x, ẋ� = 1
2 �kij − kabkiakjb�ẋiẋ j − �V + 1

2kab�a�b� .

The coefficients �i
a form a connection on the trivial principal bundle M =S�G→S, usually called

the mechanical connection, and �̇a+�i
aẋi is, in fact, the vertical projection of the vector �ẋi , �̇a�.

The �n−m� Euler–Lagrange equations in xi then become

d

dt
� �R

�ẋi � −
�R
�xi = − Bij

a �aẋj ,

where in the term on the right-hand side

Bij
a =

��i
a

�xj −
�� j

a

�xi

has a coordinate-free interpretation as the curvature of the connection.
In Refs. 9 and 10, Marsden et al. extended the above procedure to the case of simple me-

chanical systems with a non-Abelian symmetry group G and where the base manifold has a
principal bundle structure M→M /G. The procedure has recently been further extended to cover
Lagrangian systems in general by Castrillon-Lopez.1

The most important contribution of our paper lies in the geometric formalism we will adopt.
The bulk of the literature dealing with different types of reduction of Lagrangian systems has
relied heavily on methods coming from the calculus of variations. In fact, as in, e.g., Refs. 1, 5,
and 10, the reduced equations of motion are usually obtained by considering some reduced version
of Hamilton’s principle. Our method is different from those of other authors in that it does not
involve consideration of variations. It is distinctively Lagrangian �as opposed to Hamiltonian� and
is based on the geometrical analysis of regular Lagrangian systems, where solutions of the Euler–
Lagrange equations are interpreted as integral curves of an associated second-order differential
equation field on the velocity phase space, that is, the tangent manifold of the configuration space.
Consequently, our derivation of Routh’s equations is relatively straightforward and is a natural
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extension of that used by Routh in the classical case. In particular, we will show how Routh’s
equations can be derived directly from the Euler–Lagrange equations by choosing a suitable
adapted frame or, equivalently, by employing well-chosen quasivelocities. This line of thinking
has already provided some new insights into, e.g., the geometry of second-order differential
systems with symmetry.3

We deal from the beginning with arbitrary Lagrangians, i.e., Lagrangians not necessarily of
the form T−V.

As in Ref. 10, we explain how solutions of the Euler–Lagrange equations with a fixed mo-
mentum can be reconstructed from solutions of the reduced equations. The method relies on the
availability of a principal connection on an appropriate principal fiber bundle. We will introduce,
in fact, two connections that serve the same purpose.

We describe the basic features of our approach in Sec. II. The reduction of a Lagrangian
system to a level set of momentum is discussed in Sec. III, and our generalization of Routh’s
procedure is explained there. Section IV contains some general remarks about using a principal
connection to reconstruct an integral curve of a dynamical vector field from one of a reduction of
it. In Sec. V, we describe the two principal connections that can be used in the specific recon-
struction problem we are concerned with, while in Sec. VI, we carry out the reduction in detail,
first in the Abelian case, then in general. In Sec. VII, we specialize to simple mechanical systems,
in order to compare our results with those published elsewhere. We conclude the paper with a
couple of illustrative examples.

II. PRELIMINARIES

We will be concerned with Lagrangian systems admitting non-Abelian �that is to say, not
necessarily Abelian� symmetry groups. We begin by explaining what assumptions we make about
the action of a symmetry group.

We will suppose that �M :G�M→M is a free and proper left action of a connected Lie group
G on a manifold M. It should be noticed from the outset that this convention differs from the one
in, e.g., Refs. 3 and 6, but resembles the one taken in, e.g., Refs. 8 and 10.

With such an action, M is a principal fiber bundle with group G; we write M /G for the base
manifold and �M :M→M /G for the projection. We denote by g the Lie algebra of G. For any

��g, �̃ will denote the corresponding fundamental vector field on M, that is, the infinitesimal
generator of the one-parameter group �exp�t��

M of transformations of M. The Lie bracket of two

fundamental vector fields satisfies ��̃ , �̃�=−�� ,��˜ �see, e.g., Ref. 8�. Since G is connected, a tensor
field on M is invariant under the action of G if and only if its Lie derivatives by all fundamental

vector fields vanish. In particular, a vector field X on M is invariant if and only if ��̃ ,X�=0 for all
��g. We will usually work with a fixed basis for g, which we denote by �Ea�; then, for X to be

invariant, it is enough that �Ẽa ,X�=0, a=1,2 , . . . ,dim�g�.
We suppose that we have at our disposal a principal connection on M. For the most part, it

will be convenient to work with connections in the following way. A connection is a left splitting
of the short exact sequence

0 → M � g → TM → ��M�*T�M/G� → 0

of vector bundles over M; we identify M �g with the vertical sub-bundle of TM→M by

�m ,��� 	�̃	m. Thus, we may think of a connection as a type �1,1� tensor field � on M, which is a
projection map on each tangent space, with the image tangent to the fiber of �M. The connection
is principal just when � is invariant, that is, when L�̃�=0 for all ��g. The kernel distribution of
� is the horizontal distribution of the connection. An alternative test for the invariance of the
connection is that its horizontal distribution should be invariant �as a distribution�; that is, for any

horizontal vector field X, ��̃ ,X� is also horizontal for all �. We will often refer to a connection by
the symbol of the corresponding tensor field.
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Let �Xi� be a set of local vector fields on M which are linearly independent, horizontal with
respect to �, and invariant. Such a set of vector fields consists of the horizontal lifts of a local
basis of vector fields on M /G and, in particular, we may take for the Xi the horizontal lifts of

coordinate fields on M /G. We then have a local basis �Xi , Ẽa� of vector fields on M. We will very
often work with such a basis, which we call a standard basis. The Lie brackets of pairs of vector
fields in a standard basis are

�Xi,Xj� = Rij
a Ẽa, �Xi,Ẽa� = 0, �Ẽa,Ẽb� = − Cab

c Ẽc.

The Rij
a are the components of the curvature of �, regarded as a g-valued tensor field. The second

relation simply expresses the invariance of the Xi. In the third expression, the Cab
c are structure

constants of g with respect to the chosen basis.

It will sometimes be convenient to have also a basis �Xi , Êa� that consists entirely of invariant
vector fields. Let U�M /G be an open set over which M is locally trivial. The projection �M is
locally given by projection onto the first factor in U�G→U, and the �left� action by �g

M�x ,h�
= �x ,gh�. The vector fields on M defined by

Êa:�x,g� � �adg E˜

a��x,g� = �g
TM�Ẽa�x,e�� .

�where e is the identity of G� are invariant. The relation between the sets �Êa� and �Ẽa� can be

expressed as Êa�x ,g�=Aa
b�g�Ẽb�x ,g�, where �Aa

b�g�� is the matrix representing adg with respect to

the basis �Ea� of g. In particular, Aa
b�e�=	a

b. Since �Ẽa , Êb�=0, the coefficients Aa
b have the

property that Ẽa�Ab
c�=Cad

c Ab
d.

We revert to consideration of a standard basis. We define the component 1-forms �a of the

tensor field � by �=�aẼa. Then, �a�Xi�=0, �a�Ẽb�=	b
a. Thus, the �a comprise part of the basis of

1-forms dual to the standard basis. We denote by 
i the remaining 1-forms in the dual basis.
Most of the objects of interest, such as the Lagrangian and the corresponding Euler–Lagrange

field �, live on the tangent manifold of M, which we denote by � :TM→M. We recall that there
are two canonical ways of lifting a vector field, say, Z, from M to TM. The first is the complete or
tangent lift, ZC, whose flow consists of the tangent maps of the flow of Z. The second is the
vertical lift, ZV, which is tangent to the fibers of � and on the fiber over m coincides with the
constant vector field Zm. We have T��ZC�=Z, while T��ZV�=0. Moreover, TM is equipped with a
canonical type �1,1� tensor field called the vertical endomorphism and denoted by S, which is
essentially determined by the fact that S�ZC�=ZV and S�ZV�=0. For more details on this material,

see, e.g., Refs. 4 and 16. The set �Xi
C , Ẽa

C ,Xi
V , Ẽa

V�, consisting of the complete and vertical lifts of

�Xi , Ẽa�, forms a local basis of vector fields on TM.
Let �Z� be a local basis of vector fields on M, and ��� the dual basis of 1-forms. These

1-forms define fiber-linear functions ��a on TM, such that for any u�TmM, u=��a�u�Z�m�. These
functions are therefore the components of velocities with respect to the specified vector-field basis.
We may use these functions as fiber coordinates. Coordinates of this type are sometimes called
quasivelocities, and we will use this terminology. In the case of interest, we have a standard basis

�Xi , Ẽa� and its dual �
i ,�a�; we denote the corresponding quasivelocities by vi=
� i, va=�� a.

We will need to evaluate the actions of the vector fields Xi
C, Ẽa

C, Xi
V, and Ẽa

V on vi and va. Now,
for any vector field Z and 1-form � on M,

ZC���� = LZ�� , ZV���� = �*��Z� .

Most of the required results are easy to derive from these formulas. The only tricky calculation is
that of Xi

C��� a�, for which we need the Lie derivative of a connection form by a horizontal vector
field. We have

�LXi
�a��Ẽb� = Xi�	b

a� − �a��Xi,Ẽb�� = 0,
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�LXi
�a��Xj� = − �a��Xi,Xj�� = − Rij

a .

In the first, we have used the invariance of the horizontal vector fields. In summary, the relevant
derivatives of the quasivelocities are

Xi
C�v j� = 0, Xi

V�v j� = 	i
j, Xi

C�va� = − Rij
a v j, Xi

V�va� = 0,

Ẽa
C�vi� = 0, Ẽa

V�vi� = 0, Ẽa
C�vb� = Cac

b vc, Ẽa
V�vb� = 	a

b.

