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SUMMARY

Always-on networking and a growing interest in multimedia- and conversational-IP services offer an
opportunity to network providers to participate in the service layer, if they increase functional intelligence
in their networks. An important prerequisite to providing advanced services in IP access networks is the
availability of a high-speed packet classification module in the network nodes, necessary for supporting
any IP service imaginable. Often, access nodes are installed in remote offices, where they terminate a large
number of subscriber lines. As such, technology adding processing power in this environment should be
energy-efficient, whilst maintaining the flexibility to cope with changing service requirements. Network
processor units (NPUs) are designed to overcome these operational restrictions, and in this context this
paper investigates their suitability for wireline and robust packet classification in a firewalling application.
State-of-the-art packet classification algorithms are examined, whereafter the performance and memory
requirements are compared for a Binary Decision Diagram (BDD) and sequential search approach. Several
space optimizations for implementing BDD classifiers on NPU hardware are discussed and it is shown
that the optimized BDD classifier is able to operate at gigabit wirespeed, independent of the ruleset size,
which is a major advantage over a sequential search classifier. Copyright © 2007 John Wiley & Sons,
Lid.
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1. INTRODUCTION

Offering a myriad of new IP multimedia and communicational services to an increasing number of
subscribers has triggered an evolution of the architectural model of access networks towards multi-
service and multi-provider networks. Ethernet as well as full IP alternatives have been investigated
as viable connectionless successors for the legacy ATM-based platforms. While the introduction
of Ethernet up to the edge solves some of the problems of existing access networks, new ones are
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Figure 1. Evolution towards an IP-aware multi-service, multi-provider access network (NAP: network
access provider; CPN: customer premises network; DSLAM: DSL access multiplexer).

created. Per subscriber traffic segregation and the lack of Quality of Service (QoS) support are the
main issues of standard Ethernet. Although VLANs could alleviate these shortcomings, it can be
questioned whether this approach is sufficiently scalable for larger access network deployments.
Therefore an IP-aware network model, as depicted in Figure 1, is often considered a valuable
alternative [1].

Deployment of next generation network services in such multi-provider, multi-service access
networks depends on the ability of the access and aggregation nodes to perform packet classifi-
cation at wirespeed. Packet classification is a key enabler for a wide variety of services, such as
QoS support, network accounting, policy enforcement and network security (e.g. firewall, intrusion
detection), and is often the primary bottleneck [2, 3]. This paper explores several packet classifi-
cation techniques and proposes and evaluates a Binary Decision Diagram (BDD) based classifier,
comparing it to the straightforward approach of sequentially searching through the classification
ruleset.

Next to an efficient classification algorithm, deploying wirespeed packet classifiers in IP access
and aggregation nodes requires additional processing power. Traditionally, telecom equipment
vendors have used fixed-function application-specific integrated circuits (ASIC) to cope with the
huge performance requirements of today’s network systems. Such ASICs provide little or no
flexibility to introduce new protocols or services on existing hardware. At present, the ever-
changing requirements of network equipment ask for flexible solutions with assured time to
market. As opposed to ASICs, general-purpose processors certainly meet the flexibility criteria
for implementing modern network services. However, they often fail to meet the performance
requirements of these services or consume too much power—hence generate too much heat—for
integration in large telecom systems. For this reason, a hybrid hardware device, called network
processor unit (NPU), has emerged over the last few years. Network processors are highly parallel,
programmable hardware, combining the low cost and flexibility of a RISC processor with the
speed and scalability of custom silicon (i.e. ASIC chips) [4].

The remainder of this paper is structured as follows. First, network processor technology is
discussed in Section 2. Then, Section 3 provides an overview of state-of-the-art packet classification
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algorithms and highlights opportunities for NPU implementations. After a discussion of the firewall
application architecture, Section 4 integrates the BDD classifier and presents several BDD space
optimizations. Section 5 discusses the performance evaluation of the sequential search and BDD
packet classifiers. Finally, in Section 6, concluding remarks and possible directions for future
research are presented.

2. NETWORK PROCESSOR TECHNOLOGY

Although vendors share the general concept of a network processor, the specifics vary considerably.
There is no agreement about which hardware building blocks to include in a network processor,
exactly what hardware functions to replicate or how to organize the components on a network
processor chip [4].

A single network processor includes many physical processors that must work together to
perform the necessary network services, e.g. packet filtering and network address translation.
Network processors can integrate embedded-RISC processors for handling higher protocol layers
and control processing, specialized co-processors optimized for a particular packet processing
task, I/O processors, switching fabric interfaces, memory interfaces, etc. This processor hierarchy
is complemented by a memory hierarchy, where each memory type offers a specific trade-off
between size and speed. The choice of which data to store in which type of memory is left to the
programmer [4].

