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Abstract

In the tensor product of n+1 positive discrete series representations of su(1, 1), a coupled
basis vector can be described by a certain binary coupling tree. To every such binary cou-

pling tree, polynomials R
(k)
l

(x) and R
(k)
l

(x) are associated. These polynomials are n-variable
Jacobi and continuous Hahn polynomials, and are orthogonal with respect to a weight func-
tion. The connection coefficients expressing such a polynomial associated with a given binary
coupling tree in terms of those polynomials associated with another binary coupling tree are
proportional to 3nj-coefficients of su(1, 1).
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I Introduction

The 3nj-coefficients of su(2) (or so(3)) play a dominant role in quantum theory of angular mo-

mentum [1, 2, 3, 4, 5] and its applications in nuclear, atomic and molecular physics. For 3j-

and 6j-coefficients of su(2) there exist expressions in terms of hypergeometric series [5, 6, 7],

explaining the close relation with orthogonal polynomials such as Hahn and Racah polynomi-

als [7]. For example, the 6j-coefficient of su(2) is expressed in terms of a terminating balanced

4F3 series of unit argument. The parameters of the 4F3(1) series are written in terms of the six

representation labels (angular momenta) of the 6j-coefficient. By the nature of these represen-

tation labels (integer or half-integer positive numbers), the parameters of the 4F3(1) series are

integers [6, 7]. When identifying the 6j-coefficient with a Racah polynomial Rm(λ(x); α, β, γ, δ),

it is not easy to decide which parameters correspond to the degree m, which to the variable

x, and which to the parameters α, β, γ, δ of the polynomial. In a way, this identification be-

comes easier when dealing with positive discrete series representations of su(1, 1) rather than

with su(2) representations. This is for us one of the main reasons to consider couplings of such

su(1, 1) representations, their 3nj-coefficients, and the connections with orthogonal polynomials

in this paper.

The Lie algebra su(1, 1), or so(2, 1), plays itself an important role in physical models. It has

been extensively used as spectrum generating algebra in many simple quantum systems, such

as the nonrelativistic Coulomb problem, the isotropic harmonic oscillator, Schrödinger’s rela-

tivistic equation, and the Dirac-Coulomb problem (Ref. [9], and references therein). In certain

boson models [10, 11], the relevant representations are the positive discrete series representations

D+(k). To fix the notation, let J0, J± be the generators of su(1, 1) subject to

[J0, J±] = ±J±, [J+, J−] = −2J0, (1.1)

with the conditions J †
0 = J0 and J†

± = J∓. The positive discrete series representations [7] D+(k)

(k > 0) have a basis |k, n〉, with n = 0, 1, 2, . . ., and the action of the generators is given by :

J0|k, n〉 = (n + k)|k, n〉,

J+|k, n〉 =
√

(n + 1)(2k + n)|k, n + 1〉,

J−|k, n〉 =
√

n(2k + n− 1)|k, n− 1〉.

(1.2)

The tensor product of two positive discrete series representations† (k1) = D+(k1) and (k2) =

†In the rest of the paper, we always mean “positive discrete series representations” whenever we say “repre-
sentations” of su(1, 1)
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D+(k2) (or the coupling of two representations (k1) and (k2)) decomposes as follows [7] :

(k1)⊗ (k2) =
∞

⊕

j=0

(k1 + k2 + j). (1.3)

The “coupled basis vectors” are written in terms of the uncoupled ones by means of the su(1, 1)

Clebsch-Gordan coefficients :

|(k1k2)k, n〉 =
∑

n1,n2

Ck1,k2,k
n1,n2,n |k1, n1〉 ⊗ |k2, n2〉. (1.4)

Herein, k = k1 +k2 +j for some integer j ≥ 0, and the sum is such that n1 +n2 = j +n. Explicit

expressions for the Clebsch-Gordan coefficients are given, e.g. in Ref. [7, 12, 13], in terms of a

3F2(1) series.

In this paper we shall be dealing with the coupling or tensor product of n+1 such representations,

labeled by positive integers k1, k2, . . . , kn+1. For the description of coupled basis vectors in such

a tensor product, the notion of binary coupling trees is essential (see [4, Topic 12] and [14, 15]).

Binary couplings find their origin in the recoupling theory of n+1 angular momenta [4, Topic 12]

(thus in the context of tensor products of (n + 1) su(2) representations), but apply also to

the “recoupling theory” of n + 1 positive discrete series representations of su(1, 1) [14, 15].

Binary coupling trees describe the coupling scheme (the way of taking tensor products), i.e. the

sequential pairwise coupling [4, Topic 12]. A 3nj-coefficient of su(1, 1) is then the coefficient

of a unitary transformation which connects two basis vectors corresponding to different binary

coupling schemes of n + 1 representations [4, 6, 14, 15]. Thus a 3nj-coefficient is characterized

by two binary trees T1 and T2 (with labeled leaves and nodes), and since it is the transformation

coefficient or overlap coefficient, it is usually denoted by 〈T1, T2〉. For the reader not familiar

with binary coupling trees, their meaning will become transparent from the examples given in

this paper.

The motivation for the work presented here stems from interpretations of identities involving

orthogonal polynomials and su(1, 1) Racah coefficients (or su(1, 1) 6j-coefficients). One such

identity appears already in the seminal work of Granovskĭı and Zhedanov [16, Eq. (9)] : this

is a convolution identity involving products of Jacobi polynomials and Racah coefficients. The

identity can be interpreted as a connection coefficient identity between orthogonal polynomials

in two variables, with su(1, 1) Racah coefficients as connection coefficients (see [12] and [13]).

It was later extended to the case of continuous Hahn polynomials [13, Theorem 3.13] : here
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the connection coefficients are the same (namely su(1, 1) Racah coefficients), but the orthogonal

polynomials in two variables are certain products of two continuous Hahn polynomials.

In the present paper orthogonal polynomials in n variables will be associated with the tensor

product of n + 1 representations of su(1, 1). A different class of orthogonal polynomials arises

depending upon the (internal) binary coupling tree. Then, the connection coefficients relating

two such orthogonal polynomials associated with a different binary coupling tree are given by

3nj-coefficients (associated with the coupling trees). For the case of three couplings Jacobi

polynomials and continuous Hahn polynomials appear. Also for the n-variable case, these two

families are present : the orthogonal polynomials we are dealing with are either products of

certain Jacobi polynomials, or products of continuous Hahn polynomials.

In general, orthogonal polynomials in several variables give rise to certain difficulties that are

not present in the one variable situation. For example, orthogonal polynomials in n variables

are no longer uniquely defined by the area Ω and the weight function on the area. This is closely

related to the fact that there is no obvious natural order for polynomials in several variables.

The space of all polynomials in the variables x1, . . . , xn with real coefficients is denoted R[x1, . . . , xn]

or Πn for short. The degree of a polynomial P ∈ Πn is the highest degree of any of its monomials.

Let 〈·, ·〉 be an inner product defined on Πn, then P is an orthogonal polynomial if 〈P, Q〉 = 0

for all polynomials Q with deg Q < deg P . This definition does not require that P is orthogonal

with other (orthogonal) polynomials of the same degree.

In our case the inner product will be defined in terms of some (classical) weight function W on

some (classical) area Ω in R
n: 〈P, Q〉 =

∫

Ω P (x)Q(x)W (x) dx.

The outline of the rest of this article is as follows. In section II we confine ourselves to the two

variable case. The basic identities are convolution identities involving su(1, 1) Racah coefficients

and Jacobi polynomials [16, 12] or continuous Hahn polynomials [13]. The new aspect here

is that we show how to deduce these identities from the Biedenharn-Elliott identity [4]. More

particularly, we show how the Biedenharn-Elliott identity yields a new convolution identity

involving the Wilson and Racah polynomials. The products of Wilson polynomials on both

sides of the identity are shown to be orthogonal in R
2 with respect to some weight function.

Using limiting relations between the Wilson, continuous Hahn and Jacobi polynomials, two other

(known) convolution identities are (re)derived.

Section III generalizes the result involving Jacobi polynomials to n variables. With the coupling
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of n + 1 representations in su(1, 1) we associate a set of orthogonal polynomials on the simplex

with respect to the classical weight function xα1

1 · · ·x
αn
n (1 − x1 − · · · − xn)αn+1 (αi > −1). For

n = 2 these polynomials are due to Proriol [17]. For arbitrary n, but associated to a special

coupling tree, these polynomials appear in [18]. The more general case was also considered by

Rosengren [19] in the context of multilinear Hankel forms.

Section IV does the same for the result involving continuous Hahn polynomials. In this case the

area is the complete space R
n, and the weight function is in terms of Gamma functions.

In section V we prove that the sets of polynomials defined in the previous sections form bases

for Πn. Moreover, we show that the generalized recoupling coefficients of su(1, 1), which are

essentially sums of products of Racah coefficients, are the connection coefficients between the

different bases.

In the rest of this paper we will use the following abbreviations : k always stands for the

(n + 1)-tuple (k1, . . . , kn+1) ∈ R
n+1
+ , and l is an n-tuple (l1, . . . , ln) ∈ N

n. Moreover, we use

|k| = k1 + · · ·+ kn+1 and |l| = l1 + · · ·+ ln. The Kronecker delta symbol δl,l′ then stands for the

product δl1,l′1
. . . , δln,l′n , etc.

II A convolution identity involving Wilson polynomials

In general recoupling theory of su(2), the Biedenharn-Elliott identity is well known [4, 1, 6].