Finally, we list some important Lie brackets of the basis vector fields:

�Ẽa
C,Xi

C� = �Ẽa,Xi�C = 0, �Ẽa
C,Xi

V� = �Ẽa,Xi�V = 0,

�Ẽa
C,Ẽb

C� = �Ẽa,Ẽb�C = − Cab
c Ẽc

C, �Ẽa
C,Ẽb

V� = �Ẽa,Ẽb�V = − Cab
c Ẽc

V.

III. THE GENERALIZED ROUTH EQUATIONS

We begin by explaining, in general terms, how we will deal with the Euler–Lagrange equa-
tions.

Consider a manifold M, with local coordinates �x�, and its tangent bundle � :TM→M, with
corresponding local coordinates �x ,u�. A Lagrangian L is a function on TM; its Euler–Lagrange
equations,

d

dt
� �L

�u� −
�L

�x = 0,

comprise a system of second-order ordinary differential equations for the extremals; in general, the
second derivatives ẍ are given implicitly by these equations. We say that L is regular if its
Hessian with respect to the fiber coordinates,

�2L

�u�u� ,

considered as a symmetric matrix, is everywhere nonsingular. When the Lagrangian is regular, the
Euler–Lagrange equations may be solved explicitly for ẍ, and so determine a system of differ-
ential equations of the form ẍ= f�x , ẋ�. These equations can in turn be thought of as defining a
vector field � on TM, a second-order differential equation field, namely,

� = u �

�x + f �

�u .

We call this the Euler–Lagrange field of L. The Euler–Lagrange equations may be written as

�� �L

�u� −
�L

�x = 0,

and when L is regular, these equations, together with the assumption that it is a second-order
differential equation field, determine �.

This is essentially how we will deal with the Euler–Lagrange equations throughout: that is, we
will assume that L is regular and we will work with the Euler–Lagrange field � and with the
Euler–Lagrange equations in the form given above. However, we need to be able to express those
equations in terms of a basis of vector fields on M which is not necessarily of coordinate type. It
is easy to see that if �Z� is such a basis, then the equations,
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��Z
V�L�� − Z

C�L� = 0,

are equivalent to the Euler–Lagrange equations. The fact that � is a second-order differential
equation field means that it takes the form

� = wZ
C + �Z

V,

where w are the quasivelocities corresponding to the basis �Z�.
We now build in the assumption that L has a symmetry group G, which acts in such a way that

M is a principal bundle with G as its group, as we described above. We will suppose that the
Lagrangian is invariant under the induced action of G on TM. This tangent action is defined by the
collection of transformations �g

TM =T�g
M on TM, g�G. By construction, the fundamental vector

fields for this induced action are the complete lifts of the fundamental vector fields of the action on

M; the invariance of the Lagrangian can therefore be characterized by the property Ẽa
C�L�=0. We

have shown in Ref. 11 that if L is invariant, then so also is �, which is to say that �Ẽa
C ,��=0.

We choose a principal connection on M and a basis of vector fields �Xi , Ẽa� adapted to it �a
standard basis�, as described above. Then, the Euler–Lagrange equations for L are

��Xi
V�L�� − Xi

C�L� = 0,

��Ẽa
V�L�� − Ẽa

C�L� = 0.

However, by assumption, Ẽa
C�L�=0: it follows immediately that ��Ẽa

V�L��=0. So, the functions

Ẽa
V�L� are first integrals, which clearly generalize the momenta conjugate to ignorable coordinates

in the classical Routhian picture. We write pa for Ẽa
V�L�. The Euler–Lagrange field is tangent to

any submanifold pa=�a=const, a=1,2 , . . . ,dim�g�, that is, any level set of momentum. By a
well-known argument �see, e.g., Ref. 8�, we may regard �x ,v�� �pa�x ,v�� as a map from TM to
g*, the dual of the Lie algebra g, and this map is equivariant between the given action of G on TM
and the coadjoint action of G on g* �the coadjoint action is defined as 
� , ad

g
* ��= 
adg � ,���. We

have

Ẽa
C�pb� = Ẽa

CẼb
V�L� = �Ẽa

C,Ẽb
V��L� = − Cab

c Ẽc
V�L� = − Cab

c pc,

which expresses this result in our formalism.
We will also need a less coordinate-dependent version of the Hessian. In fact, the Hessian of

L at w�TM is the symmetric bilinear form g on TmM, m=��w�, given by g�u ,v�=uVvV�L�, where
the vertical lifts are to w. We can equally well regard g as a bilinear form on the vertical subspace
of TwTM, by identifying u and v with their vertical lifts. The components of the Hessian g with
respect to our standard basis will be denoted as follows:

g�Ẽa,Ẽb� = gab, g�Xi,Xj� = gij, g�Xi,Ẽa� = gia = gai = g�Ẽa,Xi� .

We also have gab= Ẽa
V�pb�, gia=Xi

V�pa�. In general, these components are functions on TM, not on
M, and the Hessian should be regarded as a tensor field along the tangent bundle projection
� :TM→M. We will assume throughout that L is regular, which means that g as a whole is
nonsingular. Then, � is uniquely determined as a second-order differential equation field on TM.

We now turn to the consideration of Routh’s procedure. We call the function R on TM given
by

R = L − vapa,

the Routhian. It generalizes in an obvious way the classical Routhian corresponding to ignorable
coordinates. The Routhian is invariant,
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Ẽb
C�vapa� = Cbc

a vcpa − vaCba
c pc = 0,

whence the result.
We now consider the Euler–Lagrange equations ��Xi

V�L��−Xi
C�L�=0. We wish to write these

equations in terms of the restriction of the Routhian to a level set of momentum, say, pa=�a,
which we denote by N�. To do so, we need to work in terms of vector fields related to Xi

C, Xi
V, and

Ẽa
C which are tangent to N� �in general, there is no reason to suppose that these vector fields

themselves have this property, of course�. To define the new vector fields, we will assume that the
Lagrangian has an additional regularity property: we will assume that �gab� is nonsingular. �Note
that if the Hessian is everywhere positive definite, then �gab� is automatically nonsingular.� Then,
there are coefficients Ai

b, Bi
b, and Ca

b, uniquely defined, such that

�Xi
C + Ai

bẼb
V��pa� = Xi

C�pa� + Ai
bgab = 0,

�Xi
V + Bi

bẼb
V��pa� = Xi

V�pa� + Bi
bgab = 0,

�Ẽa
C + Ca

bẼb
V��pc� = Ẽa

C�pc� + Ca
bgbc = 0.

The vector fields X̄i
C, X̄i

V, and Ēa
C given by

X̄i
C = Xi

C + Ai
aẼa

V,

X̄i
V = Xi

V + Bi
aẼa

V,

Ēa
C = Ẽa

C + Ca
bẼb

V

are tangent to each level set N�. �The notation is not meant to imply that the barred vector fields
are actually complete or vertical lifts.� We will need to know the coefficients explicitly only in the
case of Bi

a and Ca
b: in fact,

Bi
a = − gabgib and Ca

b = gbcCac
d pd.

This is all carried out under the assumption that �gab� is nonsingular. One has to make such an

assumption in the classical case in order to be able to solve the equations �L /��̇a=�a for the �̇a.
In the general case, the nonsingularity of �gab� is the condition for the level set N� to be regular,

i.e., to define a submanifold of TM of codimension dim�g�. The vector fields Ẽa
V are transverse to

all regular level sets, and the barred vector fields span the level sets. Thus, on any regular level set,
the bracket of any two of the barred vector fields is a linear combination of vector fields of the

same form. We want, in particular, to observe that this implies that �Ēa
C , X̄i

V�=0. It is not difficult
to see, using the known facts about the brackets of the unbarred vector fields, that this bracket is

of the form PaẼa
V; this must satisfy PaẼa

V�pb�= Pagab=0, whence by the regularity assumption
Pa=0. In fact, by similar arguments, the brackets of the barred vector fields just reproduce those

of their unbarred counterparts, except that �X̄i
C , X̄j

V�=0. In particular, �Ēa
C , Ēb

C�=−Cab
c Ēc

C. Ēa
C there-

fore form an antirepresentation of g, acting on the level set N� �just as Ẽa do on M�.
We return to the expression of the Euler–Lagrange equations in terms of the Routhian. We will

need to evaluate the actions of X̄i
C and X̄i

V on va. Using the formulas in Sec. II we find that

X̄i
C�va� = �Xi

C + Ai
bẼb

V��va� = − Rij
a v j + Ai

a,
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X̄i
V�va� = �Xi

V + Bi
bẼb

V��va� = Bi
a.

We now set things up so that we can restrict to the submanifold N� easily. We have

Xi
C�L� = X̄i

C�L� − Ai
aẼa

V�L� = X̄i
C�L − vapa� + �− Rij

a v j + Ai
a�pa + vaX̄i

C�pa� − Ai
apa = X̄i

C�R� − paRij
a v j ,

Xi
V�L� = X̄i

V�L� − Bi
aẼa

V�L� = X̄i
V�L − vapa� + Bi

apa + vaX̄i
V�pa� − Bi

apa = X̄i
V�R� .

However, ��Xi
V�L��−Xi

C�L�=0, and � is tangent to the submanifold N�; thus, if we denote by R�

the restriction of the Routhian to the submanifold �where it becomes L−va�a�, we have

��X̄i
V�R��� − X̄i

C�R�� = − �aRij
a v j .

On the other hand, if � is a second-order differential equation field such that ��Ẽa
V�L��=0 and the

above equation holds for all �a, then � satisfies the Euler–Lagrange equations for the invariant
Lagrangian L.

