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Summary: Therelationsbetween the basic laws of circuit theory (Kirchhoff’slawsand the
conser vation of gener alized power) ar ediscussed with respect totheactiveand reactivecurrent
components. It isshown that theactiveand reactive cur rentsdo not satisfy Kirchoff’scurrent
law. It isproved that thisisnot in contradiction with theproperty that theactiveand reactive

power ssatisfy theconservation property.

1.INTRODUCTION

The fundamental laws of circuit theory and network
analysis are [1] Kirchhoff’s current law (KCL), Kirchhoff’s
voltage law (KVL) and the law of the conservation of power
or more generally Tellegen’s theorem [2]:

— KCL expresses the conservation of charge, or the property
that the sum of the currents in a node is zero.

— KVL expresses that the voltage difference is independent
of the path, or the property that the voltage in a loop or
a closed circuit is zero.

— Tellegen’s theorem expresses the law of conservation of
power, which means that the total (generalized) power in
a circuit is zero or that the same total power is generated
as dissipated in a network. This property not only holds
for the physical real power, but also for the active power,
the real power and the complex power.

These three basic laws are not independent. It is a very
important feature that the generalized law of conservation
of power holds for all voltages and currents satisfying
Kirchhoff’s laws, even if the currents and the voltages do
not satisfy equations of physically realisable network
elements. Moreover it has been proved [1, 2] that any two of
the three basic laws (KCL, KVL and Tellegen’s theorem) imply
the third one. The fact that KCL and KVL imply Tellegen’s
theorem is well known, as pointed out above. It is not so well
known that KVL and Tellegen’s theorem imply KCL, and
similarly that KCL together with Tellegen’s theorem implies
KVL. More explicitly, if in a graph for a set of branch currents
the total power is zero for all voltages satisfying KVL, then
the currents satisfy KCL. Conversely, if in a graph for a set
of branch voltages the total power is zero for all currents
satisfying KCL, then the voltages satisfy KVL.

Let us now consider the sinusoidal steady state. The
currents and voltages can be represented by complex
numbers, the phasors. For every branch in an electrical
network the current can be split up into two parts:

— the active current: this current is in phase with the voltage
and corresponds to the same active power as the actual
current, and to zero reactive power;

— the reactive current: this current is orthogonal to the
voltage and corresponds to the same reactive power as
the actual current, and to zero active power.

It is well known that the conservation of power also holds
for the complex power, and hence also for its real and imaginary
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Fig. 1. A node where active and reactive currents do not satisfy
Kirchoff’s current law

parts. Thus the conservation property also holds for the
active power as well as for the reactive power. From this
property and from the fact that the active power and the
reactive power are respectively generated by the branch
voltage and respectively the active current and the reactive
current, one may expect that the active currents as well as the
reactive currents satisfy KCL.

However the following very simple example shows that
this is not the case. Consider a node in a network connecting
two branches with a resistive impedance and a reactive
impedance respectively, as shown on Figure 1. The current
in the resistive branch is obviously purely active and
contains no reactive component. Similarly the current in the
reactive branch is purely reactive and contains no active
component. The sum of the currents in the two branches is
zero; this corresponds to Kirchhoff’s law in the node. But
the sum of the active currents as well as the sum of the reactive
currents is clearly non-zero.

In this paper this apparent contradiction is analysed. It is
shown why the active currents and the reactive currents do
not satisfy KCL. It is also explained why this does not
contradict the property that Tellegen’s theorem and KVL
together imply KCL.

2. ACTIVE AND REACTIVE CURRENTS AND
KIRCHHOFF’S CURRENT LAW

Consider a branch in a network with 7 the phasor of the
branch voltage and 7 the phasor of the branch current. The
active current /, and the reactive current /, are defined [3] as
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the current components in phase and in quadrature with the
branch voltage. They are explicitly given by the phasors:

_ Re(VI*)
la= |V|2 v 1
and:
Im(VI*) .
|, =———2 (=jV
V7 (=1V) 2)

It is well known and also apparent from these expressions:

— that the active current corresponds to the active power
in the network branch and to zero reactive power,

— thatthe reactive current corresponds to the reactive power
in the network branch and to zero active power,

— that the branch current / equals the sum of the active
current and the reactive current.

Let [ for k=1, ..., m, denote the currents in the m branches
connected to a particular node of an electrical network.
Assume that the positive direction of the currents is e.g.
chosen towards the node. Each current is split up into its
active and reactive current components /,; and /,; according
to the expressions (1) and (2) above. Kirchhoff’s current law
implies:

kzdlkzo (3)

As already mentioned in the previous section, the active
powers as well as the reactive powers in any electrical network
satisfy the conservation property. This is not a direct
consequence of the fundamental physical law of the
conservation of power. Indeed neither the active power nor
the reactive power are actual real powers. It is however a
consequence of Tellegen’s theorem, which is much more
general that the fundamental physical law of power
conservation. The question hence arises what can be said
about the relationship between the active and reactive
currents (corresponding to the active and reactive powers)
and Kirchoff’s current law.