In the case of positive discrete series representations of su(1, 1), the identity is essentially the

same. It is easily derived by considering the overlap or transformation coefficient [4, p. 456-457],

[14, 15]

〈(((k1, k2)k12, k3)k13, k4)k14 | (k1, (k2, (k3, k4)k34)k24)k14〉

and computing this in two different ways : either directly, yielding a product of two recoupling

coefficients, or in three steps, introducing a summation variable and thus yielding a sum of a

product of three recoupling coefficients. Explicitly we get :

∑

k23

Uk1,k2,k12

k3,k13,k23
Uk1,k23,k13

k4,k14,k24
Uk2,k3,k23

k4,k24,k34
= Uk12,k3,k13

k4,k14,k34
Uk1,k2,k12

k34,k14,k24
, (2.1)

where k23 is restricted to some range, and U stands for a Racah coefficient (or recoupling

coefficient, or 6j-coefficient) of su(1, 1). All ki’s or kij ’s refer to su(1, 1) representation labels

and are positive real numbers. An explicit form for the recoupling coefficients in terms of
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terminating balanced 4F3(1) series is known [7, 12, 13] :

Uk1,k2,k12

k3,k0,k23
=

(

j + j12

j23

)

(2k2)j12(2k3)j(2k1 + 2k2 + 2k3 + j + j12 − 1)j23

(2k3, 2k2 + 2k3 + j23 − 1)j23(2k2 + 2k3 + 2j23)j′

×

√

j′!(2k1, 2k23, 2k1 + 2k23 + j′ − 1)j′ j23!(2k2, 2k3, 2k2 + 2k3 + j23 − 1)j23

j!(2k12, 2k3, 2k12 + 2k3 + j − 1)j j12!(2k1, 2k2, 2k1 + 2k2 + j12 − 1)j12

(2.2)

× 4F3

(

2k1 + 2k2 + j12 − 1, 2k2 + 2k3 + j23 − 1,−j12,−j23

2k2, 2k1 + 2k2 + 2k3 + j + j12 − 1,−j − j12
; 1

)

,

with the following restrictions and definitions :

k12 = k1 + k2 + j12, k23 = k2 + k3 + j23,

k0 = k12 + k3 + j = k1 + k23 + j′, j12, j, j23, j
′ ∈ N, and j12 + j = j23 + j′.

In (2.2), we follow the classical notation for Pochhammer symbols (a)n and for hypergeometric

series pFq [20, 21, 22].

Both the Racah and Wilson polynomials are defined in terms of terminating balanced 4F3(1)

series. We will now perform an appropriate renaming of the nine free parameters and the summa-

tion variable in (2.1) to derive a convolution identity involving Wilson and Racah polynomials.

Wilson polynomials, denoted Wm(x2; a, b, c, d), are defined as follows :

Wm(x2; a, b, c, d) =

(a + b)m(a + c)m(a + d)m 4F3

(

−m, m + a + b + c + d− 1, a + ix, a− ix

a + b, a + c, a + d
; 1

)

, (2.3)

while Racah polynomials, denoted Rm(λ(x); α, β, γ, δ), are defined by :

Rm(λ(x); α, β, γ, δ) = 4F3

(

−m, m + α + β + 1,−x, x + γ + δ + 1

α + 1, β + δ + 1, γ + 1
; 1

)

, (2.4)

where λ(x) = x(x + γ + δ + 1) and one of the denominator parameters equals −M with M ∈ N

and 0 ≤ m ≤M .

Here (and in the rest of the paper), we use the notation of [8] for Wilson and Racah polynomials

(and for all other one variable orthogonal polynomials).

Theorem 1 The Wilson polynomials satisfy the following convolution identity :

m+j
∑

l=0

(

j + m

l

)

(2k2)m(2k3)j(2k1 + 2k2 + 2k3 + j + m− 1)l

(2k3)l(2k2 + 2k3 + l − 1)l(2k2 + 2k3 + 2l)j+m−l
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×Rl(λ(m); 2k2 − 1, 2k3 − 1,−j −m− 1, 2k1 + 2k2 + j + m− 1)

×Wm+j−l((x1 − t)2; k1 + it, k2 + k3 + l − is + it, k1 − it, k2 + k3 + l + is− it)

×Wl((x1 + x2 − t)2; k2 − ix1 + it, k3 − is + it, k2 + ix1 − it, k3 + is− it) (2.5)

= Wm((x1 − t)2; k1 + it, k2 − i(x1 + x2) + it, k1 − it, k2 + i(x1 + x2)− it)

×Wj((x1 + x2 − t)2; k1 + k2 + m + it, k3 − is + it, k1 + k2 + m− it, k3 + is− it),

where j, m ∈ N, k1, k2, k3, x1, x2, x3, t ∈ R and s = x1 + x2 + x3.

Proof : In the case of su(1, 1), the summation range for k23 in (2.1) is from k2 +k3 to min(k13−

k1, k24 − k4). The summation variable k23 thus takes real values, starting with k2 + k3 and

increasing in steps of one. Substituting (2.2) in (2.1) yields an identity between terminating

balanced 4F3(1) series :

min(k13−k1,k24−k4)
∑

k23=k2+k3

f × 4F3

(

k1 + k2 + k12 − 1, k2 + k3 + k23 − 1, k1 + k2 − k12, k2 + k3 − k23

2k2, k13 + k1 + k2 + k3 − 1, k1 + k2 + k3 − k13
; 1

)

× 4F3

(

k1 + k23 + k13 − 1, k23 + k4 + k24 − 1, k1 + k23 − k13, k23 + k4 − k24

k1 + k23 + k4 − k14, 2k23, k14 + k1 + k23 + k4 − 1
; 1

)

× 4F3

(

k2 + k3 + k23 − 1, k2 + k3 − k23, k3 + k4 + k34 − 1, k3 + k4 − k34

k2 + k3 + k4 − k24, 2k3, k24 + k2 + k3 + k4 − 1
; 1

)

= 4F3

(

k3 + k4 + k34 − 1, k12 + k3 + k13 − 1, k3 + k4 − k34, k12 + k3 − k13

k12 + k3 + k4 − k14, 2k3, k14 + k12 + k3 + k4 − 1
; 1

)

× 4F3

(

k1 + k2 + k12 − 1, k1 + k2 − k12, k2 + k34 + k24 − 1, k2 + k34 − k24

2k2, k1 + k2 + k34 − k14, k14 + k1 + k2 + k34 − 1
; 1

)

,

where f is a numerical factor that is easily calculated from (2.2). Renaming the following positive

integer differences as

m = k12 − k1 − k2, j = k13 − k12 − k3 and l = k23 − k2 − k3,

and performing appropriate Bailey transformations [23, Theorem 3.3.3] on the balanced 4F3(1)’s,

yields that (when k13 − k1 ≤ k24 − k4) :

j+m
∑

l=0

f ′ × 4F3

(

−l, l + 2k2 + 2k3 − 1,−m, m + 2k1 + 2k2 − 1

2k2, 2k1 + 2k2 + 2k3 + j + m− 1,−j −m
; 1

)

× 4F3

(

−m− j + l, m + j + l + 2k1 + 2k2 + 2k3 − 1, k1 + k14 + k24 − 1, k1 + k14 − k24

2k1, k1 + k2 + k3 + l + k4 + k14 − 1, k1 + k2 + k3 + l + k14 − k4
; 1

)

× 4F3

(

−l, l + 2k2 + 2k3 − 1, k2 + k24 + k34 − 1, k2 + k24 − k34

2k2, k2 + k3 + k24 − k4, k24 + k2 + k3 + k4 − 1
; 1

)
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= 4F3

(

−j, j + 2m + 2k1 + 2k2 + 2k3 − 1, m + k1 + k2 + k14 − k34, m + k1 + k2 + k14 + k34 − 1

2m + 2k1 + 2k2, m + k1 + k2 + k3 + k4 + k14 − 1, m + k1 + k2 + k3 + k14 − k4
; 1

)

× 4F3

(

−m, m + 2k1 + 2k2 − 1, k1 + k14 + k24 − 1, k1 + k14 − k24

2k1, k1 + k2 + k14 − k34, k1 + k2 + k14 + k34 − 1
; 1

)

,

where, once again, f ′ is a numerical factor that is easily calculated.

This last identity can be written in terms of Wilson and Racah polynomials by putting

ix1 = k14 − k24, ix2 = k24 − k34, ix3 = k34 − k4 and it = k4 + i(x1 + x2 + x3)− 1/2.

Note that all the renamings are invertible. Determination of the factor f ′ now yields the desired

result. Since (2.5) is a rational identity in the parameters ki, xi and t, it is valid for all values

of these parameters. 2

From Theorem 1 we can easily rederive a convolution identity for continuous Hahn polynomials.

The continuous Hahn polynomials, denoted pm(x; a, b, c, d), are defined as [8]

pm(x; a, b, c, d) = im
(a + c)m(a + d)m

m!
3F2

(

−m, m + a + b + c + d− 1, a + ix

a + c, a + d
; 1

)

; (2.6)

for their orthogonality (when <(a, b, c, d) > 0, c̄ = a and d̄ = b), see [8] or (4.3). Using the limit

transition [8] :

lim
t→−∞

Wm((x− t)2; a + it, b + it, c− it, d− it)

(2t)mm!
= pm(x; a, b, c, d), (2.7)

in (2.5), one finds the following corollary (see also [13, Theorem 3.13]).

Corollary 2 The continuous Hahn polynomials satisfy the following convolution identity :

m+j
∑

l=0

(

j + m

m

)

(2k2)m(2k3)j(2k1 + 2k2 + 2k3 + j + m− 1)l

(2k3)l(2k2 + 2k3 + l − 1)l(2k2 + 2k3 + 2l)j+m−l

×Rl(λ(m); 2k2 − 1, 2k3 − 1,−j −m− 1, 2k1 + 2k2 + j + m− 1)

× pm+j−l(x1; k1, k2 + k3 + l − is, k1, k2 + k3 + l + is)

× pl(x2; k2, k3 − i(s− x1), k2, k3 + i(s− x1)) (2.8)

= pm(x1; k1, k2 − i(x1 + x2), k1, k2 + i(x1 + x2))

× pj(x1 + x2; k1 + k2 + m, k3 − is, k1 + k2 + m, k3 + is),

where j, m ∈ N, k1, k2, k3, x1, x2, x3 ∈ R and s = x1 + x2 + x3. 2
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The classical Jacobi polynomials are defined by :

P (α,β)
m (x) =

(α + 1)m

m!
2F1

(

−m, m + α + β + 1

α + 1
;
1− x

2

)

; (2.9)

for α, β > −1, they are orthogonal over the interval [−1, 1] for the weight function (1−x)α(1+x)β .