We will refer to these equations as the generalized Routh equations. Neither R� nor � is

Ēa
C-invariant. They will, however, be invariant under those vector fields �̃C, ��g, which happen to

be tangent to the level set N�. These are the vector fields for which �aẼa
C=�aĒa

C, or �aCab
c �c=0. We

will return to this issue in later sections.
Note that since � satisfies ��pa�=0, it may be expressed in the form

� = viX̄i
C + �iX̄i

V + vaĒa
C.

If the matrix-valued function X̄i
VX̄j

V�R� is nonsingular, the reduced Euler–Lagrange equations
above will determine the coefficients �i. We show now that this is always the case, under the
assumptions made earlier.

Recall that X̄i
V=Xi

V+Bi
aẼa

V is determined by the condition that X̄i
V�pa�=0 and that therefore

Bi
a=−gabgib. We may regard Xi+Bi

aẼa as a vector field along the tangent bundle projection, and X̄i
V

really is the vertical lift of this vector field; we will accordingly denote it by X̄i. Then,

g�X̄i,Ẽa� = g�Xi,Ẽa� + Bi
bg�Ẽb,Ẽa� = gia + Bi

bgab = 0.

Thus, X̄i span the orthogonal complement to the space spanned by Ẽa with respect to the Hessian
of L. That is to say, the tangent space to a regular level set of momentum at any point u�TM
intersects the tangent space to the fiber of TM→M at u in the subspace orthogonal with respect to

gu to the span of the Ẽa
V. Moreover,

g�X̄i,X̄j� = gij + Bi
agaj + Bj

agia + Bi
aBj

bgab = gij − 2gabgiagjb + gacgbdgicgjdgab = gij − gabgiagjb.

So, this is the expression for the restriction of the Hessian of L to the subspace orthogonal to that

spanned by the Ẽa.

Now, recall that X̄i
V�R�=Xi

V�L�. Thus,

X̄i
VX̄j

V�R� = �Xi
V − gabgibẼa

V�Xj
V�L� = gij − gabgibgaj = g�X̄i,X̄j� .

That is, the “Hessian” of R �i.e., X̄i
VX̄j

V�R�� is just the restriction of the Hessian of L to the

subspace orthogonal to that spanned by Ẽa. It follows that the bilinear form with components

ḡij = X̄i
VX̄j

V�R� must be nonsingular. Suppose that there is some vector wj such that ḡijw
j =0; then,

g�X̄i ,w
jX̄j�=0 by assumption and g�Ẽa ,wjX̄j�=0 by orthogonality—but then wjX̄j =0 since g is

assumed to be nonsingular.
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The sense in which the generalized Routh equations are “reduced” Euler–Lagrange equations
is that �in principle at least� we can reduce the number of variables by using the equations pa

=�a to eliminate the quasivelocities va. However, these variables appear explicitly in the expres-
sion for �, so it may be considered desirable to rearrange the generalized Routh equations so that
they no longer appear. This can be done by changing the basis of vector fields on the level set of
momentum as follows. The change is suggested by the fact that, notation notwithstanding,

S�X̄i
C�� X̄i

V �where S is the vertical endomorphism�. Let us, however, set

X̂i
C = X̄i

C + Bi
aĒa

C.

Then, since S vanishes on vertical lifts,

S�X̂i
C� = S�Xi

C + Bi
aẼa

C� = Xi
V + Bi

aẼa
V = X̄i

V.

We write

�0 = viX̂i
C + �iX̄i

V,

so that

� = �0 + �viBi
a + va�Ēa

C.

We will examine the contribution of the term involving Ēa
C in � to the generalized Routh equa-

tions. First, we determine Ēa
C�R�. Since Ēa

C�pb�=0,

Ēa
C�R� = Ēa

C�L − vbpb� = Ca
bpb − Ēa

C�vb�pb = Ca
bpb − Cac

b pbv
c − Ca

c	c
bpb = − Cac

b pbv
c.

It follows that

Ēa
C�X̄i

V�R�� = X̄i
V�Ēa

C�R�� = − X̄i
V�Cac

b pbv
c� = − Cac

b pbBi
c.

So, setting �=�0+ �viBi
a+va�Ēa

C, we have

��X̄i
V�R��� − X̄i

C�R�� = �0�X̄i
V�R��� + �v jBj

a + va�Ēa
C�X̄i

V�R��� − X̂i
C�R�� + Bi

aĒa
C�R��

= �0�X̄i
V�R��� − X̂i

C�R�� − �v jBj
a + va�Cac

b �bBi
c − Bi

aCac
b �bv

c = �0�X̄i
V�R���

− X̂i
C�R�� + v jBj

aBi
cCac

b �b,

and the generalized Routh equations become

�0�X̄i
V�R��� − X̂i

C�R�� = − �a�Rij
a + Bi

bBj
cCbc

a �v j .

We may say that among the vector fields tangent to a level set of momentum, it is X̄i
C+Bi

aĒa
C, not

X̄i
C, that really plays the role of the complete lift of X̄i. Be aware, however, that unless the

symmetry group is Abelian, �0 cannot be identified with a vector field on T�M /G�. We will return
to this matter at the end of Sec. V.

To end this section, we give a coordinate expression for the generalized Routh equations in
their original form. For this purpose, we take coordinates �xi� on M /G and coordinates �xi ,�a� on
M such that the �a are fiber coordinates; then, �xi ,�a ,vi� are coordinates on N�, which is to say
that N� can be locally identified with M�M/GT�M /G�. We may write
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Xi =
�

�xi − �i
a �

��a , Ẽa = Ka
b �

��b ,

for suitable functions �i
a and Ka

b on M. �We should note that Ka
b are components of a nonsingular

matrix at each point; moreover, the invariance property of the Xi can be expressed in terms of the
coefficients �i

a and Ka
b but we will not actually need either of these facts here.� From the formulas

for the action of complete and vertical lifts on quasivelocities given at the end of Sec. II, we see
that

X̄i
C�vi� = Ēa

C�vi� = 0, X̄i
V�v j� = 	i

j .

Thus, in terms of xi, �a, and vi we can write

X̄i
C =

�

�xi − �i
a �

��a , X̄i
V =

�

�vi , Ēa
C = Ka

b �

��b .

It is necessary to be a little careful: the coordinate vector field expressions are ambiguous since
they can refer either to coordinates on TM or on N�. We emphasize that it is the latter interpre-
tation that is intended here. In view of the possibilities of confusion, it will be useful to have an
explicit notation for the injection N�→TM: we denote it by �. The nonsingularity of �gab� ensures
that, at least locally, we can rewrite the relation pa=�a for the injection � :N�→TM in the form
va= �a�xi ,�a ,vi�, for certain functions �a of the specified variables.

The restriction of the Euler–Lagrange field � to N� is

� = �aĒa
C + viX̄i

C + ��i � ��X̄i
V = �bKb

a �

��a + vi� �

�xi − �i
a �

��a� + ��i � ��
�

�vi = ��bKb
a − vi�i

a�
�

��a + vi �

�xi

+ ��i � ��
�

�vi .

The equations for its integral curves are

ẋi = vi,

v̇i = �i�x,�,v� ,

�̇a = �b�x,�,v�Kb
a�x,�� − vi�i

a�x,�� .

These can be considered as a coupled set of first- and second-order equations,

ẍi = �i�x,�, ẋ� ,

�̇a = �b�x,�, ẋ�Kb
a�x,�� − ẋi�i

a�x,�� .

With regard to the second of these equations, we point out that the expression for the velocity

variables �̇a in terms of the quasivelocities vi and va is just �̇a=vbKb
a−vi�i

a. What turns these
identities into genuine differential equations is, in particular, the substitution for the va in terms of
the other variables via the functions �a—or, in other words, restriction to N�.

The functions �i may be determined from the generalized Routh equations. These may be
expressed as
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d

dt
� �R�

�vi � −
�R�

�xi = − �aRij
a − �i

a
�R�

��a .

In the light of the earlier remarks about the interpretation of coordinate vector fields, we point out
that substitution for va in terms of the other variables in this equation must be carried out before
the partial derivatives are calculated.

IV. THE RECONSTRUCTION METHOD

We have seen in Sec. III that Routh’s technique consists in restricting the Euler–Lagrange
equations to a level set of momentum N�. This procedure takes partial, but not necessarily com-
plete, account of the action of the symmetry group G. To make further progress, we must examine
the residual action of G on N�.

As we mentioned before, the momentum map is equivariant between the induced action of G
on TM and the coadjoint action of G on g*. The submanifold N� is therefore invariant under the
isotropy group G�= �g�G 	ad

g
* �=�� of �. The algebra g� of G� consists of those ��g such that

�bCab
c �c=0; this is the necessary and sufficient condition for �̃C to be tangent to N�. Note that any

geometric object we know to be G-invariant is automatically G�-invariant.
The manifold N� is a principal fiber bundle with group G�; we will denote its base by N� /G�.

The restriction of the Euler–Lagrange field � to N� is G�-invariant and, as a consequence, it

projects onto a vector field �̌ on N� /G�.

The task now is to examine the relationship between �̌ and �. There are two aspects: the

formulation of the differential equations represented by �̌ and the reconstruction of integral curves

of � from integral curves of �̌ �supposing that we have solved those equations�.
Our methods of attack on these problems will be based on those we developed in our

papers3,11 and are similar to �but different from� the ones that were adopted in, e.g., Ref. 7. These
in turn were based on the following well-known method for reconstructing integral curves of an
invariant vector field from reduced data. Let � :N→B be a principal fiber bundle with group G.