The Intel IXP2400 [5] was selected as a target platform, since its hardware architecture is
highly compatible with a modular firewall design, as will be demonstrated in Section 4.1. In the
literature, the Intel IXP network processor family is a popular platform for evaluating a wide
range of network applications [6-10] and it is even used as a reference platform for evaluating
new hardware designs [11]. Hardware details of the IXP2400, together with its Radisys ENP-2611
evaluation board [12], are described in Section 2.1. An overview of the programming model is
provided in Section 2.2.

2.1. The Intel IXP2400

The Radisys ENP-2611, depicted in Figure 2, is a 64-bit PCI board, equipped with an Intel IXP2400
network processor. The major IXP2400 processing units are the XScale control processor and eight
microengines (MEs), organized into two clusters of four.

The Intel XScale core is a general-purpose 32-bit RISC processor, running at 600 MHz. The
MEs are small RISC processors, also running at 600 MHz, with an instruction set specifically tuned
for processing network data. Each ME has support for eight hardware threads. All MEs have an
independent instruction store large enough for 4K, 40-bit instructions, which is initialized by the
XScale core before the ME starts running. The instructions are executed in a six-stage pipeline.
Each ME also has 640 long words (or a total amount of 5kB) of low-latency local memory.

The IXP2400 also has a Hash unit and support for three types of memory, shared between
the different processing units: 16kB of on-chip scratchpad memory, SRAM, and DRAM. The
Radisys ENP-2611 board provides 8 MB quad data rate (QDR) SRAM and 256 MB of double data
rate (DDR) DRAM. Furthermore, it connects three gigabit Ethernet (GbE) interfaces to the IXP’s
Media and switch fabric (MSF) interface.
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Figure 2. The Radisys ENP-2611 evaluation board, equipped with an Intel
IXP2400 network processor [4, 5, 12].
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Figure 3. The basic structure of receiving, processing and transmitting packets on an Intel second
generation network processor [4].

2.2. Programming an Intel IXP2400

Intel second generation network processors are programmed using the receive—process—transmit
paradigm [13] as depicted in Figure 3: receive, process, and transmit tasks run on different
processing units (MEs and/or XScale core) with queues between them. The MEs can run a series
of sequential processing tasks (pipelined approach), a pool of parallel processing tasks or a mixture
of both.

Typically, the MEs handle all (or most) of the data plane processing, while the Intel XScale core
handles exception packets that require more complex processing {e.g. control and configuration
packets). Furthermore, the XScale core is used to recover from erroneous conditions and provides
configuration and management access for the entire application.
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3. PACKET CLASSIFICATION, A VERSATILE SERVICE ENABLER

As motivated in the introduction, line rate packet classification is a prerequisite for the emergence
of advanced network services in [P access, aggregation and transit networks. The remainder of
this paper focuses on a firewall service to evaluate different packet classification mechanisms in
a network processor context. This means two possible actions are considered for each rule, either
ACCEPT or DROP. Furthermore, classification fields of interest are: IP source and destination
addresses, IP protocol, TCP or UDP source and destination ports, TCP flags, and ingress and
egress interface.

Efficient packet classification based on multiple header fields is a hard problem. The simplest
approach, a sequential search through a rule set containing N rules, has O(N) time and space
complexity. More complex algorithms improve the search time, but require advanced and larger data
structures. The taxonomy depicted in Figure 4 roughly relates time and space complexity for state-
of-the-art algorithms described in the literature. These algorithms—together with optimizations—
are: sequential (linear) search, Bit Vector (BV) and Aggregated BV (ABV) [14], Hierarchical Cuts
(HiCuts) [15] and HyperCuts [16], Recursive Flow Classification (RFC) [17] and Hierarchical
Space Mapping (HSM) [18], and finally BDDs [19]. In order not to overload the figure, the
optimized versions of the algorithms are not shown. The following paragraphs briefly touch upon the
key properties of each algorithm and explore opportunities for network processor implementations.
The remainder of this paper then focuses on network processor implementation approaches and
optimizations for the two algorithms on the opposite ends of the taxonomy: sequential search and
BDD classification. Sequential search offers the lowest space complexity but is also the slowest,
while BDD classification is the most time-efficient, requiring a constant execution time, provided
the classifier fits into memory.
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Figure 4. Taxonomy relating the time and space complexity for state-of-the-art
packet classification algorithms.
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3.1. Sequential search

A straightforward solution to packet classification is a sequential traversal of the rule database. As
mentioned, both search time and memory requirements scale linearly with the number of rules in the
classifier. In practice, the sequential search method may be effective if the number of rules is small
or when the classifier is preceded by a stateful component (where only the initialization packets
of a session need sequential classification). A clear administrative advantage of this approach is
that the classifier can be altered easily at runtime by adding or deleting rules.