Replacing xi by sxi in (2.8) and letting s tend to infinity yields Corollary 3 (see also [13,

Corollary 3.15], or [16, 12]) :

Corollary 3 The Jacobi polynomials satisfy the following convolution identity :

m+j
∑

l=0

(

j + m

m

)

(2k2)m(2k3)j(2k1 + 2k2 + 2k3 + j + m− 1)l

(2k3)l(2k2 + 2k3 + l − 1)l(2k2 + 2k3 + 2l)j+m−l

×Rl(λ(m); 2k2 − 1, 2k3 − 1,−j −m− 1, 2k1 + 2k2 + j + m− 1)

× P
(2k1−1,2k2+2k3+2l−1)
m+j−l (1− 2x1)(1− x1)

lP
(2k2−1,2k3−1)
l

(

1− x1 − 2x2

1− x1

)

= (x1 + x2)
mP (2k1−1,2k2−1)

m

(

x2 − x1

x1 + x2

)

P
(2k1+2k2+2m−1,2k3−1)
j (1− 2x1 − 2x2).

2

Both Corollary 2 and 3 can be written in a more symmetric (and unified) way using a different

scaling for the continuous Hahn and Jacobi polynomials. Defining the polynomial Sk1,k2
m (x1, x2)

as

Sk1,k2
m (x1, x2) =

√

m!(2m + 2k1 + 2k2 − 1)Γ(m + 2k1 + 2k2 − 1)

Γ(m + 2k1)Γ(m + 2k2)

× pm(x1; k1, k2 − i(x1 + x2), k1, k2 + i(x1 + x2)), (2.10)

we have the following identity [13, Eq. (3.15)] :

Sk1,k2

k12−k1−k2
(x1, x2)S

k12,k3

k0−k12−k3
(x1 + x2, x3) =

k0−k1
∑

k23=k2+k3

Uk1,k2,k12

k3,k0,k23
Sk2,k3

k23−k2−k3
(x2, x3)S

k1,k23

k0−k1−k23
(x1, x2 + x3). (2.11)

Formula (2.11) is easily remembered by considering two ways in which three su(1, 1) represen-

tations can be coupled, as shown in Figure 1. Notice how the left side of (2.11) follows from the

tree on the left side of this figure. With each non-leaf node (i.e. with each intermediate or final

coupling) one associates an S-polynomial. The first (resp. second) variable of this S-polynomial
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is the sum of all the variables associated with the leaves in the left (resp. right) subtree of

the considered node. The upper parameters are determined by the value of the representation

labels of the left and right child (in that order). The (positive integer) lower parameter is the

difference between the value of the coupled representation label and the consisting labels. The

S-polynomials on the right side of (2.11) are formed in the same way but working with the tree

on the right side of the figure. The recoupling coefficient appearing in (2.11) is that associated

with a recoupling of three representations as shown in Figure 1.

k1 k2 k3

x1 x2 x3

k1 k2 k3

x1 x2 x3

k23

k0

k12

k0

Figure 1: Two possible ways of coupling three representations

The S-polynomials have the following property :

Sk1,k2
m (x1, x2) = (−1)mSk2,k1

m (x2, x1), (2.12)

which is a direct consequence of Whipple’s transformation for terminating 3F2(1) series [23,

p. 142].

If we define [16, 12]

Sk1,k2
m (x1, x2) = (−1)m

√

m!

(2k1, 2k2, 2k1 + 2k2 + m− 1)m
(x1 + x2)

mP (2k1−1,2k2−1)
m

(

x2 − x1

x2 + x1

)

,

(2.13)

then relations (2.11) and (2.12) are still valid (after replacing S by S). This follows from the

fact that

lim
u→∞

Sk1,k2
m (ux1, ux2)

um
=

√

Γ(2m + 2k1 + 2k2)

Γ(2k1)Γ(2k2)
Sk1,k2

m (x1, x2). (2.14)

It is known [13] that the products of continuous Hahn polynomials in both the left and right

side of (2.8) (or (2.11)) are orthogonal on R
2 for the weight function

Γ(k1 ± ix1)Γ(k2 ± ix2)Γ(k3 ± i(s− x1 − x2)), (2.15)

where, for conciseness of notation, the product Γ(kj + ix)Γ(kj − ix) is written as Γ(kj ± ix).

This convention is adopted throughout this paper. Moreover, we will write Γ(±kj ∓ ix) instead

10



of Γ(kj− ix)Γ(−kj + ix), etc. Observe that (2.11), with x3 = s−x1−x2, can thus be interpreted

as a connection coefficient formula between orthogonal polynomials in two variables, and the

su(1, 1) Racah coefficients are the connection coefficients. Similarly, replacing S by S in (2.11),

one obtains again a connection coefficient formula. This time, the orthogonal polynomials are

orthogonal on the simplex determined by x1, x2 > 0, x1 + x2 < s, and the weight function is

x2k1−1
1 x2k2−1

2 (s− x1 − x2)
2k3−1.

In this section we have shown how the Biedenharn-Elliott identity implies two connection co-

efficient formulas for orthogonal polynomials in two variables, one constructed with continuous

Hahn polynomials, and one constructed with Jacobi polynomials. In the following sections this

will be generalized to orthogonal polynomials in n variables. Finally, observe that also the prod-

ucts of Wilson polynomials in Theorem 1 are related to orthogonal polynomials in two variables,

see Appendix A.

III Orthogonal polynomials related to Jacobi polynomials

When considering orthogonal polynomials in n variables, one of the classical areas is the simplex

Tn
s :

Tn
s = {x ∈ R

n | 0 < xj and x1 + · · ·+ xn < s}. (3.1)

Herein, s denotes some positive constant, and in almost all cases s is taken to be equal to 1.

The classical weight function in this case is :

x
κ1−1/2
1 · · ·xκn−1/2

n (s− |x|)κn+1−1/2, (3.2)

where each κi > −1/2. In [24, Proposition 2.3.8] an explicit orthonormal basis is given associated

with the weight function (3.2) on the simplex (3.1). Such a basis is not unique. In fact, with every

binary coupling tree on n + 1 leaves, a different basis can be constructed. In this section, an n-

variable orthonormal polynomial will be constructed out of a product of n S-polynomials (2.13),

and associated with a binary coupling of n + 1 representations of su(1, 1). We will show that

this polynomial is orthogonal on the simplex T n
s for the classical weight function. The outline of

this proof is as follows : by a change of variables, we will transform the simplex into the cube on

R
n. This transformation will map the integral over the simplex into an integral over the cube,

where one part can be interpreted as the multiple Jacobi weight function :

n
∏

i=1

(1− xi)
ai(1 + xi)

bi , (3.3)

11



while the other parts are the corresponding Jacobi polynomials.

Theorem 4 With every coupling of (n + 1) su(1, 1) representations labeled by k1, . . . , kn+1,

i.e. with every binary coupling tree with n internal nodes, we associate a set of polynomials

R
(k)
l (x) in n variables orthogonal on the simplex T n

s for the weight function

w(k)(x) = x2k1−1
1 · · ·x2kn−1

n (s− |x|)2kn+1−1, (3.4)

where each ki > 0. Explicitly the orthogonality reads :

∫

T n
s

R
(k)
l (x)R

(k)
l′ (x)w(k)(x) dx = δl,l′

s2|k|+2|l|−1

Γ(2|k|+ 2|l|)

n+1
∏

i=1

Γ(2ki). (3.5)

Note that in (3.5) we also have orthogonality between polynomials of the same degree, which is

more than the definition of orthogonality requires.

Remark 5 In principal the notation of the polynomial should contain a reference to the binary

coupling tree it corresponds to. For the moment, we can assume that the binary coupling tree

is fixed, and we do not mention it in the notation of R
(k)
l (x). When we want to emphasize the

dependence of R
(k)
l (x) on the given binary coupling tree T , we shall write R

(k)
l,T (x). The meaning

of the subscript l is related to the labeling of the internal nodes, and will soon become apparent.

The association of a polynomial with a binary coupling tree is an extension of the method

described after Eq. (2.11). For a given binary coupling tree, the polynomial R
(k)
l (x) consists of

a product of S-polynomials, each of these associated with a non-leaf node of the tree. Let us

first describe an example.

k1 k2 k3 k4 k5

x1 x2 x3 x4 x5

k0

k45k12

k123

Figure 2: Example binary coupling tree
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Example 6 With the binary coupling tree shown in Figure 2 we associate the following poly-

nomial :

R(x1, x2, x3, x4, x5)

= Sk1,k2

k12−k1−k2
(x1, x2)S

k12,k3

k123−k12−k3
(x1 + x2, x3)S

k4,k5

k45−k4−k5
(x4, x5)

×Sk123,k45

k0−k123−k45
(x1 + x2 + x3, x4 + x5)

= C × (x1 + x2)
k12−k1−k2P

(2k1−1,2k2−1)
k12−k1−k2

(

x2 − x1

x2 + x1

)

× (x1 + x2 + x3)
k123−k12−k3P

(2k12−1,2k3−1)
k123−k12−k3

(

x3 − x1 − x2

x3 + x1 + x2

)

× (x4 + x5)
k45−k4−k5P

(2k4−1,2k5−1)
k45−k4−k5

(

x5 − x4

x5 + x4

)

× (x1 + x2 + x3 + x4 + x5)
k0−k123−k45P

(2k123−1,2k45−1)
k0−k123−k45

(

x4 + x5 − x1 − x2 − x3

x4 + x5 + x1 + x2 + x3

)

,

herein, C is some numerical factor, that can be determined from (2.13).