Any invariant vector field � on N defines a �-related reduced vector field �̌ on B: due to the

invariance of �, the relation T����n��= �̌���n�� is independent of the choice of n�N within the
equivalence class of ��n��B. Given a principal connection �, an integral curve v�t� of � can be

reconstructed from an integral curve v̌�t� of �̌ as follows. Let v̌H�t� be a horizontal lift of v̌�t� with
respect to � �that is, a curve in N over v̌ such that ��v̌H�=0� and let g�t� be the solution in G of
the equation


�ġ�t��˜ = ����vH�t��� ,

where 
 is the Maurer–Cartan form of G. �We use here the fact that given any curve ��t� in g, the
Lie algebra of G, there is a unique curve g�t� in G which satisfies 
�ġ�t��=��t� and g�0�=e; g�t�
is sometimes called the development of ��t� into G, see, for example Ref. 14.� Then, v�t�
=�g�t�

N vH�t� is an integral curve of �.
In the following sections, we define two principal connections on N�, we determine �, and we

identify for both connections the vertical part of �, necessary for the reconstruction method above.

V. TWO PRINCIPAL CONNECTIONS ON A LEVEL SET OF MOMENTUM

A principal connection � on N�→N� /G� is by definition a left splitting of the short exact
sequence

0 → N� � g� → TN� → N��N�/G�
T�N�/G�� → 0.

All spaces in the above sequence should be interpreted as bundles over N�. We think of � as a
type �1,1� tensor field on N� which is pointwise a projection operator with image the tangent space
to the fiber, and which is invariant under G�.
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The first connection we define uses the Hessian of L to determine its horizontal distribution
and is therefore analogous to the mechanical connection of a simple system; we denote it by �m.
Recall that we interpret the Hessian g of L as a tensor field along �. In particular, its components

with respect to the standard basis �Xi , Ẽa� are functions on TM. We will say that a vector field W
on N� is horizontal for �m if

g��̃,�*W� = 0, ∀ � � g�,

where �*W is the projection of a vector field W on TM to a vector field along � :TM→M. The
definition makes sense only if we assume that the restriction of g to N��g� is nonsingular, as we
do from now on.

In Ref. 11, we have shown that if the Lagrangian is invariant, then so is g, in the sense that

L�̃g = 0, ∀ � � g .

Here, for a vector field Z on M, LZ stands for an operator acting on tensor fields along � that has
all the properties of a Lie derivative operator and, in particular, when applied to a function f on
TM and a vector field X along � gives

LZf = ZC�f�, LZX = �Z��X

�x� +
�Z�

�x� u��X

�u� − X��Z

�x� � �

�x ,

where

Z = Z�x�
�

�x , X = X�x,u�
�

�x .

Note that if X is a basic vector field along � �i.e., a vector field on M�, then LZX= �Z ,X�.
Furthermore, for any vector field W on TM, we have

LZ��*W� = �*�ZC,W� .

To show that the connection is principal, we need only to show that if W is horizontal, so also is

��̃C ,W� for all ��g�. However, for all � ,��g�,

g��*��̃C,W�,�̃� = g�L�̃��*W�,�̃� = − g��*W,L�̃�̃� = − g��*W,��̃,�̃�� = g��*W,��,��˜ � = 0,

using the properties of the generalized Lie derivative and the invariance of g.

As was mentioned before, �X̄i
C , Ēa

C , X̄i
V� is a basis of vector fields on N�. Suppose now that the

basis �Ea�= �EA ,E� of g is chosen so that �EA� is a basis of g�. Then, CAb
c �c=0, and on N�, we

get for the corresponding fundamental vector fields

ĒA
C = ẼA

C + gbcCAc
d �dẼb

V = ẼA
C.

All ẼA
C are therefore tangent to N�, as required. These vector fields span exactly the vertical space

of N�→N� /G� which we have identified with N��g�. Vector fields of this form are infinitesimal
generators of the G�-action on N�.

If �GAB� is the inverse of the matrix �gAB� �and not the �A ,B�-component of �gab��, then the
vector fields,

Ē
H = Ē

C − GABgAẼB
C = Ē

C − �
BẼB

C,
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X̄i
H = X̄i

C − GABgAiẼB
C = X̄i

C − �i
BẼB

C,

together with X̄i
V, are horizontal. �As was the case with the notations Ēa

C, etc., the notation for the

horizontal fields is not meant to imply that Ē
H, etc., are actually horizontal lifts.� The action of �m

is simply

�m�ẼA
C� = ẼA

C, �m�Ē
H� = 0, �m�X̄i

H� = 0, �m�X̄i
V� = 0,

and since the arguments form a basis of vector fields on N�, these equations specify �m explicitly.
We will call �m the mechanical connection on N�.

The vector fields X̂i
C= X̄i

C+Bi
aĒa

C introduced earlier are also horizontal; they can be expressed

as X̂i
C= X̄i

H−gbgbiĒ
H.

The vector fields X̄i
C are not horizontal with respect to �m. However, it is possible to identify

a second principal connection �N� on N� for which these vector fields are horizontal. We will
identify �N� in two steps.

It seems natural to split the basis �X̄i
C , Ēa

C , X̄i
V� into a “vertical” part �Ēa

C� and a “horizontal”

part �X̄i
C , X̄i

V�. To see that it does indeed make sense to do so, it is sufficient to observe that the

distributions spanned by �Ēa
C� and �X̄i

C , X̄i
V�, respectively, are unchanged when the bases �Ea� of g

and �Xi� of �-horizontal vector fields on M are replaced by different ones. Under a change of basis

for g, �Ēa
C� are simply replaced by constant linear combinations of themselves, so their span is

clearly unchanged. On the other hand, if we set Yi=Ai
jXj, then Yi

V=Ai
jXj

V and Yi
C=Ai

jXj
C+ Ȧi

jXj
V

�where Ȧi
j is the total derivative of Ai

j, not that it matters�, so the distributions spanned by �X̄i
C , X̄i

V�
and �Ȳi

C , Ȳi
V� are the same.

So, we can indeed characterize a connection in this way, but it is not a connection on N�

→N� /G�. In fact, this construction defines a connection on the bundle with projection N�

→T�M /G� �the restriction of T�M :TM→T�M /G� to N��, i.e., a splitting of the short exact
sequence

0 → N� � g → TN� → N��T�M/G�T�T�M/G�� → 0.

�Recall that the vector fields Ēa
C, which span the vertical space of the projection N�→T�M /G�,

form an antirepresentation of g acting on the level set N�.� The construction just described is a
version of the so-called vertical lift of a connection on a principal bundle �here �� to its tangent
bundle �this is described more fully in Ref. 3�; accordingly, we denote the corresponding type �1,1�
tensor field by �V, and we have

�V�Ēa
C� = Ēa

C, �V�X̄i
C� = 0, �V�X̄i

V� = 0.

Evidently, ��V�2=�V. We show now that LẼA
C�V=0 for all A. Firstly, note that

�ẼA
C,Ēa

C� = �ĒA
C,Ēa

C� = − CAa
b Ēb

C,

so that

�LẼA
C�V��Ēa

C� = �ẼA
C,�V�Ēa

C�� − �V�ẼA
C,Ēa

C� = �ẼA
C,Ēa

C� + CAa
b Ēb

C = 0.

Moreover, since �ẼA
C , X̄i

C�=0,

�LẼA
C�V��X̄i

C� = �ẼA
C,�V�X̄i

C�� − �V�ẼA
C,X̄i

C� = 0,

and similarly for X̄i
V.
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The relation between �V and � may be described more easily if we momentarily break our
convention by specifying connections by their forms rather than by the tensors corresponding to
their splittings: it is easily checked that

�V�Zv� = ��T�� � ��Zv�, Zv � TN�.

This equation has to be read as one between elements of g, obtained by identifying the vertical
sub-bundle of TN� with N��g and the vertical subbundle of TN with M �g, or if you will by
projection onto g.

The vertical space N��g� of the connection �N� we are looking for is only a sub-bundle of
the vertical space N��g of the connection �V. So, in a second step, we need to identify a
connection for the following sequence of trivial vector bundles:

0 → N� � g� → N� � g → N� � g/g� → 0.

For this connection, we can simply take the restriction of the mechanical connection �m defined
earlier to the submanifold N��g. The connection �N� is then simply �m ��V �see the diagram
below�.

By construction, �V ��m=�m, so �N� =�m ��V satisfies ��N��2=�N� as it should. We have

�N��ẼA
C� = ẼA

C, �N��Ē
H� = 0, �N��X̄i

C� = 0, �N��X̄i
V� = 0.

The tensor field �N� is G�-invariant since both of the tensors of which it is composed are
G�-invariant; �N� therefore defines a principal G�-connection.

Note that to define the mechanical connection, we do not need a principal connection � on
M→M /G �though we may use one in calculations�. If such a connection is available, then we can
use either �m or �N� for the reconstruction method.

The connection �N� is clearly different from �m in general. We can also decompose �m into
two connections, in accordance with the short exact sequences in the diagram. The splitting �0

V of
the middle vertical line, similar to the connection �V of �N�, can be defined by saying that a

vector field W is horizontal if g��̃ ,�*W�=0 for all ��g �not just for ��g��. For this connection,
we have

�0
V�Ēa

C� = Ēa
C, �0

V�X̂i
C� = 0, �V�X̄i

V� = 0,

where the vector fields X̂i
C are exactly those that we have encountered in Sec. II.

To end this section, we consider the decomposition of the restriction of the Euler–Lagrange
field � to N� into its vertical and horizontal parts with respect to the two connections.