For any target platform, the performance of the sequential search will be bounded by CPU and
memory speed and degree of parallelism. Later in this paper, the bottlenecks related to memory
access time (for different types of memory) and CPU power for the Intel IXP2400 network
processor are identified.

3.2. BV and ABV

The BV algorithm constructs separate tries for each of the L packet classification fields. In each
of the trie nodes, an N-bit vector indicates which rules match. By performing a longest prefix
match lookup in each trie, L N-bit vector are retrieved. Next, combining these vectors by a
bitwise AND operation yields the first rule matching the current packet. ABV further optimizes
this algorithm by rearranging the rule order and aggregating a number of bits in the N-bit vector.
This way, unnecessary bit operations can be eliminated and the number of memory accesses can be
reduced. Despite this optimization, BV and ABV are less suitable for NPU-based implementations
of medium size or large classifiers, because their memory word size is too small (for the IXP2400,
the word size is 32 bits) to accommodate the algorithm requirements, resulting in a large number of
memory accesses per packet. For relatively small classifiers with a small number of classification
fields L, this is a viable approach, however.

3.3. Hicuts and hypercuts

The HiCuts algorithm constructs a decision tree where each node (except the leaves) represents a
cut of the search space in one out of L classification dimensions, such that the total number of rules
in each leaf node does not exceed a threshold T'. As such, packet classification comprises a descent
of the decision tree and a sequential search through at most T rules. HyperCuts optimizes the
HiCuts algorithm by allowing multi-dimensional cuts. The worst case space complexity of these
approaches is O(N), but fortunately this behaviour is not noticed for real ISP classifiers, due to
their structural properties [17]. By balancing the size of the decision tree and the threshold 7', a
successful mapping to an NPU architecture can be achieved. For the IXP2400, the decision tree
could be stored entirely in the microcode store (thereby limiting the number of memory accesses),
whereafter O(7T) memory accesses suffice to find the (first) matching rule.

3.4. RFC and HSM

Similar to BY and ABY, RFC is a decomposition algorithm searching for matches for each of the
classification fields L prior to joining the results together. The execution time of this algorithm
is constant, requiring a fixed number of memory accesses for each packet. Unfortunately, the
algorithm is relatively space-inefficient and the number of (parallel) memory accesses cannot
be reduced by incorporating (part of) the data structures in the NPU instruction store. For the
IXP2400, an implementation in memory requires oo many memory accesses per packet, making
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Table I. Number of boolean variables necessary for each
classification criterion.

Property Number of variables
IP source address 32
IP destination address 32
IP protocol 8
TCP/UDP source port 16
TCP/UDP destination port 16
TCP fiags 6
Ingress interface 8
Egress interface g
Total 126

the algorithm less suitable for this kind of architecture. HSM is an optimized version of RFC, but
focuses on space optimization rather than reducing the number of memory accesses.

3.5. BDD

When a ruleset is mapped onto a BDD, the (total) aggregated number of bits K from the clas-
sification header fields instead of the ruleset size determines packet classification time. Each bit
corresponds to a boolean variable and at most K comparisons are needed to classify a packet.
Table I summarizes the number of bits (hence variables) necessary for the classification fields used
in this paper. Since each variable can take two values, the worst case space complexity of a BDD
is O(2%). Fortunately, this is a theoretical upper bound and in practice many BDD applications
exhibit linear memory utilization [20]. Typical characteristics of real ISP classifiers [17] strengthen
this statement for our application field. Nevertheless, implementing a BDD classifier on an NPU
requires considerable space optimization. K sequential memory accesses per packet would clearly
disallow using this approach for wire speed packet classification, even for the fastest type of
memory available. Therefore, memory accesses are avoided by implementing static, hardcoded
BDDs in the—Ilimited—network processor MEs’ instruction stores. In Section 4, space optimiza-
tion techniques and BDD parallelization are presented. This section briefly discusses the basic
BDD concepts.

The process of transforming a traditional ruleset into a BDD can be clarified by detailing each
of the following subtasks:

(i) creating a logical expression representing a single rule;
(i) representing this boolean function by means of a BDD;
(iii) tying together all the single-rule BDDs into a global BDD reflecting the entire ruleset.