So the S-polynomial, associated to a non-leaf node of the tree, has : as (upper) parameters the

representation labels of left and right child of the node; as degree (the sub-index) the difference

between the representation label of the node and those of the children (this is a nonnegative

integer); as left (resp. right) argument the sum of all the variables associated with the leaves in

the left (resp. right) subtree of the considered node.

Such a polynomial R(x1, . . . , xn+1), defined as a product of S-polynomials in this way, is homo-

geneous in the variables x1, . . . , xn+1. So we can choose the constraint :

x1 + x2 + · · ·+ xn+1 = s, (3.6)

where s is some arbitrary, positive constant. Note that this constraint is compatible with the

definition of the weight function (3.4). The resulting polynomial will be denoted by R
(k)
l (x).

The subscript l in R
(k)
l (x) stands for the sequence of degrees of the S-polynomials, in a chosen

order (see later for this choice).

In order to prove (3.5), we shall : transform variables from (x1, . . . , xn) to (v1, . . . , vn); determine

the Jacobian and integration area for this transformation; determine the transformed weight

function; and finally deduce the orthogonality. All of this can be done quite explicitly for any

given binary coupling tree, and will be presented in the following subsections.
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Change of variables

We will change from variables x to variables v. The vi are the arguments of the Jacobi polyno-

mials appearing in the product expansion of R
(k)
l (x), see for instance Example 6.

Since each S-polynomial (and thus each Jacobi polynomial) in the product is associated with a

specific non-leaf node of the tree, we can associate a variable vi with each non-leaf node. The

exact order is irrelevant but, for simplicity, we choose postorder [25, Section 2.3.1]. See Figure 3

for an illustration.

x1 x2 x3 x4 x5

v4

v3v1

v2

Figure 3: Association of the variables vi with non-leaf nodes

Example 7 The arguments of the Jacobi polynomials in Example 6 are :














v1 = (x2 − x1)/(x2 + x1)
v2 = (x3 − x1 − x2)/(x3 + x1 + x2)
v3 = (x5 − x4)/(x5 + x4)
v4 = (x4 + x5 − x1 − x2 − x3)/(x4 + x5 + x1 + x2 + x3).

(3.7)

The set of equations (3.7), together with the constraint (3.6), has a unique solution :























x1 = s(1− v1)(1− v2)(1− v4)/8
x2 = s(1 + v1)(1− v2)(1− v4)/8
x3 = s(1 + v2)(1− v4)/4
x4 = s(1− v3)(1 + v4)/4
x5 = s(1 + v3)(1 + v4)/4.

(3.8)

Notice how the solution (3.8) of (3.7) can easily be deduced from the tree in Figure 3 : each

xj consists of a factor s and factors (1± vi)/2. There is a factor (1 + vi)/2 if xj is in the right

subtree of vi, and there is a factor (1− vi)/2 if xj is in the left subtree of vi.

This observation can be generalized to an arbitrary tree. Then we have :



















vi =







∑

right leaves
of vi

xj −
∑

left leaves
of vi

xj






/

∑

all leaves
of vi

xj , for i = 1, . . . , n

x1 + x2 + · · ·+ xn+1 = s.

(3.9)
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Lemma 8 The system (3.9) of n + 1 (linear) equations for the variables xj has the unique

solution

xj = s
∏

right ancestors
of xj

1 + vi

2

∏

left ancestors
of xj

1− vi

2
, for j = 1, . . . , n + 1, (3.10)

where we call vi a right (resp. left) ancestor of xj if xj is in the right (resp. left) subtree of vi.

Proof : By induction on n. It is easily verified that this statement is true when n = 1. If n > 1

and the left subtree of vn has 0 ≤ n1 < n internal nodes, then the last two equations of (3.9)

read


















vn =







∑

right leaves
of vn

xj −
∑

left leaves
of vn

xj






/

n+1
∑

j=1

xj

x1 + x2 + · · ·+ xn+1 = s.

(3.11)

These equations have the following unique solution for
∑

right leaves
of vn

xj and
∑

left leaves
of vn

xj (compare this

with the case n = 1) :


























∑

right leaves
of vn

xj = s
1 + vn

2

∑

left leaves
of vn

xj = s
1− vn

2
.

(3.12)

Using this solution for
∑

left leaves
of vn

xj =
∑

leaves
of vn1

xj with the first n1 equations of (3.9), which involve

only variables x that are in the left subtree of vn yields (by induction) the desired form of the

unique solution for the variables x in the left subtree. The same applies to the variables x in

the right subtree. This proves formula (3.10). We can even say more :

∑

leaves
of vi

xj = s
∏

right ancestors
of vi

1 + vm

2

∏

left ancestors
of vi

1− vm

2
, (3.13)

and
∑

left leaves
of vi

xj = s
1− vi

2

∏

right ancestors
of vi

1 + vm

2

∏

left ancestors
of vi

1− vm

2
. (3.14)

2
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The Jacobian of the transformation

Example 9 The Jacobian
∂xj

∂vi
of (the first four equations of) (3.8) is the following matrix :









−s(1− v2)(1− v4)/8 −s(1− v1)(1− v4)/8 0 −s(1− v1)(1− v2)/8
s(1− v2)(1− v4)/8 −s(1 + v1)(1− v4)/8 0 −s(1 + v1)(1− v2)/8

0 s(1− v4)/4 0 −s(1 + v2)/4
0 0 −s(1 + v4)/4 s(1− v3)/4









.

(3.15)

At first sight, this matrix is quite arbitrary. However, by taking linear combinations of rows and

by swapping rows, it can be transformed into a simple upper triangular matrix. From (3.8) (or

directly from (3.14)) we see that































































∑

left leaves
of v1

xj = x1 = s(1− v1)(1− v2)(1− v4)/8

∑

left leaves
of v2

xj = x1 + x2 = s(1− v2)(1− v4)/4

∑

left leaves
of v3

xj = x4 = s(1− v3)(1 + v4)/4

∑

left leaves
of v4

xj = x1 + x2 + x3 = s(1− v4)/2.

So, performing the row combinations R2 ← R2 + R1, R3 ← R3 + R2 and swapping the rows R3

and R4 of the Jacobian results in the following upper triangular matrix :









−s(1− v2)(1− v4)/8 −s(1− v1)(1− v4)/8 0 −s(1− v1)(1− v2)/8
0 −s(1− v4)/4 0 −s(1− v2)/4
0 0 −s(1 + v4)/4 s(1− v3)/4
0 0 0 −s/2









.

(3.16)

The determinant of the Jacobian is thus

−s4(1− v2)(1− v4)
2(1 + v4)/256. (3.17)

Notice that the determinant only contains factors s/2 and (1±vi)/2. The power of each of these

factors can easily be read from the tree in Figure 3. There are 4 factors s/2, and the tree has

4 internal nodes. There are 2 factors (1− v4)/2 and there are 3 leaves in the left subtree of v4.

There is 1 factor (1 + v4)/2 and there are 2 leaves in the right subtree of v4. The same applies

to v1, v2 and v3.

Again, these observations can be generalized to an arbitrary tree.
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Lemma 10 The absolute value of the determinant of the Jacobian, denoted J , of the transfor-

mation (3.10) (with j = 1, . . . , n) equals

J =

∣

∣

∣

∣

det
∂xj

∂vi

∣

∣

∣

∣

=
(s

2

)n
n

∏

i=1

(

1 + vi

2

)nri−1 (

1− vi

2

)nli−1

, (3.18)

where nri (resp. nli) is the number of leaves in the right (resp. left) subtree of vi.

Proof : We will prove (3.18) by transforming the matrix
∂xj

∂vi
into an upper triangular matrix by

taking linear combinations of rows and by swapping rows. These manipulations do not change

(up to a sign factor) the determinant of this matrix.

From (3.14) and the fact that we choose postorder, it is easily seen that
∑

left leaves
of vi

xj depends on

vi but not on vm when m < i. Therefore, we wish to perform row operations such that the m-th

row becomes

∂







∑

left leaves
of vm

xj







∂vi
. (3.19)

We use induction on n to show that is possible. By the induction hypothesis, we can create the

desired linear combinations in the left and right subtree. Note that the linear combinations in

the right subtree do not depend on the variables v1, . . . , vnln−1 (i.e. the variables v in the left

subtree). In this process the row corresponding to the variable associated with the rightmost

leaf of the left subtree is not used. For clarity, assume that this variable is xnln . The Jacobian

now has the following form :













































v1 v2 v3 · · · vnln−1 vnln vnln+1 · · · vn−1 vn

∗ ? ? · · · ∗ 0 0 · · · 0 ∗

0 ∗ ? · · · ∗ 0 0 · · · 0 ∗
...

...
...

...
...

0 0 0 · · · ∗ 0 0 · · · 0 ∗

xnln ? ? ? · · · ∗ 0 0 · · · 0 ∗

0 0 0 · · · 0 ∗ ? · · · ∗ ∗

0 0 0 · · · 0 0 ∗ · · · ∗ ∗
...

...
...

...
...

...
...