Let us introduce coordinates �xi ,�a� on M such that the orbits of G �or, in other words, the
fibers of M→M /G� are given by xi=const; xi may therefore be regarded as coordinates on M /G.
As before, we will use as fiber coordinates the quasivelocities �vi ,va� with respect to the standard
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basis �Xi , Ẽa�. The nonsingularity of �gab� ensures that, at least locally, we can rewrite the relation
pa=�a for the injection � :N�→TM in the form va= �a�xi ,�a ,vi�, for certain functions �a of the
specified variables. The restriction of the Euler–Lagrange field to N� is

� = �aĒa
C + viX̄i

C + ��i � ��X̄i
V = ��A + �

A��ẼA
C + �Ē

H + viX̄i
C + ��i � ��X̄i

V = ��A + �
A� + �i

Avi�ẼA
C

+ �Ē
H + viX̄i

H + ��i � ��X̄i
V.

The vertical part of � with respect to the mechanical connection �m is ��A+�
A�+�i

Avi�ẼA
C, and

with respect to the vertical lift connection �N�, it is ��A+�
A��ẼA

C.
Note that neither of the current decompositions of � coincides with the one we had toward the

end of Sec. III, which we should now write �= ��a+Bi
avi�Ēa

C+�0. The reason is that this last
decomposition is only partial, in the sense that the vector field �0 is the horizontal part of � with
respect to the connection �0

V; it is the horizontal lift of a section of the pullback bundle N�

�T�M/G�T�T�M /G��, not a vector field on T�M /G�, and this section is only a part of the data
required for the reconstruction method.

VI. THE REDUCED VECTOR FIELD

A principal connection is all we need to reconstruct integral curves of an invariant vector field
from those of its reduced vector field. We next examine the latter.

A. The Abelian case

Before embarking on the more general case, it is instructive to see what happens if the
symmetry group G happens to be Abelian, i.e., when Cab

c =0. Then, as we pointed out earlier for
the case of a simple mechanical system with Abelian symmetry group, g�=g and any level set
pa=�a is invariant under the whole group G. In fact, under the assumption that pa=�a can be
solved locally in the form va= �a, N� /G can be interpreted as T�M /G�, with coordinates �xi ,vi�,
where xi are coordinates on M /G and vi the corresponding fiber coordinates �no longer quasive-

locities�. In this case, there are no E-vectors and Ēa
C= Ẽa

C for all a.
The restriction of the Euler–Lagrange field to N�, given here by

� = �aẼa
C + viX̄i

C + ��i � ��X̄i
V = ��a − gabgbiv

i�Ẽa
C + viX̄i

H + ��i � ��X̄i
V,

is now also G-invariant. As a consequence, the coefficients �i � � do not depend on the group

coordinates �a but only on the coordinates �xi ,vi� of T�M /G�. In fact, the vector fields viX̄i
C

+ ��i � ��X̄i
V �the �N�-horizontal part of �� and viX̄i

H+ ��i � ��X̄i
V �the �m-horizontal part of �� both

reduce to the same vector field on N� /G, which in this case is exactly a second-order differential
equation field on T�M /G�,

� = vi �

�xi + �i�x,v�
�

�vi .

The integral curves of this reduced vector field are the solutions of the equations ẍi=�i�x , ẋ� �with
vi= ẋi� and, from the introduction, we know that these are equivalent to the equations

d

dt
� �R

�vi � −
�R
�xi = − Bij

a �aẋj .

B. The non-Abelian case

In the general case of a non-Abelian symmetry group, we should not expect that the equations
for xi will be completely decoupled from all coordinates �a. Indeed, in that case, the vector field
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� reduces to a vector field on N� /G�. This manifold can locally be identified with M /G�

�T�M /G�, so the equations for the integral curves of the reduced vector field will depend also on
the coordinates of M /G�.

To give a local expression of the reduced vector field �̌, we need to introduce a basis for

X�N� /G��. The bracket relations �ẼA
C , X̄i

C�=0 and �ẼA
C , X̄i

V�=0 show that X̄i
C and X̄i

V are
G�-invariant vector fields on N�; they project therefore onto vector fields Xi

C and Xi
V on N� /G�.

The invariance of the Hessian g amounts for its coefficients to Ẽa
C�gij�=0, Ẽa

C�gbc�+Cab
d gcd

+Cac
d gbd=0, and Ẽa

C�gib�+Cab
c gic=0. From this,

ẼA
C��i

B� = CAC
B �i

C,

ẼA
C��

B� = CAC
B �

C − CA
� ��

B − CA
B

�where we have taken into account the fact that in the current basis CAB
� =0�. It is now easy to see

that the vector fields X̄i
H= X̄i

C−�i
AẼA

C are also G�-invariant. In fact, since they differ from X̄i
C only

in a part that is vertical with respect to the bundle projection N�→N� /G�, they project onto the

same vector fields X̌i
C on N� /G�.

The vector fields Ē
H are not invariant: in fact, �ẼA

C , Ē
H�=−CA

� Ē�
H. To obtain a complete basis

for X�N� /G��, we need to replace the vector fields �Ē
H� by G�-invariant vector fields. To do so,

we will consider the G-invariant vector fields Êa=Aa
bẼb on M that we introduced in Sec. II. Let

�A�
� be the coefficients we find in the relation Ê=A

�Ẽ�+A
BẼB. The vector fields

Ê
H = A

�Ē�
H

are tangent to the level set N� and horizontal. Given that CAB
� =0, it easily follows from the relation

ẼA�A
��=CA�

� A
� that these vector fields are G�-invariant,

�ẼA
C,Ê

H� = ẼA�A
��Ē�

H − A
�CA�

� Ē�
H = 0.

They project therefore onto vector fields Ě
H on N� /G�. To conclude, the set �X̌i

C , X̌i
V , Ě

H� defines
the basis for X�N� /G�� we were looking for.

We denote by �Ā�
� the matrix inverse to �A�

� and set �A= �A+�
A�, �m

A = �A+�
A�+�i

Avi,

and �=Ā�
��. Then, � takes the form

� = �AẼA
C + �Ê

H + viX̄i
C + ��i � ��X̄i

V,

=�m
AẼA

C + �Ê
H + viX̄i

H + ��i � ��X̄i
V,

where, as before, the first term is the vertical part of � with respect to the vertical lift connection
�N� �in the first place� and the mechanical connection �m �in the second�. Obviously, vi and ��i � ��
are G�-invariant functions. To see that � is also G�-invariant, recall that CAB

 =0 and ẼA
C����

=CA�
� �� and observe that ẼA

C�Ā	
��A�

� =−Ā	
�ẼA

C�A�
��=−Ā	

�A�
CA

� =−CA	
� . Therefore,

ẼA
C��� = ẼA

C�Ā�
��� + Ā�

ẼA
C���� = − Ā	

CA�
	 �� + Ā�

CA�
� �� = 0.

We conclude that vi, ��i � ��, and � can all be regarded as functions on N� /G�. The horizontal
part of �, for both connections, can thus be interpreted as the horizontal lift of the reduced vector
field
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�̌ = �Ě
H + viX̌i

C + ��i � ��X̌i
V

on N� /G�.

For completeness, we point out that it follows from the relations ẼA
C��

B�=CAC
B �

C−CA
� ��

B

−CA
B and ẼA

C��B�=CAC
B �C+CA�

B �� that the coefficients �A and �m
A satisfy

ẼA
C��B� = CAC

B �C, ẼA
C��m

B� = CAC
B �m

C .

This shows that they can be interpreted as the coefficients of g�-valued functions � and �m on N�

satisfying � ��g
N� =adg � for g�G� �and similarly for �m�, where �N� denotes the G�-action on

N� �see Ref. 3�.
We now give a coordinate expression for the reduced vector field. From here on, we will use

coordinates ��a�= ��A ,�� such that the fibers of G→G /G� are given by �=const. With this
assumption, there are functions Kb

a on M such that

ẼA = KA
B �

��B , Ẽ = K
B �

��B + K
� �

��� .

We also introduce the functions �i
b for which

Xi =
�

�xi − �i
b �

��b ,

as before.
By interpreting N� /G� locally as M /G��M/GT�M /G�, we see that a point of N� /G� has

coordinates �xi ,� ,vi�. Because of their G�-invariance, the functions �i � � and � are independent
of the variables �A. Let �N� be the projection N�→N� /G�; then for any invariant function F on
N�, there is a function f on N� /G� such that F= f ��N�. Then, for all invariant vector fields X on

N� and their reductions X̌ to vector fields on N� /G�, we have

X�F� = X̌�f� � �N�.

We will apply this property to the vector fields Ê
H, X̄i

C, and X̄i
V, and the invariant functions xi, vi,

and �. Keeping in mind that for any vector field Z, function f , and 1-form � on M,

ZC��*f� = �*Z�f�, ZV��*f� = 0, ZC���� = LZ�� , ZV���� = �*��Z� ,

where �� stands for the fiber-linear function on TM defined by the 1-form �, and � is the tangent
projection TM→M, we find that

X̄i
C�xj� = 	i

j, X̄i
C���� = − �i

�, X̄i
C�v j� = 0,

X̄i
V�xj� = 0, X̄i

V���� = 0, X̄i
V�v j� = 	i

j ,

Ê
H�xj� = 0, Ê

H���� = A
�K�

�, Ê
H�v j� = 0,

from which it follows immediately that

X̌i
C =

�

�xi − �i
 �

�� , X̌i
V =

�

�vi , Ě
H = A

�K�
� �

���

and
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�̌ = ���K�
 − vi�i

�
�

�� + vi �

�xi + ��i � ��
�

�vi .

The equations that determine the integral curves v̌�t�= �xi�t� ,��t� ,vi�t�� of the reduced vector field

�̌ are therefore the coupled set

ẍi = �i � � ,

�̇ = ��K�
 − vi�i

.