It can be readily seen from expressions (1) and (2) that in
general the active and the reactive current components in
the branches connected to a node do not sum up to zero. The
fundamental reason is that the proportionality factor between
the active current (or the reactive current) and the branch
current is not the same for all branches connected to a
particular node, but clearly depends on the voltage of the
branch under consideration. Hence in general the active
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Fig. 2. Illustrative example of a single-loop electrical circuit

currents in the branches connected to a node do not sum up
to zero and do not satisfy KCL with respect to the considered
node. The same is true for the reactive currents in these
branches. If the ratios of the active current to the branch
current are the same for all branches connected to the node,
then the KCL is satisfied for the active currents. In the same
way the KCL is satisfied for the reactive currents if the ratios
of the reactive current to the branch current are the same for
all branches connected to the node. Thus both the active
currents and the reactive currents satisfy the KCL if the power
factor of all branches connected to a node is the same, which
also corresponds to the situation that the ratios of active to
the reactive current are the same for all branches. Otherwise
the active or reactive currents almost never satisfy the KCL.

3. ILLUSTRATIVE EXAMPLE

As an illustrative example, we consider a circuit consisting
of'a single loop with three branches, shown on Figure 2. The
branch reference directions are indicated in the figure. The
references for voltages and currents are chosen as associated
reference directions [1]. Thus the product of voltage and
current in each branch corresponds to the power dissipated
in the branch.

Let the current phasor be equal to 1 in the three branches
and the voltage phasors respectively be equal to 1 +/, 1 —;
and — 2. These voltages and currents clearly satisfy
Kirchoff’s laws. The phasors of the active and reactive
currents and the active and reactive powers are shown in
Table 1.

The complex powers in the three branches are respectively
1 +/,1—jand— 2, the phasors of the active currents YA 1 + ),
YA1 —j), and 1, the phasors of the reactive currents ¥A1 — ),
Y41 + ), and 0, the active powers 1, 1, and —2, and the reactive
powers 1,—1, and 0. Branch 1 is a resistive-inductive branch,
branch 2 an resistive-capacitive branch and branch 3 delivers
active power to branch 1 and to branch 2. The reactive power
needed by branch 1 is delivered by branch 2. It is clear from
Table 1 that the complex powers, the active powers and the
reactive powers satisfy the conservation property, or
equivalently Tellegen’s theorem. It is however readily seen
that only the total branch currents satisfy KCL in the three
nodes, whereas the active currents as well as the reactive
currents do not satisfy KCL.

Table 1.
branch 1 branch 2 branch 3
branch current 1 1 1
branch voltage 14 1 -2
active current Yo(1+) (1))
reactive current Yo(1-)) Yo(1+) 0
active power 1 1 -2
reactive power 1 -1 0
complex power 14 1+ -2
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4. ACTIVE AND REACTIVE VOLTAGES AND
KIRCHHOFF’S VOLTAGE LAW

In a similar way as for the branch current, the branch
voltage can be split up into an active and a reactive
component. For a passive branch this corresponds to the
voltage component across the active (or resistive) part of the
branch impedance, and the voltage component across the
reactive (inductive or capacitive) part of the branch
impedance. Explicitly the active voltage V,, and the reactive
voltage V,. are defined by:

_ Re(VI¥)
T @
and:
V. = Im(VI*) i (5)
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The active and the reactive voltage components together
with the branch current correspond respectively to the active
and the reactive power of the branch.

Kirchhoff’s voltage law states that the sum of the voltages
in the branches (with positive direction in the same circulation
sense) is zero. A similar discussion as in Section 2 shows
that in general the active voltage components in the branches
ofaloop do not satisfy KVL. Similarly in general the reactive
voltage components in the branches of a loop also do not
satisfy KVL. Here also the question arises if this is not in
contradiction with the fact that the currents satisfy KCL and
the active and reactive powers satisfy the conservation
property or, otherwise stated, Tellegen’s theorem.

5. KIRCHHOFF’S LAWS AND TELLEGEN’S
THEOREM

As already stated in Section 1, it is a very important general
result of circuit theory [1] that any two properties expressed
by the KVL, KCL and Tellegen’s theorem, imply the third
one. This leads to an apparent paradox. Indeed, considering
the active and reactive currents in the branches of a circuit,
the following properties hold:

— The branch voltages satisfy KVL.

— The active powers satisfy the conservation property
(hence Tellegen’s theorem).

— The reactive powers satisfy the conservation property
(hence Tellegen’s theorem).

This seems to imply that the active currents and the reactive
currents should satisfy KCL. This is however not the case as
discussed in the previous section.

To explain this apparent contradiction it should be clearly
stated what is meant by ,,KVL and Tellegen’s theorem imply
KCL”. As already stated in Section 1, this means that the
currents satisfy KCL if the corresponding sum of the powers
is zero for all voltages satisfying KVL, and not only for the
voltages which are present in the network. It is indeed not
sufficient that the sum of the powers is zero for the set of

actual voltages (which satisfy KVL); from this it cannot be
concluded that the currents satisfy KCL. For the active and
the reactive currents we only know that their sums vanish
(and hence Tellegen’s theorem or the conservation property
holds) for one particular set of voltages satisfying KVL,
namely the actual branch voltages. This does not justify to
conclude that the (active or reactive) currents satisfy KCL
and explains the apparent contradiction. This is illustrated
most clearly in the next section by the simple example
considered in Section 3.