Task (i) is accomplished by representing each classification field by a number of boolean variables,
equal to the corresponding number of bits in Table 1. This way, the IP source address would be
represented by 32 variables, for example. Figure 5 illustrates how a single criterion can be mapped
to an equivalent boolean representation. For several criteria it makes sense to define a range of

Copyright © 2007 John Wiley & Sons, Lid. Int. J. Commun. Syst. (in press)
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The criterion expressing the protocol in the IP header field of a packet should match 3
TCP (protocol number 6), can be converted to the following boolean formula: ’

“pry A TPy A Tpry A pry A pr, Aprg Aprg A pr. |

The decimal value 6 (boolean 110) is represented using eight variables, because this |
equals the number of bits reserved for the protocol field in the IP header. ‘

Figure 5. Boolean expression generation.

Figure 6. A BDD representing the boolean expression in Figure 5: a dashed arrow points to the ‘false
path’ of a variable and a solid arrow to the ‘true path.” This BDD maps TCP packets to terminal 1, while
IP datagrams carrying another protocol are mapped to terminal 0.

matching values, instead of a single matching value as in Figure 5. When this range is expressed
using a bit mask, translation into a boolean expression is relatively straightforward because variables
corresponding with zero bits in the mask can simply be ignored, whereafter a translation similar to
the one in Figure 5 can take place. Arbitrary ranges are more difficult to express, as they require a
boolean representation for greater than. Equation (1) presents a recursive formula evaluating the
expression x greater than y:

] x{rivgrlx,y,r—1) 1 —ylr] :
g1y )= x{ringitx,y,r—1) 1f y[r] )

In Equation (1), x[r] denotes the most significant bit of the r—>bit value x.

For item (ii}), mapping a boolean expression to a BDD, the approach described in the work of
Bryant [21] was followed. An example BDD is depicted in Figure 6.

Until now, the action (DROP or ACCEPT) associated with a rule and tying rules together has
not been taken into account. For task (iii), tying together the single-rule BDDs, the algorithm
presented in [19] is applied, but adapted to cope (explicitly) with a firewall default policy.

Copyright © 2007 John Wiley & Sons, Lid. Int. J. Commun. Syst. (in press)
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Given a set of rules R = {ry, r2, ..., ry}, @ boolean expression tg representing the entire ruleset
can be constructed using the following rules:

false if default policy is DROP 2

T, = . C =
§ true  if default policy is ACCEPT

ri VT if r; - action=ACCEPT P

TN s A1 i - action = DROP e

If 1y = false the packet should be dropped, otherwise (1g = true) the packet should be accepted.

4. A FIREWALL SERVICE WITH OPTIMIZED NPU CLASSIFIER

In order to evaluate the sequential search and BDD packet classification mechanisms discussed
in this paper, a firewall service is implemented on an Intel IXP2400 network processor. The
implementation is based on the netfilter forwarding chain. Netfilter and iptables are building
blocks of a framework that enables stateful packet filtering, network address (and port) translation
and other packet mangling inside the Linux kernel {22]. A stateful firewall not only increases
security, but packet processing speed may also increase, since the actual packet classification can
be avoided for packets belonging to a registered connection, Stateful packet inspection is enabled
by a connection-tracking component. The operation of the IXP2400 firewall is described by the
following pseudo-code:

1. if conntrack status == INVALID then

2. drop packet and stop

3. else if conntrack status == ESTABLISHED, RELATED then
4. forward packet and stop

5. else if conntrack status == NEW then

6.  classify packet

7 if DROP then

8 conntrack status <— INVALID

9 drop packet and stop

0 else if ACCEPT then

1 conntrack status <— ESTABLISHED
2 forward packet and stop

13.  endif

14. end if

11
1

Implementation choices are described in the remainder of this section. First, the sequential
search packet classification mechanism is considered in Section 4.1. In Section 4.2, the integration
of the BDD packet classifier is discussed.

4.1, An IXP2400 firewall service
Next to connection tracking and packet filtering, a firewall implementation requires a routing com-
ponent and ingress and egress processing. Mapping these components to the IXP2400’s processing
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Figure 7. Mapping the firewall software components on IXP2400 hardware.

units is relatively straightforward, as depicted in Figure 7. Receive and transmit code each occupy
one ME (ME1 and ME7, respectively). A third ME (MES) is used for resource management.
Running the resource management code on a separate ME has a number of advantages. First, the
amount of code on the other MEs is reduced, putting less strain on the limited instruction store
per ME. Furthermore, a synchronization between the different MEs is simplified and does not
influence the data plane packet forwarding performance. The resource management ME performs
tasks like memory allocation for new conntrack entries, searching for expired conntrack entries
(a conntrack expires when no packets belonging to its connection arrive for a certain amount of
time) and freeing memory.