One can easily convince oneself that the right-hand side of the equation for �̇ is indeed indepen-

dent of the variables �A: by considering the coefficients of � /�� in �ẼA , Ẽ��=−CA�
c Ẽc, we find that

ẼA�K�
�=−CA�

� K�
. Since also ẼA

C����=CA�
� �� and ẼA��i

��=0, it follows easily that ẼA
C���K�



−vi�i
�=0, as claimed.

The functions �i � � on the right-hand side of the equation for ẍi can be determined from the
generalized Routh equations of Sec. III,

��X̄i
V�R��� − X̄i

C�R�� = − �aRij
a v j .

Since R�=R � � is G�-invariant, so also are X̄i
V�R�� and X̄i

C�R��. Recall that Rij
a are functions on

M, determined by �Xi ,Xj�=Rij
a Ẽa. Thus, since �Ẽa ,Xi�=0,

�Ẽa�Rij
b � − Rij

c Cac
b �Ẽb = 0.

However, CAc
b �b=0, and so

ẼA
C�Rij

b �b� = ẼA�Rij
b ��b = Rij

c CAc
b �b = 0.

It follows that the term �aRij
a v j is G�-invariant. The generalized Routh equations therefore pass to

the quotient N� /G� and take the reduced form

�̌�X̌i
V�R��� − X̌i

C�R�� = − �aRij
a v j .

Following Ref. 10, we will call these reduced equations the Lagrange–Routh equations. Under the

regularity assumptions we have adopted throughout, the function-valued matrix �X̄i
VX̄j

V�R��� is
nonsingular and the coefficients �i � �, now interpreted as functions on N� /G�, can be determined
from the Lagrange–Routh equations. In the current coordinate system, the equations become

d

dt
� �R�

�vi � −
�R�

�xi = − �aRij
a v j − �i


�R�

�� .

Given a reduced solution v̌�t�= �xi�t� ,��t� ,vi�t���N� /G�, we can apply the method of recon-
struction using either one of the connections �m and �N� to recover a complete solution v�t�
= �xi�t� ,�A�t� ,��t� ,vi�t���N� of the Lagrangian system. The examples discussed in Sec. VIII will
make it clear how this method works in practice.

VII. SIMPLE MECHANICAL SYSTEMS

In this section, we reconcile our results with those for the case of a simple mechanical system
to be found elsewhere in the literature.

A simple mechanical system is one whose Lagrangian is of the form L=T−V, where T is a
kinetic energy function, defined by a Riemannian metric g on M, and V is a function on M, the
potential energy. The symmetry group G consists of those isometries of g which leave V invariant.
We define a connection on M→M /G by taking for horizontal subspaces the orthogonal comple-
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ments to the tangent spaces to the fibers; it is this connection that is usually called the mechanical

connection �for a simple mechanical system�. We write gab=g�Ẽa , Ẽb�, gij =g�Xi ,Xj�; by assump-

tion, g�Ẽa ,Xi�=0. Then, in terms of quasivelocities,

L�m,v� = 1
2 �gij�m�viv j + gab�m�vavb� − V�m� ,

and Ẽa
VẼb

V�L�=gab, etc., so the notation is consistent with what has gone before. Note that since we
assume that g is Riemannian and therefore positive definite, it is automatic that L is regular and
that the matrices �gab�m�� and �gij�m�� are both nonsingular for all m; in particular, we do not need
to make the separate assumption that �gab� is nonsingular. Considered as defining a map M
→g*�g*, �gab� is called the locked inertia tensor. The isometry condition gives

Ẽa�gbc� + Cab
d gcd + Cac

d gbd = 0, Ẽa�gij� = 0.

The first of these is the differential version of the equivariance property of the locked inertia tensor
with respect to the action of G on M and the coadjoint action of G on g*�g*. The second shows
that gij may be considered as a function on M /G.

The momentum is given simply by pa�m ,v�=gab�m�vb. On any level set N�, where pa=�a, we
can solve explicitly for the va to obtain va=gab�b.

The Routhian is given by

R = L − pav
a = 1

2gijv
iv j − 1

2gabv
avb − V ,

and on restriction to N� we obtain

R� = 1
2gijv

iv j − �V + 1
2gab�a�b� .

The quantity V+ 1
2gab�a�b is the so-called amended potential15 and the term C�= 1

2gab�a�b is
called the “amendment” in Ref. 10. Both functions on M are G�-invariant: one easily verifies that

Ẽa�C��=gbcCab
d �c�d, so, in particular, for a=A we get ẼA�C��=0.

Note that by the choice of connection, Bi
a=0; we have X̂i

C= X̄i
C, and the generalized Routh

equations are

�0�X̄i
V�R��� − X̄i

C�R�� = − �aRij
a v j .

This equation is the analog in our framework of the one in Corollary III.8 of Ref. 10. We have
shown in the previous section that it reduces to the Lagrange–Routh equations

�̌�X̌i
V�R��� − X̌i

C�R�� = − �aRij
a v j ,

which for consistency should be supplemented by the equation that determines the variables �. As

we pointed out earlier, the latter is actually just the expression for genuine velocity components �̇

in terms of quasivelocities, supplemented by the constraint v= � which for a simple mechanical
system takes the form �=ga�a.

We can split the reduced Routhian R� in a Lagrangian part L= 1
2gijviv j −V and the reduced

amendment C�. Since the quasivelocities va do not appear in the expression of L, it can formally
be interpreted as a function on T�Q /G�. The reduced amendment is a function on Q /G�. We can
now rewrite the Lagrange–Routh equations as

�̌�X̌i
V�L�� − X̌i

C�L� = − �aRij
a v j + X̌i�C�� .

In coordinates,
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d

dt
� �L

�vi� −
�L

�xi = − �aRij
a v j + � �

�xi − �i
 �

��
��C�� .

This equation is only one out of two equations that appear in Theorem III.14 in Ref. 10, the
theorem that states the reduced equations obtained by following a variational approach to Routh’s
procedure. We leave it to the reader to verify that the second equation, in its form �III.37�, is, in
fact,

vC�
a �a = gb�bC�

a �a.

Since v=gb�b, this is obviously an identity from the current point of view; it certainly cannot be

used to determine �̇ in terms of the other variables, and without this information the equations are
incomplete. In this respect, therefore, our reduction results are an improvement on those in Ref.
10.

Let us now check, in the case where the configuration space M is of the form S�G, for an
Abelian symmetry group �Cab

c =0�, and a Lagrangian of the form

L�x,�, ẋ, �̇� = 1
2kij�x�ẋiẋ j + kia�x�ẋi�̇a + 1

2kab�x��̇a�̇b − V�x� ,

that the reduced equations above coincide with those in the Introduction. We set

Ẽa = Ka
b �

��b ,

where the Kb
a are independent of the �a since we are dealing with the Abelian case. In general,

horizontal vector fields take the form

Xi =
�

�xi − �i
a �

��a .

The quasivelocities adapted to the connection are therefore given, as before, by vi= ẋi and Kb
avb

= �̇a+�i
aẋi.

Given that in this case Ẽa�gbc�=0 and Ẽa�gij�=0, all coefficients of the metric can be inter-
preted as functions on M /G=S, and they depend only on the variables xi. The use of the mechani-

cal connection entails that gai=0. When expressed in terms of the coordinates �ẋi , �̇a�, this property
fixes the connection coefficients to be of the form �i

a=kabkib and the remaining coefficients of the
metric to be gab=kcdKa

cKb
d and gij =kij −kabkiakjb. The expression for R� given in the Introduction

now easily follows. Since R� is a function only of xi and vi= ẋi, we get

X̄i
V�R�� =

�R�

�ẋi and X̄i
C�R�� =

�R�

�xi .

Moreover,

�Xi,Xj� = Bij
a �

��a = Rij
a Ẽa,

and likewise �a= Ẽa
V�L�=Ka

b�b. So, �aRij
a =�aBij

a and the equation from the Introduction follows.
We now return to the general case �of a simple mechanical system� and consider the recon-

struction process.
We continue to use the mechanical connection on M. Since, in the basis that is adapted to this

connection, gia=0, and therefore X̄i
H= X̄i

C, the two connections �m and �N� coincide. We denote
the common connection on N� by �.

Let v̌�t� be a curve in N� /G� which is an integral curve of �̌, and v̌H a horizontal lift of v̌ to
N� �horizontal with respect to ��. The reconstruction equation is

032901-20 M. Crampin and T. Mestdag J. Math. Phys. 49, 032901 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp




�ġ�˜ C = ��� � v̌H�

�where 
 here is the Maurer–Cartan form of G��; this is �at each point on the curve v̌� an equation
between vertical vectors on N� but can and should be thought of as an equation on g�. It
determines a curve g�t� in G� such that

t � �g�t�
N� v̌H�t�

is an integral curve of � in N�; again, �N� is the action of G� on N�. So far, this works for an
arbitrary Lagrangian.

Now, as we showed earlier in general, the vertical part of � with respect to the vertical lift

connection �N� is ��A+�
A��ẼA

C. Thus, in the case at hand,

���� = ��A + �
A��ẼA

C = ��A + GABgB��ẼA
C = �gAa�a + GABgBga�a�ẼA

C = �gAa�a + GAB�	B
a

− gBCgCa��a�ẼA
C = �gAa�a + GAB�B − gAa�a�ẼA

C = GAB�BẼA
C.

The first point to note is that the coefficient GAB�B appearing on the right-hand side of the final
equation above is a function on M, so that in the right-hand side of the reconstruction equation the
argument v̌H can be replaced by its projection into M, which is � � � � v̌H.