0 0 0 · · · 0 0 0 · · · ∗ ∗













































(3.20)

Herein, ∗ represents a non-zero value and ? an arbitrary value.
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We will now use the row ∂xnln/∂vi to create the sum of the variables corresponding to the leaves

in the left subtree of the root, i.e. the row

∂







∑

left leaves
of vn

xj







∂vi
=

∂









∑

left leaves
of vnln−1

xj









∂vi
+

∂









∑

right leaves
of vnln−1

xj









∂vi
. (3.21)

By induction, the first term in the rhs is already a row of the matrix. If xnln is the only leaf

in the right subtree of vnln−1, then we are finished : simply add the row corresponding to the

first term to the row corresponding to xnln . If there is more than one leaf in the right subtree

of vnln−1, we call the root of this right subtree vm and we have :

∂









∑

right leaves
of vnln−1

xj









∂vi
=

∂







∑

left leaves
of vm

xj







∂vi
+

∂







∑

right leaves
of vm

xj







∂vi
. (3.22)

The first term of the rhs of this equation is a row of the matrix (by induction). If xnln is the

only right leaf of vm, we are finished; add the two rows corresponding to the first terms in (3.21)

and (3.22) to the row corresponding to xnln . It is clear that we can continue in this way to

create the desired row.

By swapping the rows in this matrix, we have created an upper triangular matrix with the same

determinant (up to a sign) as the original matrix.

From (3.14) it is clear that the elements of this upper triangular matrix consist only of factors

s/2, (1 ± vi)/2 (and −1). Each element on the diagonal of the upper triangular matrix has a

single factor −s/2. There is a single factor (1 + vi)/2 for each variable vm that is in the right

subtree of vi. There are nri − 1 (i.e. the number of internal nodes in the right subtree of vi)

such variables, so there are nri − 1 entries on the diagonal that have a factor (1 + vi)/2. In the

same way one sees that there are nli − 1 entries on the diagonal that have a factor (1 − vi)/2.

Multiplying the elements on the diagonal yields formula (3.18). 2

Transformation of the area and weight function

The cube �
n in R

n is defined as :

�
n = {v ∈ R

n| − 1 < vj < 1}. (3.23)
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Lemma 11 When x and v are connected through (3.9) and (3.10), then x ∈ T n
s ⇐⇒ v ∈ �

n.

Note that, although the simplex T s
n depends on s, the cube �

n does not. An explicit proof of

this lemma is given in Appendix B.

Next, we consider the transformation of the weight function (3.4), first for an example, and then

for an arbitrary binary coupling tree.

Example 12 For the tree of Figure 2 the weight function is

w(k)(x1, x2, x3, x4) = x2k1−1
1 x2k2−1

2 x2k3−1
3 x2k4−1

4 (s− x1 − x2 − x3 − x4)
2k5−1. (3.24)

Rewriting this weight function in terms of the variables v, using (3.8), gives :

w̃(k)(v1, v2, v3, v4) = s2k1+2k2+2k3+2k4+2k5−5

×

(

1 + v1

2

)2k2−1 (

1 + v2

2

)2k3−1 (

1 + v3

2

)2k5−1 (

1 + v4

2

)2k4+2k5−2

×

(

1− v1

2

)2k1−1 (

1− v2

2

)2k1+2k2−2 (

1− v3

2

)2k4−1 (

1− v4

2

)2k1+2k2+2k3−3

.

Lemma 13 The transformation of the weight function (3.4) under the substitution (3.10) be-

comes :

w̃(k)(v) = s2|k|−n−1
n

∏

i=1

(

1 + vi

2

)

∑

right leaves
of vi

2kj − nri
(

1− vi

2

)

∑

left leaves
of vi

2kj − nli

. (3.25)

Proof : Since the weight function is essentially equal to
∏n+1

j=1 x
2kj−1
j , it becomes a product of

factors s, and (1± vi)/2. Each xj has a single factor s; the power of s is thus
∑n+1

j=1 (2kj − 1) =

2|k| − n − 1. Furthermore, each xj which is in the right (resp. left) subtree of vi has a factor

(1 + vi)/2 (resp. (1− vi)/2). 2

Verifying the orthogonality

If two su(1, 1) representations k1 and k2 are coupled to k12, then the difference k12−k1−k2 is a

nonnegative integer, see (1.3). So, with each internal node, say vi, of a binary coupling tree we
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can associate a nonnegative integer, say li. Furthermore, we can associate a real positive value

with each node of the tree; for the leaves this value is simply kj , and for an internal node vi the

value equals the value of the left child plus the value of the right child plus li, or explicitly :

∑

leaves
of vi

kj +
∑

nodes in
subtree of vi

lj + li. (3.26)

Example 14 In Figure 4 the value of each node is indicated in the tree.

k1 k2 k3 k4 k5

k1 + k2 + k3 + k4 + k5 + l1 + l2 + l3 + l4

k4 + k5 + l3k1 + k2 + l1

k1 + k2 + k3 + l1 + l2

Figure 4: Value of the nodes in the tree

For a given binary coupling tree, the knowledge of k = (k1, k2, . . . , kn+1) and l = (l1, . . . , ln)

completely determines the polynomial R
(k)
l (x). Now we are in a position to prove Theorem 4.

As already mentioned, we will transform the integral over T n
s into an integral over �

n by changing

the variables from x to v. We will get a product of n integrals over the interval (−1, 1), each

involving two Jacobi polynomials and a factor acting as weight function. Using the orthogonality

of the Jacobi polynomials over this interval with respect to this weight function will yield the

desired result. Explicitly, the orthogonality of the Jacobi polynomials reads

∫ 1

−1
P (a,b)

m (t)P (a,b)
n (t)(1− t)a(1 + t)b dt = δm,nh(a,b)

m , a, b > −1, (3.27)

with

h(a,b)
m =

2a+b+1Γ(m + a + 1)Γ(m + b + 1)

(2m + a + b + 1)m!Γ(m + a + b + 1)
.

After transformation, using (3.13), the polynomial R
(k)
l (x) becomes :

R̃
(k)
l (v) = C

n
∏

i=1






s

∏

left ancestors
of vi

1− vm

2

∏

right ancestors
of vi

1 + vm

2







li

P
(ai,bi)
li

(vi), (3.28)

with,

C = (−1)|l|
n

∏

i=1

√

li!

(ai + 1, bi + 1, ai + bi + li + 1)li

. (3.29)

20



Herein, ai equals 2 times the value of the node corresponding to the left child of vi minus one,

or explicitly

ai =
∑

left leaves
of vi

2kj +
∑

nodes in left
subtree of vi

2lj − 1. (3.30)

Similarly, one finds

bi =
∑

right leaves
of vi

2kj +
∑

nodes in right
subtree of vi

2lj − 1. (3.31)

Now we turn our attention to the transformed integrand of (3.5). Apart from the products

P
(ai,bi)
li

(vi)P
(a′

i,b
′
i)

l′i
(vi), (3.32)

it consists of factors s and (1± vi)/2. Let us determine the power of (1− vi)/2. There are three

contributing parts :

• the determinant of the Jacobian, yielding a term nli − 1, see (3.18)

• the transformed weight function, yielding a term
∑

left leaves
of vi

2kj − nli, see (3.25)

• the transformed polynomials, yielding a term
∑

nodes in left
subtree of vi

lj +
∑

nodes in left
subtree of vi

l′j , see (3.28).

It is thus clear that the power p−i of (1− vi)/2 is

p−i =
∑

left leaves
of vi

2kj +
∑

nodes in left
subtree of vi

lj +
∑

nodes in left
subtree of vi

l′j − 1. (3.33)

In the same way one finds that the power p+
i of (1 + vi)/2 is

p+
i =

∑

right leaves
of vi

2kj +
∑

nodes in right
subtree of vi

lj +
∑

nodes in right
subtree of vi

l′j − 1. (3.34)

Example 15 In our example the transformed integral, denoted I is, up to a constant factor,

equal to the following product of four integrals :

∫ 1

−1
P

(2k1−1,2k2−1)
l1

(v1)P
(2k1−1,2k2−1)
l′1

(v1)

(

1− v1

2

)2k1−1 (

1 + v1

2

)2k2−1

dv1

×

∫ 1

−1
P

(2k1+2k2+2l1−1,2k3−1)
l2

(v2)P
(2k1+2k2+2l′1−1,2k3−1)

l′2
(v2)
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(

1− v2

2

)2k1+2k2+l1+l′1−1 (

1 + v2

2

)2k3−1

dv2

×

∫ 1

−1
P

(2k4−1,2k5−1)
l3

(v3)P
(2k4−1,2k5−1)
l′3

(v3)

(

1− v3

2

)2k4−1 (

1 + v3

2

)2k5−1

dv3

×

∫ 1

−1
P

(2k1+2k2+2k3+2l1+2l2−1,2k4+2k5+2l3−1)
l4

(v4)P
(2k1+2k2+2k3+2l′1+2l′2−1,2k4+2k5+2l′3−1)

l′4
(v4)

(

1− v4

2

)2k1+2k2+2k3+l1+l′1+l2+l′2−1 (

1 + v4

2

)2k4+2k5+l3+l′3−1

dv4.

Now, using the orthogonality (3.27) of the Jacobi polynomials, the first of these integrals is zero,

except when l1 = l′1. Assuming that l1 = l′1, we see that the second integral is zero, except when

l2 = l′2. The third integral immediately implies that I is zero if l3 6= l′3. Assuming that li = l′i,

for i = 1, . . . , 3, we see that I is zero, except when l4 = l′4. We thus see that I = δl,l′h
(k)
l , where

h is some numerical constant.

In general, the transformation yields :

I =

∫

T n
s

R
(k)
l (x)R

(k)
l′ (x)w(k)(x) dx

= D

∫

�

n
∏

i=1

P
(ai,bi)
li

(vi)P
(a′

i,b
′
i)

l′i
(vi)

(

1− vi

2

)p−i
(

1 + vi

2

)p+
i

dv

= D
n

∏

i=1

∫ 1

−1
P

(ai,bi)
li

(vi)P
(a′

i,b
′
i)

l′i
(vi)

(

1− vi

2

)p−i
(

1 + vi

2

)p+
i

dvi. (3.35)

Herein, the constant D equals :

D = Cs|l| × C ′s|l
′| × s2|k|−n−1 ×

(s

2

)n
=

CC ′s|l|+|l′|+2|k|−1

2n
. (3.36)

The first two factors come from (3.28), the third factor comes from the transformed weight

function (3.25), and the last factor originates from the Jacobian (3.18) of the transformation.