The five remaining MEs can be used for packet processing. Connection tracking occupies MEZ:
connection tracking identifies the flow a packet belongs to (based on source/destination address
and port) and searches this flow in the conntrack hash table. If the flow is unknown, a new entry
will be added to the table. After that the packet will be passed to ME3 for routing. The packet
filtering code (which contains the classifier) can run on the remaining three MEs (ME4, MES, and
MES®) in parallel. Each of the available packet filtering threads (up to 3 x 8 = 24 threads) processes
a different packet.

4.2, Integrating the BDD packet classifier

When a ruleset is transformed into a BDD (see Section 3.5), this BDD packet classifier can replace
the sequential search packet classification from the IXP2400 firewall implementation described
above. This BDD classifier is again preceded by a stateful block and can be deployed on three
MEs.

Two operational firewall rulesets were selected for the BDD packet classifier study: a regular
ruleset consisting of 87 handcrafted rules and a complex ruleset with 322 very specific handcerafted
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f

| label#:  BR.BSE Creg,bitnr truelabel#]
’ BR_BCLR[reg bitnr falselabel#] (or BR[falselabel#]

]

Figure 8. Microcode representation of a BDD node. If bit bitnr in register reg is set, the instruction at
truelabel is executed, if not the instruction at falselabel is executed.

rules. The regular ruleset was taken from the operational firewall of a medium-scale company,
serving a network with approximately 240 workstations (accessing typical Internet applications
such as Web browsing, FTP, e-mail, Skype, etc.) and 10 servers (used for e-mail, mailinglists,
web, firewall, proxy, routing, and file sharing purposes). The complex ruleset was taken from our
research network firewall, serving a regular subnet with workstations (also running typical Internet
applications and some additional applications such as CVS) and some servers (including a VPN
server), a student network with limited access, a demilitarized zone (DMZ) and the actual test
network, consisting of several tens of test beds (over 200 machines), each test bed requiring its own
access profile. For privacy reasons, no further details on the rulesets can be published. However,
a comparison of the selected rulesets to Gupta and McKeown’s packet classifier characteristics
indicates they are certainly representative and actually quite large. After analysing almost 800
classifiers from over 100 different ISP and enterprise networks, Gupta and McKeown found that
only a small percentage of classifiers contained more than a few hundred rules, with a mean of
only 50 rules [17].

Details on how to implement a BDD classifier in microcode in order for it to run on an IXP ME
are presented in Section 4.2.1. Then, Section 4.2.2 discusses how the BDD classifier can be split
over multiple MEs and evaluates some heuristics for reducing a BDD’s size. Finally, Section 4.2.3
introduces and evaluates an algorithm for optimizing the microcode generation process.

4.2.1. Mapping the BDD to the IXP architecture. Each node of the BDD can be represented by
two conditional branch instructions: either the rrue or false branch of the node is followed, based
on the value of the particular boolean variable. As depicted in Figure 8, this can be mapped to two
microcode instructions per BDD node. In the leaf nodes (either ACCEPT or DROP), additional
instructions take care of the actual processing of each packet.

A BDD for a boolean expression in n variables yields a final result after at most n branches
(each variable is evaluated at most once on each path from the root to a leaf node). Hence, the
packet classification time is independent of the number of rules. Table 1 indicates n = 126 for the
firewall discussed in this section.

The limitation encountered when adopting the BDD approach for packet classification is memory
related. In a worst-case scenario, a boolean function in n variables has a BDD space complexity
of O(2™). For n =126, such a BDD is obviously too large to be of any value for the embedded
application in mind. Fortunately, many realistic boolean functions have a BDD representation
with a number of nodes that is linear in the number of variables if a ‘good’ variable order is
chosen [20]. Unfortunately, finding the optimal variable order is also known to be an NP-complete
problem [21]. Nevertheless, several optimization heuristics {23] often yield an acceptable to near-
optimal reordering solution.

Returning to the target platform, the IXP2400, the ME instruction store memory size is the
single most important hardware parameter when investigating BDD deployment feasibility. On an

Copyright © 2007 John Wiley & Sons, Lid. Int. J. Commun. Syst. (in press)
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Figure 9. Distribution of the BDD sizes for all 8! variable-group permutations
for a regular and complex ruleset.

IXP2400, each ME can store up to 4K instructions. By consequence, the maximum size of a BDD
is restricted to 2000 nodes, provided that each node requires two microcode instructions. In this
paper, in order to find a near-optimal variable order, boolean variables are grouped per property
(see Table I) whereafter all possible inter-variable-group permutations are computed. This can
be considered as a reduced brute force heuristic in which 8! =40320 (out of 126!~2 x 10211y
possible orders are examined. Results for both selected rulesets are depicted in Figure 9.