Next, we interpret GAB�B in terms of the locked inertia tensor. Recall that the locked inertia
tensor at m�M has components gab�m�. As is the usual practice, we consider the locked inertia
tensor as a nonsingular symmetric linear map I�m� :g→g*. Now, let j be the injection g�→g:
then, �B are the components of j*��g

�
* and gAB�m� are the components of the map I��m�= j*

� I�m� � j. Then,

GAB�m��BEA = I�
−1�m��j*�� ,

a point of g�. So, finally, the reconstruction equation may be written as


�ġ�t�� = I�
−1�c�t���j*��, c = � � � � v̌H.

This is an equation between curves in g�.
We will now show that this reconstruction equation above is a particular and simple case of

one of the reconstruction equations appearing in Ref. 10.
To do so, we must introduce yet another connection, used in Ref. 10 and called there the

mechanical connection for the G�-action. This is a connection on the principal fiber bundle M
→M /G�, i.e., a G�-invariant splitting of the short exact sequence

0 → M � g� → TM → M�M/G�
T�M/G�� → 0.

If, as before, �EA ,E� is a basis of g for which �EA� is a basis for g�, then the vector fields Xi

together with the vector fields Ẽ−GABgAẼB form a basis for the set of vector fields which are
horizontal with respect to the mechanical connection for the G�-action. We denote the latter by
��. Now, �� and � are related somewhat as a connection and its vertical lift: in fact �for their
projections onto g��,

��Zv� = ���T�� � ��Zv�, Zv � TN�.

We note in passing that since T�� � ����v�=v for any v�N�, we can write the reconstruction
equation as


�ġ�t�˜� = ���v̌H� .

The reconstruction equation in Ref. 10 that we are aiming for is the third of the four, Eq. �IV.6�.
It seems the one most relevant to our approach because, as Marsden et al. said, in it they “take the
dynamics into account,” and this has been our purpose throughout. Now, Eq. �IV.6� of Ref. 10
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differs from our reconstruction equation �expressed in terms of I�� by having an additional term on
the right-hand side involving the mechanical connection for the G�-action ��. This arises because
the authors start with a more general class of curves on M than we do. In order to show that our
equation agrees with theirs, we first show that the curve c=� � � � v̌H in M is ��-horizontal; the extra
term in their equation is therefore zero in our case. By evaluating �� on the tangent to c and using
the relation between �� and �, we have

���ċ� = ���T�� � ��v̌Ḣ� = ��v̌Ḣ� = 0

because v̌H is �-horizontal. So, our reconstruction equation formally agrees with Eq. �IV.6� of
Marsden et al., when we take the starting curve on M to be c: it is the particular case of that
equation in which the curve on M is horizontal with respect to the G� mechanical connection.

To finish the story, we must also take into account the fact that Eq. �IV.6� of Ref. 10 is
presented as an equation for the reconstruction of a base integral curve of �, with momentum �,
from another suitable curve on M, whereas our reconstruction equation gives an integral curve of
� on N�. However, there is no real discrepancy here because � is a second-order differential
equation field and so knowing its base integral curves is equivalent to knowing its integral curves.
Let us spell this out in detail. We know that if t�g�t� is a solution of our reconstruction equation,
then

t � �g�t�
N� v̌H�t�

is an integral curve of � in N�. The corresponding base integral curve is

t � �����g�t�
N� v̌H�t��� .

However,

� � � � �g
N� = � � �g

TM � � = �g
M � � � � ,

so the curve t��g�t�
M c�t� is a base integral curve of �. Thus, the same curve in G� determines an

integral curve of � in N� �by its action on v̌H� and the corresponding base integral curve �by its
action on c=� � � � v̌H, the projection of v̌H to M�.

VIII. ILLUSTRATIVE EXAMPLES

We give two examples. In the first, we derive Wong’s equations using our methods. This
example is intended to illustrate the Routhian approach in a case of some physical interest;
however, we do not pursue the calculations as far as the consideration of the isotropy algebra and
reconstruction. These matters are illustrated in the second example, which is more specific and
more detailed, if somewhat more artificial.

A. Wong’s equations

We discuss the generalized Routh equations for the geodesic field of a Riemannian manifold
on which a group G acts freely and properly to the left as isometries, and where the vertical part
of the metric �that is, its restriction to the fibers of �M :M→M /G� comes from a bi-invariant
metric on G. The reduced equations in such a case are known as Wong’s equations.2,12

This is of course an example of a simple mechanical system, with V=0; we therefore adopt
the notation of Sec. VII, and we will use the mechanical connection. In order to utilize conve-
niently the assumption about the vertical part of the metric g, we will need symbols for the

components of g with respect to the invariant vector fields Êa introduced in Sec. II; we write

032901-22 M. Crampin and T. Mestdag J. Math. Phys. 49, 032901 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



hab = g�Êa,Êb� = Aa
cAb

dgcd.

Since both hab and gij are G-invariant functions, they pass to the quotient. In particular, gij are the
components with respect to the coordinate fields of a metric on M /G, the reduced metric; we
denote by �ij

k its Christoffel symbols.
The further assumption about the vertical part of the metric has the following implications. It

means in the first place that LÊc
g�Êa , Êb�=0 �as well as LẼc

g�Êa , Êb�=0�. Taking into account the

bracket relations �Êa , Êb�=Cab
c Êc, we find that hab must satisfy hadCbc

d +hbdCac
d =0. It is implicit in

our choice of an invariant basis that we are working in a local trivialization of M→M /G. Then,
hab are functions on the G factor, so must be independent of the coordinates xi on M /G, which is

to say that they must be constants. Moreover, Ẽa, Êa, and Aa
b are all objects defined on the G

factor, so are independent of the xi. We may write

Xi =
�

�xi − �i
aÊa

for some coefficients �i
a which are clearly G-invariant; moreover, �Xi , Êa�=�i

cCac
b Êb. We set

�i
cCac

b =�ia
b ; then, hac�ib

c +hbc�ib
c =0.

We are interested in the geodesic field of the Riemannian metric g. The geodesic equations
may be derived from the Lagrangian

L = 1
2g�uu� = 1

2gijv
iv j + 1

2gabv
avb = 1

2gijv
iv j + 1

2habwawb,

where wa are quasivelocities relative to Êa; we have Ab
awb=va. The momentum is given by pa

=gabvb=Āa
chbcw

c, where �Āa
b� is the matrix inverse to �Aa

b�. The Routhian is

R = 1
2gijv

iv j − 1
2gabpapb.

It is easy to see that X̄i
V�R�=gijv j. The calculation of X̄i

C�R� reduces to the calculation of Xi�gij�
and Xi�gab�. The first is straightforward. For the second, we note that gab=Āa

cĀb
dhcd; since the

right-hand side is independent of xi, so is gab, and so equally is gab. It follows that

X̄i
C�R� =

1

2

�gjk

�xi v jvk −
1

2
�i

cÊc�gab�papb.

Now, Êc�gab�=−Ac
d�gaeCde

b +gbeCde
a �, from Killing’s equations. Using the relation between gab and

hab, and the fact that ad is a Lie algebra homomorphism, we find that

Êc�gab� = − Ad
aAe

b�hdfCcf
e + hefCcf

d � .

The expression in the brackets vanishes, as follows easily from the properties of hab. Thus, the
generalized Routh equation is

d

dt
�gijv

j� −
1

2

�gjk

�xi v jvk = gij�v̇ j + �kl
j vkvl� = − �aRij

a v j .

However, �a=gabvb=Āa
chbcw

b; so if we set Kij
a =Āb

aRij
b , then �aRij

a =hbcKij
c wb. The generalized

Routh equation is therefore equivalent to

ẍi + � jk
i ẋjẋk = gimhbcKlm

c ẋlwb.

We also need an equation for wa: this comes from the constancy of �a, which we may write as
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hbc
d

dt
�Āa

cwb� = 0.

If we are to understand this equation in the present context, we evidently need to calculate Ȧa
b.

Now,

Ȧa
b = viXi�Aa

b� + vcẼc�Aa
b� = vi�ia

c Ac
b + vcCcd

b Aa
d.

It follows that

hbc
d

dt
�Āa

c� = − hbcĀa
dĀe

cȦd
e = − hbcĀa

dĀe
c�vi�id

f A f
e + v fCfg

e Ad
g� = − hbcĀa

d�vi�id
c + weCed

c � ,

where in the last step we have again used the fact that ad is a Lie algebra homomorphism. Now,
from the skew-symmetry properties of hab, we obtain

hbc
d

dt
�Āa

c� = hcdĀa
d�vi�ib

c + weCeb
c � ,

and therefore

hbc
d

dt
�Āa

cwb� = hcdĀa
d�ẇc + �ib

c viwb� .

The generalized Routh equation and the constancy of momentum together amount to the mixed
first- and second-order equations

ẍi + � jk
i ẋjẋk = gimhbcKlm

c ẋlwb,

ẇa + � jb
a ẋjwb = 0.

These are Wong’s equations as they are usually expressed.

B. A Lagrangian with SE „2… as symmetry group

We now consider the Lagrangian �of simple mechanical type�

L = 1
2 ẋ2 + 1

2 ẏ2 + 1
2 ż2 + 1

2 �̇2 + A��sin ��ż + �cos ��ẏ��̇ .

The system is regular if A2�1. The Euler–Lagrange equations are

ẍ = 0,
d

dt
�ẏ + �A cos ���̇� = 0,

d

dt
�ż + �A sin ���̇� = 0, �̈ + �A sin ��z̈ + �A cos ��ÿ = 0,

and the solution with �for convenience� �0=0 is

�x�t�,y�t�,z�t�,��t�� = �ẋ0t + x0,− A sin��̇0t� + �ẏ0 + A�̇0�t + y0,A cos��̇0t� + ż0t + z0 − A, �̇0t� .