Notice that p−i equals ai when lj = l′j for the nodes in the left subtree of vi. An analogous

argument applies to p+
i and bi. Suppose one computes the product of integrals (3.35) in the

indicated order. At the moment that one is dealing with the integral involving vi, the situation

is so that I is zero if there is a j < i so that lj 6= l′j . Therefore, we can at that moment assume

that ai = p−i and bi = p+
i , and apply orthogonality (3.27) of the Jacobi polynomials, implying

that li should equal l′i in order to have a non-zero value of the integral I.

22



From (3.35) and (3.27) we have that

∫

T n
s

R
(k)
l (x)R

(k)
l′ (x)w(k)(x) dx

= D
n

∏

i=1

∫ 1

−1
P

(ai,bi)
li

(vi)P
(a′

i,b
′
i)

l′i
(vi)

(

1− vi

2

)p−i
(

1 + vi

2

)p+
i

dvi

= δl,l′D
n

∏

i=1

2Γ(li + ai + 1)Γ(li + bi + 1)

(2li + ai + bi + 1)li!Γ(li + ai + bi + 1)

= δl,l′s
2|l|+2|k|−1

n
∏

i=1

Γ(li + ai + 1)

(ai + 1)li

Γ(li + bi + 1)

(bi + 1)li

×
1

(2li + ai + bi + 1)Γ(li + ai + bi + 1)(li + ai + bi + 1)li

= δl,l′s
2|l|+2|k|−1

n
∏

i=1

Γ(ai + 1)Γ(bi + 1)

Γ(2li + ai + bi + 2)

= δl,l′
s2|l|+2|k|−1

Γ(2|k|+ 2|l|)

n+1
∏

i=1

Γ(2ki). (3.37)

The last equation follows from the previous one by induction on n, using the result on the left

and right subtree.

We thus have proved that with every binary coupling on n internal nodes there is an associated

polynomial R
(k)
l (x) in n variables that is orthogonal on the simplex T n

s for the weight function

w(k)(x).

As final comment, for n = 2 the polynomials constructed here are due to Proriol [17]. The

polynomials R
(k)
l (x) associated with the special binary coupling tree in the shape of a spine [15]

were already constructed in [18]. The polynomials R
(k)
l (x) associated with a general binary

tree were also studied by Rosengren [19] in the context of multilinear Hankel forms. In his

approach, orthogonality of these polynomials follows quite easily. His methods, however, are less

accessible for a mathematical physicist. Furthermore, the relation to classical 3nj-coefficients

(see Section V) is more explicit here.

IV Orthogonal polynomials related to continuous Hahn polyno-

mials

The notation in this section is as before, i.e. k stands for (k1, . . . , kn+1) and l for (l1, . . . , ln).

But we will also need a notation for parts of the components, so km = (k1, . . . , km), km =
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(km, . . . , kn+1) (and similarly for lm and lm, and l
j
m = (lm, . . . , lj) (m ≤ j)). As usual, |ljm| =

lm + · · ·+ lj .

In the way that a binary coupling tree defines R
(k)
l (x) as a product of S-polynomials (Jacobi

polynomials), we define new polynomials R
(k)
l (x) as the same product of S-polynomials (con-

tinuous Hahn polynomials). In this section, we will prove the following theorem.

Theorem 16 With every coupling of (n + 1) su(1, 1) representations k1, . . . , kn+1, i.e. with

every binary coupling tree with n internal nodes, we associate a set of polynomials R
(k)
l (x) in n

variables. This set is orthogonal on R
n for the weight function

w(k)(x) = Γ(k1 ± ix1) · · ·Γ(kn ± ixn)Γ(kn+1 ± i(s− |x|)). (4.1)

Explicitly, the orthogonality reads :

∫

Rn

R
(k)
l (x)R

(k)
l′ (x)w(k)(x) dx = δl,l′(2π)nΓ(|k|+ |l| ± is). (4.2)

Recall that the S-polynomials are defined by (2.10). The S-polynomial in (2.10) is of degree

m in the variables x1 and x2, but it is not homogeneous in these variables, see the proof of

Lemma 19. This implies that the product R
(k)
l (x) is not homogeneous in the variables xi,

however we still put x1 + · · ·+ xn+1 = s. Note that this is consistent with the definition of the

weight function (4.1).

Example 17 With the binary coupling tree shown in Figure 2 we associate the following poly-

nomial (before the replacement of x5 by s− x1 − x2 − x3 − x4) :

R(x1, x2, x3, x4, x5)

= Sk1,k2

l1
(x1, x2)S

k12,k3

l2
(x1 + x2, x3)S

k4,k5

l3
(x4, x5)S

k123,k45

l4
(x1 + x2 + x3, x4 + x5)

= C × pl1(x1; k1, k2 − i(x1 + x2), k1, k2 + i(x1 + x2))

× pl2(x1 + x2; k1 + k2 + l1, k3 − i(x1 + x2 + x3), k1 + k2 + l1, k3 + i(x1 + x2 + x3))

× pl3(x4; k4, k5 − i(x4 + x5), k4, k5 + i(x4 + x5))

× pl4(x1 + x2 + x3; k1 + k2 + k3 + l1 + l2, k4 + k5 + l3 − i(x1 + x2 + x3 + x4 + x5),

k1 + k2 + k3 + l1 + l2, k4 + k5 + l3 + i(x1 + x2 + x3 + x4 + x5)),

where C is some numerical factor that can be computed from (2.10). The subscripts li are the

same as before.
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It is well known that the continuous Hahn polynomials, appearing in the definition of the S-

polynomials, are orthogonal on R for the weight function Γ(a + it)Γ(b + it)Γ(c − it)Γ(d − it)

when <(a, b, c, d) > 0, c = a and d = b :

∫

R

Γ(a + it)Γ(b + it)Γ(c− it)Γ(d− it)pm(t; a, b, c, d)pj(t; a, b, c, d) dt =

2πδm,j
Γ(j + a + c)Γ(j + b + d)Γ(j + a + d)Γ(j + b + c)

j!(2j + a + b + c + d− 1)Γ(j + a + b + c + d− 1)
. (4.3)

Using this orthogonality relation, (4.2) is easily established in the case n = 1.

To investigate the general case, we introduce new variables u, but use a different approach

than the one in the previous section. We do not define the variables u as the arguments of

the continuous Hahn polynomials in the product, but we introduce essentially only one new

variable, namely x1 + · · ·+ xnln = y (and thus xnln+1 + · · ·+ xn+1 = s− y). Here, we assumed

for simplicity that the variables associated with the leaves in the left subtree are x1, . . . , xnln .

This will enable us to use induction on n. Again, it is constructive to consider first an example.

Example 18 For the tree in Figure 2, we define the variables ui as follows :















u1 = x1

u2 = x2

u3 = x1 + x2 + x3

u4 = x4.

We thus leave all the variables x unchanged, except the rightmost variable of the left subtree

(in this case thus x3). We choose the sum of all the variables in the left subtree equal to a new

variable (in this case u3). Integrating last to this variable allows this variable to be viewed as a

constant in the integrands of the other integrals, enabling us to use induction.

When integrating last to u3, the integral becomes :

∫

R4

R
(k)
l (x)R

(k)
l′ (x)w(k)(x) dx =

√

l4!(2|l|+ 2|k| − 1)Γ(l4 + 2|k|+ 2|l3| − 1)

Γ(l4 + 2|k3|+ 2|l2|)Γ(l4 + 2|k4|+ 2l3)

√

l′4!(2|l
′|+ 2|k| − 1)Γ(l′4|+ 2|k|+ 2|l′3| − 1)

Γ(l′4 + 2|k3|+ 2|l′2|)Γ(l′4 + 2|k4|+ 2l′3)

×

∫

R

pl4(u3; |k3|+ |l2|, |k
4|+ l3 − is, |k3|+ |l2|, |k

4|+ l3 + is)

× pl′4
(u3; |k3|+ |l

′
2|, |k

4|+ l′3 − is, |k3|+ |l
′
2|, |k

4|+ l′3 + is) Ileft Iright du3,

25



with

Ileft =

√

l1!(2l1 + 2|k2| − 1)Γ(l1 + 2|k2| − 1)

Γ(l1 + 2k1)Γ(l1 + 2k2)

√

l′1!(2l
′
1 + 2|k2| − 1)Γ(l′1 + 2|k2| − 1)

Γ(l′1 + 2k1)Γ(l′1 + 2k2)

×

√

l2!(2|l2|+ 2|k3| − 1)Γ(l2 + 2|k3|+ 2l1 − 1)

Γ(l2 + 2|k2|+ 2l1)Γ(l2 + 2k3)

√

l′2!(2|l
′
2|+ 2|k3| − 1)Γ(l′2 + 2|k3|+ 2l′1 − 1)

Γ(l′2 + 2|k2|+ 2l′1)Γ(l′2 + 2k3)

×

∫

R2

pl1(u1; k1, k2 − i|u2|, k1, k2 + i|u2|)pl′1
(u1; k1, k2 − i|u2|, k1, k2 + i|u2|)

× pl2(|u2|; |k2|+ l1, k3 − iu3, |k2|+ l1, k3 + iu3)pl′2
(|u2|; |k2|+ l′1, k3 − iu3, |k2|+ l′1, k3 + iu3)

× Γ(k1 ± iu1)Γ(k2 ± iu2)Γ(k3 ± i(u3 − |u2|)) du1du2.

The integral Ileft thus corresponds to the orthogonality relation (4.2) restricted to the left subtree

of the tree in Figure 2 and with s replaced by u3. By induction, the value of this integral is :

Ileft = δl1,l′1
δl2,l′2

(2π)2Γ(|k3|+ |l2| ± iu3).