As shown in Figure 9, a BDD for the regular ruleset—with near-optimal variable order—fits in
the instruction store. Unfortunately, for the complex ruleset even an optimal variable order cannot
reduce the BDD to such an extent it fits within the ME instruction store.

In the remainder of this section, this issue is tackled from two totally different—but complemen-
tary—angles: first two methods to divide the BDD in smaller parts are investigated, then the BDD-
independent microcode generation process is optimized.

4.2.2. Multi-processing binary decision diagrams. In the discussion above, a BDD representing an
entire ruleset is mapped into the instruction store of a single ME. However, as depicted in Figure 7,
the application architecture provides three MEs that can be employed for packet classification. This
time, it is the ME instruction store size limitation rather than the packet classification execution
time that leads to the exploitation of the IXP2400 parallelism features.

Smaller BDDs can be obtained in two fundamentally different ways:

(a) by decomposing an existing BDD in several smaller parts;
(by by partitioning the ruleset {or boolean expression), whereafter distinct BDDs are generated
for each part.

The first approach requires no ¢ priori knowledge of the underlying boolean expression and is
application independent. This path is investigated in several research publications, including [24],

Copyright © 2007 John Wiley & Sons, Ltd. Ins. J. Commun. Syst. (in press)
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and is not further explored here. For the indirect BDD decomposition strategy (b), again two
options arise:

(1) each part can be represented by a regular BDD;
(ii) each part can be represented by a multi-terminal BDD (MTBDD).

Evidently, both representations require—minor—extensions to the BDD generation process out-
lined in Section 3.5. For technique (i), Equations (2) and (3) need further investigation. ACCEPT
rules are merged with the remainder of the ruleset by applying boolean OR (v}, whereas deny rules
are merged using boolean AND (A). Therefore, because of operator precedence rules, deny rules
are propagated to all rules following the deny rule, while ACCEPT rules are not. For partitioning
the ruleset, it therefore suffices to copy the deny rules from all previous fragments and insert them
before the rules of the current partition. Once the ruleset is properly partitioned, a separate BDD
can be constructed for each part. Additionally, each partition except the last one should apply the
defaulr DROP policy. The last fragment should adopt the default policy of the initial ruleset. This
way, intermediate results F;—from all fragments except the last one—yield ‘false’ for packets that
match either an explicit DROP rule or the default DROP policy. Since DROP rules are copied to
all subsequent fragments, the global result Fgpp for £ fragments can be computed as follows:

Fepp=FiVviFyv---VF;

Technique (i1) is very similar to (i), but generates a ternary—instead of a binary—result in each
fragment but the last. The ternary set is defined as follows:

S = (DROP(=0), CONTINUE(= 1), ACCEPT(=2)}

Here, each regular rule yields DROP or ACCEPT and the default policy of all fragments but the
last is set to CONTINUE. Again, the last fragment adopts the default policy of the initial ruleset.
Since this type of decision tree should be considered as a function fyrepp @ S” — § instead of
fepp : B" — B as for a regular BDD, the operators and (A) and or (V) need to be redefined as
follows:

a A b~ Min(a, b)
a Vv b—> Max(a, b)

The global result Fyvrepp equals the result of the first partition yielding a decisive result, either
DROP or ACCEPT. Contrary to technique (i), DROP rules are not transferred to subsequent
fragments. Note that for a default DROP policy, the number of DENY rules is usually relatively
small (they define exceptions to exception rules) and no further BDD reduction over technique (i)
is achieved.

Figure 10 depicts results for both techniques, applied to the complex ruleset. There are two
remarkable observations: (i) both splitting approaches generate approximately the same number of
nodes and (ii) the aggregated number of nodes decreases drastically as the number of fragments
increases.t Since the number of nodes per fragment is still greater than 2000, the (MT)BDD code

*Therefore, splitting a BDD into multiple smaller BDDs could also be used to fit a large ruleset in a single
ME’s instruction store, However, the execution time of the classifier increases linearly with the number of parts.
Performance with multiple BDD classifiers on a single ME converges to the performance of the sequential search
classifier as the number of parts approaches the number of rules in the set.
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Figure 10. Approach (i) and (ii) results for the complex ruleset. Results are shown for the ruleset divided
in two and three (MT)BDDs, respectively. Histogram bars show the average sizes of the best 16 results
from the reduced brute force approach.

size still exceeds the capacity of the MEs’ instruction store, even for a fragmentation in three
parts. Therefore, further optimization by means of standard CUDD [23] heuristics (i.e. simulated
annealing, symmetric sifting, and group sifting) is performed, starting from the results obtained
by the reduced brute force approach. By unbundling the variable groups, a local optimum can be
found. Results for the best performing heuristics are illustrated in Figure 11. Detailed descriptions
and references for the applied CUDD heuristics can be found in the CUDD documentation [23].