The system is invariant under the group SE �2�, the special Euclidean group of the plane. The
configuration manifold is R�SE�2�, where x is the coordinate on R. We will use the trivial
connection. An element of SE �2� can be represented by the matrix

�cos � − sin � y

sin � cos � z

0 0 1
 .

The identity of the group is �y=0, z=0, �=0� and the multiplication is given by
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�y1,z1,�1� � �y2,z2,�2� = �y2 cos �1 − z2 sin �1 + y1,y2 sin �1 + z2 cos �1 + z1,�1 + �2� .

The matrices,

e1 = �0 0 1

0 0 0

0 0 0
, e2 = �0 0 0

0 0 1

0 0 0
, e3 = �0 − 1 0

1 0 0

0 0 0
 ,

form a basis for the Lie algebra, for which �e1 ,e2�=0, �e1 ,e3�=e2, and �e2 ,e3�=−e1. The corre-
sponding basis for the fundamental vector fields is

ẽ1 =
�

�y
, ẽ2 =

�

�z
, ẽ3 = − z

�

�y
+ y

�

�z
+

�

��
,

and for the invariant vector fields, we get

ê1 = cos �
�

�y
+ sin �

�

�z
, ê2 = − sin �

�

�y
+ cos �

�

�z
, ê3 =

�

��
.

One can easily verify that the Lagrangian is invariant.
Before we calculate an expression for the level sets pa=�a, we will examine the isotropy

algebra g� of a generic point �=�1e1+�2e2+�3e3 in g*. The relations that characterize an
element �=�1e1+�2e2+�3e3 of g� are

�3�2 = 0, �3�1 = 0, �1�2 − �2�1 = 0.

So, if we suppose that �1 and �2 do not both vanish, we will take them from now on to be 1 and
�, respectively, then a typical element of g� is �=�1�e1+�e2�. We will also set �3=0 for conve-
nience. Since g� is one dimensional, it is of course Abelian.

Before writing down the coordinate version of the reduced equations in the previous sections,
we made two assumptions. First, we supposed that a part of the basis of g was, in fact, a basis of
g�. So from now on, we will work with a new basis �E1=e1+�e2, E2=e2, E3=e3�, with corre-
sponding notations for the fundamental and invariant vector fields. The Lie algebra brackets in this
basis are �E1 ,E2�=0, �E1 ,E3�=−�E1+ �1+�2�E2, and �E2 ,E3�=−E1+�E2. The momentum vector
with which we are working takes the form �1+�2�E1+�E2 �with �3=0�, when written with
respect to the new dual basis.

The second assumption is that we use coordinates ��a�= ��A ,�� on G such that the fibers
G→G /G� are given by �=const. Then, fundamental vector fields for the G�-action on G are of
the form KA

B� /��B. The main advantage of this assumption is that in these coordinates, the expres-
sions in the reduced equations became independent of the coordinates �A. This assumption is not
yet satisfied in our case for the coordinates �y ,z ,��. The action of G� on G is given by the
restriction of the multiplication, i.e., by

�y1� � �y2,z2,�2� = �y2 + y1,z2,�2� .

We have only one coordinate on G�, say, y�. The fundamental vector fields that correspond to this
action should be of the form K� /�y�. However, in the new basis, vectors in g� are of the form
KE1, with corresponding fundamental vector fields

KẼ1 = K� �

�y
+ �

�

�z
� .

So, we should make a coordinate change �y ,z ,��→ �y� ,z� ,���, such that
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�

�y�
=

�

�y
+ �

�

�z
.

This can be done by putting

y� = y, z� = z − �y, �� = � .

We will then have coordinates �y� ,z� ,�� ,x , ẋ� on N� and �z� ,�� ,x , ẋ� on N� /G�. To save typing,
we will use y and � for y� and ��, and only make the distinction between z and z�.

The first goal is to solve the reduced equations on N� /G�. They are of the form

ẍi = �i�xj,�, ẋj� ,

�̇ = ��K�
 − ẋi�i

.

For this example, there is only one coordinate x on R �we are using the trivial connection on
SE�2��R→R�, but the coordinates � on SE�2� /G� are �z� ,��. The reduced second-order equa-
tion in x above can be derived from the Lagrangian equation in x which is simply

ẍ = 0.

It is therefore not coupled to the first-order equation in �z� ,��, and its solution is x�t�= ẋ0t+x0. For
the other equations, we will work first with the variables �y ,z ,�� and only make the change to the
new coordinates at the end.

The matrix �K�
� in the above expressions is determined by the relation Ẽa=Ka

b� /��a. It is the
lower right �2,2� matrix of

K = � 1 0 0

0 1 0

− z y + �z 1
 .

With the trivial connection, the equations for the other variables on N� /G� are therefore of the
form

ż� = �2 + �y + �z��3, �̇ = �3.

We can find the functions �a by solving the expressions pa=�a for va, with ��1 ,�2 ,�3��g* of the
form ��1+�2� ,� ,0�. We get

1 + �2 = ẏ + �ż + �A cos � + A� sin ���̇ ,

� = ż + �A sin ���̇ ,

0 = �A cos ��ẏ + �A sin ��ż + �̇ − z�ẏ + �A cos ���̇� + y�ż + �A sin ���̇� .

At t=0, the above equations relate the integration constants and �. We will set from now on ẏ0

=1−A�̇0, ż0=�, and z0=�y0+Aẏ0+ �̇0. It is easy to see that the coordinates va with respect to the

basis �Ẽ1� �with the trivial connection� are given by

v1 = ẏ + z�̇, v2 = ż − �ẏ − �z�̇ − y�̇, v3 = �̇ .

After substituting this into the equations for the level set, we obtain the expressions va= �a as
functions of �y ,z ,��. After some calculation, the reduced equations become
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ż� =
A

A2 − 1
��z − �y��sin � − � cos �� − A�1 − �2�sin � cos � − �A + 2�A�cos ��2� ,

�̇ =
1

A2 − 1
��y − z + A cos � + A� sin �� .

Observe that we can now replace �z−�y� everywhere by the new coordinate z�, so that indeed the
G�-coordinate y� does not appear in the reduced equations. One can verify that the solution of the
above equations, with the integration constants determined by �, is

�z��t�,��t�� = �A cos��̇0t� + A� sin��̇0t� + �1 − A2��̇0, �̇0t� .

We will now use the mechanical connection to reconstruct the G�-part y�t� of the solution. The

Hessian of the Lagrangian, in the basis �X=� /�x , Ẽa�, is

�
1 + �2 � A cos � + A� sin � − z + �y 0

� 1 A sin � + y 0

A cos � + A� sin � − z + �y A sin � + y 1 − 2Az cos � + 2Ay sin � + y2 + z2 0

0 0 0 1
 .

The determinant of the matrix is 1−A2. The vector field X̄C=XC=� /�x is tangent to the level sets
and horizontal with respect to the mechanical connection �m.

In general, we regard the Hessian as a tensor field along the tangent bundle projection. A basis
of vector fields along � that lie in the g-complement of g� is

�Ẽ2 −
�

1 + �2 Ẽ1,Ẽ3 −
1

1 + �2 �A cos � + A� sin � − z��Ẽ1,
�

�x
� .

Notice that they are all basic vector fields along � �i.e., vector fields on M�. The reason is that the
Lagrangian is of the simple type. We have seen that in that case, the g-complement of g� defines
a connection �� on M→M /G�. The connection tensor �m of the mechanical connection is
determined by

�m�Ẽ1
C� = Ẽ1

C, �m�Ē
H� = 0, �m�X̂C� = 0, �m�X̄V� = 0,

where the vector fields �Ē
H� that are horizontal with respect to the mechanical connection �m and

tangent to the level set are here

Ē2
H = Ē2

C −
�

1 + �2 Ẽ1
C, Ē3

H = Ē3
C −

1

1 + �2 �A cos � + A� sin � − z��Ẽ1
C.

The explicit expressions of Ē
C are not of direct concern; we only need to know that they are

tangent to the level set and that they differ from Ê
C in a vertical lift. The vertical part of �

= �aĒa
C+viX̄i

C+�iX̄i
V �the restriction of the dynamical vector field to N�� is here

�m��� = ��1 +
�

1 + �2 �2 +
1

1 + �2 �A cos � + A� sin � − z���3�Ẽ1
C.

Before we can write down the explicit form of the reconstruction equation g−1ġ=�m�� � v̆H�, we
need to find the horizontal lift v̆H of the reduced solution v̆= �z� ,� ,x , ẋ�. It is the curve
�ym ,z� ,� ,x , ẋ� in N� whose tangent vector is horizontal with respect to the G�-mechanical con-
nection. By construction this means that �d /dt��� � v̆H� should be ��-horizontal. If we write in

general that �d /dt��� � v̆H�=v1Ẽ1+v2Ẽ2+v3Ẽ3, then in order for the curve to be horizontal, the va

must satisfy
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v1 = − v2 �

1 + �2 − v3 1

1 + �2 �A cos � + A� sin � − z�� .

By expressing va as functions of �̇a, we find that the missing yH is a solution of

ẏH = − A�̇0 cos��̇0t� ,

from which yH�t�=−A sin��̇0t�+y0. Using this yH in the reconstruction equation gives

ẏ1 = �1 +
�

1 + �2 �2 +
1

1 + �2 �A cos � + A� sin � − z���3 = 1,

once we have evaluated the functions �a in terms of �yH ,z� ,� ,x , ẋ�. So, the solution through the
identity is y1�t�= t. The y-part of the complete solution of the Euler–Lagrange equation is therefore

y�t� = y1�t� + yH�t� = − A sin��̇0t� + t + y0,

as it should be for the given value of the momentum.
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