The integral Iright equals

Iright =

√

l3!(2l3 + 2|k4| − 1)Γ(l3 + 2|k4| − 1)

Γ(l3 + 2k4)Γ(l3 + 2k5)

√

l′3!(2l
′
3 + 2|k4| − 1)Γ(l′3 + |k4| − 1)

Γ(l′3 + 2k4)Γ(l′3 + 2k5)

×

∫

R

pl3(u4; k4, k5 − i(s− u3), k4, k5 + i(s− u3))

× pl′3
(u4; k4, k5 − i(s− u3), k4, k5 + i(s− u3))

× Γ(k4 ± iu4)Γ(k5 ± i(s− u3 − u4)) du4. (4.4)

The integral Iright corresponds to the orthogonality relation (4.2) restricted to the right subtree

with s replaced by s− u3. The value of this integral is thus :

Iright = δl3,l′3
2πΓ(|k4|+ l3 ± i(s− u3)).

Using the values of Ileft and Iright enables us to use the orthogonality of the continuous Hahn

polynomials when integrating over u3, yielding the following :

∫

R4

R
(k)
l (x)R

(k)
l′ (x)w(k)(x) dx = δl,l′(2π)4Γ(|k|+ |l| ± is).

In the general case, assume that the variables associated with the leaves of the tree are (from

left to right) x1, . . . , xn+1. Define the variables u as follows :

uj = xj , j ∈ {1, . . . , n} \ nln and unln = x1 + · · ·+ xnln . (4.5)

26



It is clear that the absolute value of the Jacobian of this transformation is 1 and that u ∈

R
n ⇐⇒ x ∈ R

n.

Continuous Hahn polynomials associated with internal nodes of the left subtree only involve

variables x1, . . . , xnln , as do the Gamma functions of the weight function associated with the

leaves of the left subtree. Replacing xnln by unln −u1−· · ·−unln−1 (see (4.5)) yields an integral

over R
nln−1 involving the variables u1, . . . , unln−1, and with unln playing the role of s. The way

in which this integral is constructed allows induction. Denoting this integral by Ileft, we have :

Ileft = δlnln−1,l′
nln−1

(2π)nln−1Γ(|knln |+ |lnln−1| ± iunln). (4.6)

On the other hand, continuous Hahn polynomials associated with internal nodes in the right

subtree involve variables xnln+1, . . . , xn, but may also involve variables x1, . . . , xnln . When the

latter is the case, it is always the difference −(x1 + · · · + xnln) = −unln which occurs. So

essentially, s is replaced by s− unln ; this integral involving the variables unln+1, . . . , un can also

be calculated by induction. Denoting this integral over R
nrn−1 by Iright we have :

Iright = δ
l
n−1
nln

,l′n−1
nln

(2π)nrn−1Γ(|knln+1|+ |ln−1
nln
| ± i(s− unln)). (4.7)

The integral I, i.e. the left side of (4.2), then reduces to :

I =

√

ln!(2|l|+ 2|k| − 1)Γ(ln + 2|k|+ 2|ln−1| − 1)

Γ(ln + 2|knln |+ 2|lnln−1|)Γ(ln + 2|knln+1|+ 2|ln−1
nln
|)

×

√

l′n!(2|l′|+ 2|k| − 1)Γ(l′n + 2|k|+ 2|l′n−1| − 1)

Γ(l′n + 2|knln |+ 2|l′nln−1|)Γ(l′n + 2|knln+1|+ 2|l′n−1
nln
|)

×

∫

R

pln(unln ; |knln |+ |lnln−1|, |k
nln+1|+ |ln−1

nln
| − is, |knln |+ |lnln−1|, |k

nln+1|+ |ln−1
nln
|+ is)

× pl′n(unln ; |knln |+ |l
′
nln−1|, |k

nln+1|+ |l′
n−1
nln | − is, |knln |+ |l

′
nln−1|, |k

nln+1|+ |l′
n−1
nln |+ is)

× Ileft × Iright dunln

= δln−1,l′n−1
(2π)n−1

√

ln!(2|l|+ 2|k| − 1)Γ(ln + 2|k|+ 2|ln−1| − 1)

Γ(ln + 2|knln |+ 2|lnln−1|)Γ(ln + 2|knln+1|+ 2|ln−1
nln
|)

×

√

l′n!(2|l′|+ 2|k| − 1)Γ(l′n + 2|k|+ 2|l′n−1| − 1)

Γ(l′n + 2|knln |+ 2|l′nln−1|)Γ(l′n + 2|knln+1|+ 2|l′n−1
nln
|)

×

∫

R

pln(unln ; |knln |+ |lnln−1|, |k
nln+1|+ |ln−1

nln
| − is, |knln |+ |lnln−1|, |k

nln+1|+ |ln−1
nln
|+ is)

×pl′n(unln ; |knln |+ |l
′
nln−1|, |k

nln+1|+ |l′
n−1
nln | − is, |knln |+ |l

′
nln−1|, |k

nln+1|+ |l′
n−1
nln |+ is)

×Γ(|knln |+ |lnln−1| ± iunln)Γ(|knln+1|+ |ln−1
nln
| ± i(s− unln)) dunln
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= δl,l′(2π)nΓ(|k|+ |l| ± is).

Once again, we have used the orthogonality (4.3) of continuous Hahn polynomials. This com-

pletes the proof of Theorem 16.

V Connection coefficients between different bases of orthogonal

polynomials

We will show that the set of polynomials associated with a fixed binary coupling tree and fixed

leaf values kj , but varying values li form a basis for Πn.

Lemma 19 For any binary coupling tree T the degree of the polynomial R
(k)
l (x) (or R

(k)
l (x))

associated with T is |l|.

Proof : In the case of Jacobi polynomials, i.e. the case of S-polynomials, the result immediately

follows from the fact that Sk1,k2
m (x1, x2) is homogeneous of degree m in the variables x1 and x2.

Now consider the case of continuous Hahn polynomials. Although pm(t; a, b, c, d) is a polynomial

of degree m in t, we have to be careful because, in the case of S-polynomials, the variables xi

also appear in the parameters b and d. The polynomials associated with an internal node not on

the path from the leaf xn+1 to the root are, up to a constant factor, pm(x; a, b− i(x + y), a, b +

i(x + y)) (x and y stand for a sum of variables xj). Using the definition of the continuous Hahn

polynomials we have :

pm(x; a, b− i(x + y), a, b + i(x + y))

= im
(2a)m(a + b + i(x + y))m

m!
3F2

(

−m, m + 2a + 2b− 1, a + ix

2a, a + b + i(x + y)
; 1

)

= im
(2a)m(a + b + i(x + y))m

m!

m
∑

j=0

(−m)j(m + 2a + 2b− 1)j(a + ix)j

(2a)j(a + b + i(x + y))jj!

= im
(2a)m

m!

m
∑

j=0

(−m)j(m + 2a + 2b− 1)j(a + ix)j(a + b + i(x + y) + j)m−j

(2a)jj!
.

From this last equation one sees that the degree of this polynomial is at most m. It is easy to

see that the coefficient of ym is i2m(2a)m

m! 6= 0, since in our case a > 0. The same can be done for

a polynomial associated with an internal node on the path from xn+1 to the root. 2
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Theorem 20 The polynomials R
(k)
l (x) and R

(k)
l (x) associated with a fixed binary coupling tree

T on n internal nodes form a basis for Πn.

Proof : Theorems 4 and 16 imply that the sets of polynomials associated with T are linearly

independent.

The number of polynomials associated with T that have degree m equals the number of com-

positions J(m, n) of m into n parts, i.e. the number of ways that one can write m as a sum

of n nonnegative integers whereby the order of the summands is important. There are thus
∑m

k=0 J(k, n) polynomials of degree at most m associated with T . It is not difficult to see that

this is exactly the dimension of Πn
m, the set of polynomials in n variables with degree at most

m. 2

We recall the two properties (2.11) and (2.12) of the S-polynomials. We can use these two

properties to determine the connection coefficients between the different bases. This is stated

in the following theorem.

Theorem 21 Consider a binary coupling tree, T1, with fixed values kj and li. Consider another

binary coupling tree T2 with the same fixed values kj but varying values l′i, such that |l| =

|l′|. Then the polynomials R
(k)
l,T1

(x) (resp. R
(k)
l,T1

(x)) can be written as a linear combination of

polynomials R
(k)
l′,T2

(x) (resp. R
(k)
l′,T2

) :

R
(k)
l,T1

(x) =
∑

|l′|=|l|

Cl′R
(k)
l′,T2

(x); R
(k)
l,T1

(x) =
∑

|l′|=|l|

Cl′R
(k)
l′,T2

(x). (5.1)

The connection coefficient Cl′ is equal to the 3nj-coefficient 〈T1(l), T2(l
′)〉 (which is zero anyway

if |l| 6= |l′|).

Proof : This follows from Theorem 20 and the two basic properties of S- and S-polynomials.

These basic properties are given in (2.11) and (2.12). Observe that (2.11) simply expresses

R
(k1,k2,k3)
(l1,l2),T1

(x1, x2) =
∑

|l′|=|l|

Uk1,k2,k1+k2+l1
k3,|k|+|l|,k2+k3+l′1

R
(k1,k2,k3)
(l′1,l′2),T2

(x1, x2), (5.2)

where T1 (resp. T2) is the tree in the left hand side (resp. right hand side) of Figure 1 with

k12 = k1 + k2 + l1 and k0 = |k| + |l| (resp. with k23 = k2 + k3 + l′1 and k0 = |k| + |l′|). By

definition the Racah coefficient (or 6j-coefficient) can be expressed as the overlap coefficient of
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two binary coupling trees, i.e.

Uk1,k2,k1+k2+l1
k3,|k|+|l|,k2+k3+l′1

= 〈T1(l), T2(l
′)〉.