4.2.3. Microcode optimization. The various optimizations and splitting efforts presented previously
are necessary in an attempt to fit the global BDD classifier into three MEs’ instruction store memory.
Figure 11 shows that the outcome is satisfactory for parts 2 and 3, but part 1 of the ruleset remains
too large to fit on one ME. Therefore, this section optimizes the microcode generation process
itself by reducing the number of branch instructions per node.

As described in Section 4.2.1, one non-optimized node consists of two explicit branch instruc-
tions. However, listing nodes in a particular order can render several explicit branch instructions
superfluous, since they can be replaced by an implicit fall through. Minimizing the number of
instructions is again an NP-complete problem with a worst-case complexity of O(2"!) (n stands
for the number of variables in the BDD). Fortunately, by subtracting paths from the BDD in a
well-defined way, a near-optimal reduction can be achieved. A detailed approach is outlined in the
following algorithm:

1. v < empty vector

2. n «— NULL

3. while not all non-terminal nodes visited do

4 n < breadth-first first unvisited non-terminal

5. while n is non-terminal node && n 1s unvisited do
6 add n to v behind the last element
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Figure 11. Complex ruleset fragmented in three parts according to the BDD and MTBDD technique,

followed by an optimization according to the best performing heuristics from the CUDD package (for this

scenario). These heuristics are: simulated annealing, symmetric sifting, and group sifting. Again, averages
of the best 16 results are shown.

7. mark » as visited

8. if left child of n is non-terminal and unvisited or right child is terminal then
9. n «— left child of n

10. else

11. n <— right child of n

12, end if

13.  end while

4. end while

15. add terminals to v

16. for i =0 to v.size do

17. it vli + 1] 1= left child of v[{] then

18. print branch instruction to left child of v{/]
19.  end if

20, i oli + 1] '= right child of v[i] then

21. print branch instruction to right child of v{i]
22, endif

23. end for

Figure 12 presents the results of the algorithm presented above for the BDDs computed by
means of the three selected CUDD heuristics. For the optimized BDDs, the average gain in terms
of code size is 45%, thereby reducing all fragments of the splitted BDD to such an extent they can
be mapped in a ME’s instruction store. Note that the maximum gain from the fall through strategy
for an ideal BDD is 50%, since each node requires at least one branch instruction.
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Figure 12. Code optimization results per heuristic.

5. PERFORMANCE

In this section, the performance of the Intel IXP2400 firewall implementation with both sequential
search and BDD classifier is analysed. First, Section 5.1 presents a thorough performance evaluation
of the sequential search classifier. Bottlenecks are identified and the limitations of the sequential
search algorithm are exposed. Then, Section 5.2 presents a theoretical analysis of the worst-case
behaviour of the BDD classifier, as the implementation could handle any stream of (minimum
sized) packets at gigabit wirespeed for both selected rulesets.

5.1. Sequential search classification

For evaluating the firewall with sequential search packet classification, the firewall ruleset and
traffic flows were chosen in such a way that each packet matches the last rule of the set. With the
stateful block disabled, forcing all packets to be classified, this effectively stresses the IXP2400
evaluation board to its maximum. Using 2 GbE interfaces (one connected to the protected network,
the other to an untrusted network), the IXP’s throughput was measured for an increasing number
of firewall rules.

A Spirent Smartbits 6000 network performance analysis system [25] was used to measure the
IXP’s performance. Each test was done using minimum-sized IP packets (64 bytes), implying a
packet rate of 1488095 packets per second at GbE speed. This translates to a packet inter-arrival
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Figure 13. Throughput at GbE speed for minimum-sized packets as a function of the size of the ruleset.

time of 672 ns, which means each ME, running at 600 MHz, has 403 clock cycles available per
packet. One hundred per cent throughput means all 1.488 million packets/s can be processed.
Results are plotted in Figure 13.

A first implementation of the firewall with sequential search classifier reads the filter rules
directly from SRAM, which takes about 90 clock cycles before the first longword is available.
While a firewall rule is being read, the reading thread swaps out and allows another thread to
process a different packet. With only one out of three packet filtering MEs active, the IXP2400
evaluation board is able to handle six to seven firewall rules at gigabit speed. This is clearly
insufficient. Activating a second packet filtering ME doubles this performance (up to 14 firewall
rules can be handled at gigabit speed). This shows the sequential search packet classification is
indeed the IXP’s performance bottleneck. Surprisingly, adding a third packet filtering ME no longer
increases performance: the bottleneck has shifted from processing the firewall rules to fetching
those rules from SRAM memory.