A similar discussion holds for the branch currents, the
active voltage components and the active powers on the one
hand, and the branch currents, the reactive voltage
components and the reactive powers on the one hand. the
following properties hold:

— The branch currents satisfy KCL.

— The active powers satisfy the conservation property
(hence Tellegen’s theorem).

— The reactive powers satisfy the conservation property
(hence Tellegen’s theorem).

This seems to imply that the active voltage components
in the branches of a loop should satisfy KVL, and that also
the reactive voltage components of the branches of a loop
should satisfy KVL. This is however not the case. The
explanation of this apparent contradiction is similar to the
explanation given for the currents. Indeed the active and
reactive powers only satisfy the conservation property for
the given set of branch currents, not for all currents satisfying
KCL.

6. EXAMPLE (continued)

We again consider the illustrative example of the network
shown in Figure 2 and discussed in Section 3. The explanation
of the apparent contradiction discussed in Section 5 is that
the complex powers should satisfy the conservation property
or equivalently Tellegen’s theorem for all situations
corresponding to the currents and any set of voltages such
that the sum of voltages over the loop is zero, and not only
the voltages present in the circuit. Therefore the total branch
currents satisfy KCL. The same is not true for the powers
corresponding to the active currents. The sum of these
powers is only zero for the actual voltages and the actual
active currents, not for all other voltages satisfying the KVL
and the active currents. Similarly for the reactive currents:
the sum of the reactive powers is only zero for the actual
voltages and the actual reactive currents, not for all voltages
satisfying the KVL and the reactive currents. This is why the
active currents and the reactive currents do not satisfy KCL.

This can readily be seen by considering e.g. the fictitious
voltage phasors 1, 1 and -2 in the three branches. These are
not the actual branch voltages, but nevertheless they satisfy
KVL. As summarized in Table 2, the corresponding (complex)
powers satisfy Tellegen’s theorem, but not the powers
corresponding to the given active and reactive currents and
this set of voltages. Indeed with that set of voltages the
complex powers corresponding to the total currents are 1, 1,
—2, and hence satisfy Tellegen’s theorem. On the other hand
the powers corresponding to the (original) active currents




Table 2.
branch 1 branch 2 branch 3
branch current 1 1 1
active current YA1+) Y41+) 1
reactive current Y41+) YA1+j) 0
fictitious voltage 1 1 -2
(fictitious) complex power
for branch current 1 1 -2
for active current YA1+j) Y41+) -2
for reactive current ¥o14) Yy 1+)) 0

and these voltages are Y1 + j), ¥A1 — j), -2, and the powers
corresponding to the (original) reactive currents and these
voltages are ¥A(1 + j),%A1 +j), 0. We see that the sums of these
powers do not vanish.

7. FURTHER OBSERVATIONS

The concepts of active and reactive currents have not
only been defined for sinusoidal currents and voltages, but
also for other situations, such as the case of instantaneous
currents and the case of periodic nonsinusoidal currents [4—
6]. The same discussion as above with respect to the
corresponding powers, Kirchhoff’s laws and Tellegen’s
theorem, can be carried out for these currents. A similar
apparent contradiction is obtained concerning the fact that
the powers corresponding to the active (or reactive) currents
satisfy the conservation property and that the voltages satisfy
Kirchhoff’s voltage law, but that nevertheless the active (or
reactive) currents do not satisfy KCL. This contradiction can
be explained in a similar way as in the sinusoidal case.

8. CONCLUSIONS

In this paper the relation between the basic laws of circuit
theory (Kirchoff’s voltage and current laws and Tellegen’s
theorem or the principle of the conservation of generalized
power) is discussed in relation with the active and reactive
current components and the corresponding active and
reactive powers. It is emphasized that the active and reactive
currents do not satisfy KCL, although the active and reactive
powers satisfy the conservation property. Hence on the one
hand it is correct to say that if an element in a network takes
(or generates) active (or reactive) power, then another element
in the same network should generate (or take) that active (or
reactive) power. On the other hand it is not correct to state
that if an element in a network takes (or generates) active (or
reactive) current, then another element in the same network
should generate (or take) that active (or reactive) current. It
is shown why this is no contradiction with the fundamental
property that KVL and Tellegen’s theorem imply KCL.

The discussion of this paper obviously does not intend
to throw any doubt on the validity of Kirchhoft’s laws or
Tellegen’s theorem. It is also emphasized that one should not
conclude that the active and reactive currents do not have

an interesting physical meaning, even though they do not
satisfy KCL. The only valid conclusion is that in general the
active and reactive currents cannot exist separately in the
network, because they do not satisfy KCL. Another
conclusion is that one should be very careful in the
interpretation of the (correct) statement that ,,any two of the
three properties expressed by the fundamental circuit laws
(KVL, KCL and Tellegen’s theorem) imply the third one”.
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