In the general case, let T1 (with fixed values kj and li) and T2 (with the same fixed values kj)

be given. The expansion of R
(k)
l,T1

(x) in terms of S-polynomials is then fixed. In order to express

R
(k)
l,T1

(x) in terms of polynomials associated with the second tree T2, one can use (2.11) and (2.12)

a number of times. Eq. (2.11) corresponds to an elementary tree operation (the flop operation

of [14]), depicted in Figure 1. Eq. (2.12) corresponds to an exchange operation [14] on trees.

So, to express R
(k)
l,T1

(x) in terms of polynomials R
(k)
l′,T2

(x), one has to perform sufficiently many

elementary tree operations on T1 until one ends up with a tree of shape T2. Each such operation

corresponds to an application of (2.11), introducing a Racah coefficient and a summation index,

or to an application of (2.12), introducing only a phase factor. As a consequence, the coefficient

Cl′ in (5.1) stands for a certain sum over products of Racah coefficients. But this sum over

products of Racah coefficients is just the 3nj-coefficient defined by the left and right binary

coupling trees, since the “method of trees” [14, 15] yields that the expansion of a 3nj-coefficient

in terms of Racah coefficients is obtained exactly by such elementary tree operations. 2

Observe there are some alternative ways of expressing the previous results. For example, for

two n-variable Jacobi polynomials corresponding to the same binary coupling tree, their inner

product is given by (3.5). For two n-variable Jacobi polynomials with different binary coupling

tree, the inner product is essentially given by a 3nj-coefficient :

∫

T n
s

R
(k)
l,T1

(x)R
(k)
l′,T2

(x)w(k)(x)dx = 〈T1(l), T2(l
′)〉

s2|k|+2|l|−1

Γ(2|k|+ 2|l|)

n+1
∏

i=1

Γ(2ki), (5.3)

where w(k)(x) is the classical weight function (3.4).

In the same way, we have for n-variable continuous Hahn polynomials corresponding to different

binary coupling trees that
∫

Rn

R
(k)
l,T1

(x)R
(k)
l′,T2

(x)w(k)(x) dx = 〈T1(l), T2(l
′)〉(2π)nΓ(|k|+ |l| ± is). (5.4)

where in this case w(k)(x) is given by (4.1).

Appendix A

In this appendix we show that the products of Wilson polynomials in (2.5) also satisfy an

orthogonality relation on R
2; thus also (2.5) can be interpreted as a connection coefficient
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formula.

When <(a, b, c, d) > 0 and non-real parameters occur in conjugate pairs, Wilson polynomials

are orthogonal on R+ for the weight function |Γ(a + ix)Γ(b + ix)Γ(c + ix)Γ(d + ix)/Γ(2ix)|2 :

∫ ∞

0

∣

∣

∣

∣

Γ(a + ix)Γ(b + ix)Γ(c + ix)Γ(d + ix)

Γ(2ix)

∣

∣

∣

∣

2

Wm(x2; a, b, c, d)Wj(x
2; a, b, c, d) dx

= 2π
Γ(j + a + b)Γ(j + a + c)Γ(j + a + d)Γ(j + b + c)Γ(j + b + d)Γ(j + c + d)

Γ(2j + a + b + c + d)

× (j + a + b + c + d− 1)jj!δm,j , (A.1)

see e.g. Ref. [8].

Theorem 22 The products of Wilson polynomials in both the left and right side of equation (2.5)

are orthogonal on R
2 for the weight function

Γ(k1 ± ix1)Γ(k2 ± ix2)Γ(k3 ± i(s− x1 − x2))

×
Γ(k1 ± i(x1 − 2t))Γ(k2 ± i(2x1 + x2 − 2t))Γ(k3 ± i(s− 2t + x1 + x2))

Γ(±2ix1 ∓ 2it)Γ(±2ix1 ± 2ix2 ∓ 2it)
, (A.2)

if k1, k2, k3 > 0.

Following the convention mentioned earlier, each factor in (A.2) stands for the product of two

Gamma functions.

Proof : Consider the polynomial in the right side of (2.5). The parameters of the Wilson

polynomials occur in conjugate pairs and the real parts of the parameters are positive. This

allows us to use the orthogonality relation (A.1).

Denoting the weight function (A.2) by w(x1, x2), we want to determine the value of

∫∫

R2

w(x1, x2)Wm((x1 − t)2; k1 ± it, k2 ± i(x1 + x2 − t))

×Wm′((x1 − t)2; k1 ± it, k2 ± i(x1 + x2 − t))

×Wj((x1 + x2 − t)2; k1 + k2 + m± it, k3 ± i(s− t))

×Wj′((x1 + x2 − t)2; k1 + k2 + m′ ± it, k3 ± i(s− t)) dx1dx2.

The notation is obvious : each entry of the form k1 ± it stands for two parameters of the

Wilson polynomial. In order to compute the integral, introduce two new variables, namely the

arguments of the Wilson polynomials : u1 = x1− t and u2 = x1 +x2− t. Changing variables and
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integrating first with respect to u1 and then with respect to u2 gives a constant times δm,m′δj,j′

for the above integral, if we use the facts that Γ(z) = Γ(z) and that the integrands are even

functions.

Similar arguments yield the desired result for the Wilson polynomials on the left side of (2.5).

2

Appendix B

In this appendix we prove Lemma 11. First, we show that if x ∈ T n
s , then −1 < vi < 1 for each

vi given by (3.9). The position of the variable vi in the binary coupling tree plays a role in its

expression. For a variable vi not on the path from xn+1 to the root of the tree, the equation

expressing vi in terms of x is

vi =







∑

right leaves
of vi

xj −
∑

left leaves
of vi

xj






/

∑

all leaves
of vi

xj ,

which is of the form f(y, z) = y−z
y+z with 0 < y, 0 < z (and y + z < s). It is easy to see that

−1 < f(y, z) < 1 if y, z > 0. On the other hand, if vi is on the path from xn+1 to the root, we

have, after substitution of xn+1 by s− |x| that

vi =






s−

∑

non−leaves
of vi

xj − 2
∑

left leaves
of vi

xj






/






s−

∑

non−leaves
of vi

xj






,

which is of the form g(y, z) = s−y−2z
s−y with 0 < y, 0 < z and y + z < s. A simple examination

shows that g(y, z) reaches its maximum +1 in this area when z = 0, and its minimum −1 when

y + z = s. Thus −1 < g(y, z) < 1 for y, z > 0 with y + z < s. So we have that −1 < vi < 1 for

each 1 ≤ i < n. For the variable vn a completely analogous reasoning can be given.

Before proving v ∈ �
n ⇒ x ∈ Tn

s in general, consider an example.

Example 23 Let v ∈ �
4 and consider equations (3.7) with x5 replaced by s−x1−x2−x3−x4 :















v1 = (x2 − x1)/(x2 + x1)
v2 = (x3 − x1 − x2)/(x3 + x1 + x2)
v3 = (s− x1 − x2 − x3 − 2x4)/(s− x1 − x2 − x3)
v4 = (s− 2x1 − 2x2 − 2x3)/s.

(B.1)
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Since −1 < v4 < 1, the fourth equation of (B.1) implies

−1 < v4 < 1⇒ 0 < x1 + x2 + x3 < s. (B.2)

The denominator of the second equation of (B.1) is thus positive, and

−1 < v2 ⇒ x3 > 0 and v2 < 1⇒ x1 + x2 > 0, (B.3)

hence

−1 < v1 ⇒ x2 > 0 and v1 < 1⇒ x1 > 0. (B.4)

From (B.2) it also follows that the denominator of the third equation of (B.1) is positive,

implying :

−1 < v3 ⇒ x1 + x2 + x3 + x4 < s and v3 < 1⇒ x4 > 0. (B.5)

So we clearly have : v ∈ �
4 ⇒ x ∈ T 4

s .

In general, let v ∈ �
n. We know that

vn =






s− 2

∑

left leaves
of vn

xj






/s,

with s > 0, and thus :

−1 < vn < 1⇒ 0 <
∑

left leaves
of vn

xj < s. (B.6)

Now consider the variable associated with the left child of vn, that is vnln−1 :

vnln−1 =









∑

right leaves
of vnln−1

xj −
∑

left leaves
of vnln−1

xj









/
∑

all leaves
of vnln−1

xj .

From (B.6) we know that the denominator of the previous formula is positive, and we have :

−1 < vnln−1 ⇒
∑

right leaves
of vnln−1

xj > 0, (B.7)

and

vnln−1 < 1⇒
∑

left leaves
of vnln−1

xj > 0. (B.8)
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Continuing in this way for all internal nodes of the left subtree (in in-order [25]) yields that

xj > 0 for every variable in the left subtree, since

−1 <
y − z

y + z
< 1⇒ y > 0 and z > 0,

if y + z > 0.

Consider the variable associated with the right child of vn, i.e. vn−1. For vn−1 we have the

following expression :

vn−1 =






s−

∑

non−leaves
of vn−1

xj − 2
∑

left leaves
of vn−1

xj






/






s−

∑

non−leaves
of vn−1

xj






.

The “non-leaves of vn−1” are exactly the “left leaves of vn”, so from (B.6) we have once again

that the denominator of the previous formula is positive. We thus have :

−1 < vn−1 ⇒
∑

non−leaves
of vn−1

xj +
∑

left leaves
of vn−1

xj < s, (B.9)

and

vn−1 < 1⇒
∑

left leaves
of vn−1

xj > 0. (B.10)

Starting from this last equation, we can perform the same actions as in the left subtree to

conclude that xj > 0 for all leaves in the left subtree of vn−1. Continuing in this way we get

that xj > 0, for j = 1, . . . , n and |x| < s, since

−1 <
s− y − 2z

s− y
< 1⇒ y + z < s and z > 0,

if s− y > 0. This completes the proof that v ∈ �
n ⇒ x ∈ Tn

s .
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