A second implementation reads the firewall rules from the MEs’ local memory. The local
memory is initialized by reading all the rules at once from SRAM when a packet filtering ME
is started. Local memory has a much lower latency than SRAM (only three clock cycles) and
hence there is little use in swapping threads while the consecutive rules are read from memory.
When the filter rules are read from local memory, one packet filtering ME is able to handle
seven to eight rules at gigabit speed (in order not to overload the graph, this measurement has
not been plotted in Figure 13). Although data can be read from local memory much faster than
from SRAM (in only three clock cycles vs 90 cycles for SRAM access), this implementation is
actuaily only slightly faster. This shows the multithreaded hardware design of the IXP2400 MEs
is very efficient in hiding memory latency. Reading the filter rules from local memory does have
an advantage, however. Since each ME has its own local memory, adding a third packet filtering
ME now effectively triples performance. Up to 23 rules per packet can be processed at gigabit
speed. On the downside, an ME’s local memory has limited capacity and can only store up to 80
filter rules.
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Even when using the fast local memory for fetching filter rules and three packert filtering
MEs, performance of the IXP firewall with sequential search classifier is clearly insufficient.
In order to remove any memory-related bottlenecks, a third and last implementation was made,
manually translating the ruleset into microcode. This implementation consists of a large linear
block of microcoded (static) firewall rules. Since no memory accesses are needed for fetching
the firewall rules, no thread swapping needs to be done. Using the microcoded sequential search
packet classifier, the IXP evaluation board running three packet filtering MEs could handle up
1o 210 rules per packet at gigabit speed. While totally inflexible (updating the ruleset implies
re-implementing the firewall code), this implementation gives a good indication of the limitations
of a sequential search packet classifier: one [XP2400 ME can handle up to 70 firewall rules at
gigabit speed. If larger rulesets or higher packet rates have to be processed, a different packet
classification algorithm is needed.

5.2. BDD-based classification

In Section 4.2 was shown how a BDD can be implemented by a sequence of branch instructions.
A BDD for a boolean expression in n variables yields a final result after at most n branches
(i.e. at most 126 branches for the BDD classifier presented in this paper). Consequently, the time
necessary to classify a packet is independent of the number of rules in the ruleset, which is a major
advantage over the sequential rule processing evaluated in the previous section.

From a performance viewpoint, branch instructions that are effectively taken, have the negative
side effect of reducing the speedup caused by a pipelined processor architecture. For the IXP2400,
this leads to a branch penalty of four processor cycles per branch instruction (for the specific branch
instructions depicted in Figure 8). In a worst-case scenario, 504 (4 x 126) cycles are needed to
evaluate the BDD representation of the ruleset, while only 403 processor cycles are available
per packet / per ME for minimum-sized packets at gigabit link speed. Theoretically, this implies
the network processor can classify IPv4 packets at 80% of the GbE wirespeed with the BDD
classifier, as illustrated in Figure 14. For a realistic ruleset, however, including the regular and
complex rulesets in this paper, the implementation can classify any stream of minimum sized
packets at gigabit wirespeed: First, the number of evaluation paths containing 126 edges is limited
or even non-existent, since a rule corresponding to a path with depth 126 specifies single values (no
ranges) for all classification fields listed in Table I. For the selected regular ruleset, for instance,
the longest evaluation path contains only 106 edges, resulting in a worst-case throughput of 95%
of the GbE wirespeed. The complex ruleset, on the other hand, has evaluation paths of up to 125
edges in its first and third part (the longest evaluation path in its second part contains 109 edges).
However, even in the presence of long evaluation paths, in practice only a minority of packets is
classified by a path containing more than 100 branches.

Furthermore, the microcode optimization process outlined in Section 4.2.3 effectively avoids
explicit branch instructions where possible by listing the BDD nodes in an optimized order.
Replacing explicit branch instructions by implicit fall throughs not only reduces code size, but also
reduces the nuwmber of cycles required for an evaluation path since the branch penalty associated
with an explicit branch is removed. If only 34 out of the 126 branches (27%) of a maximum
size evaluation path can be replaced by implicit fall throughs, minimum-sized IPv4 packets can
be classified at GbE wirespeed ((126 — 34) x 4 + 34 =402). Since the algorithm presented in
Section 4.2.3 was able to replace 45% of the branch instruction by fall throughs for the selected
complex ruleset, this is not unlikely. Although the algorithm was designed to optimize code size
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Figure 14. Worst-case throughput of a BDD classifier on an IXP2400 microengine for an increasing
number of bits in the classifier.

instead of execution time, it tends to promote longer paths for explicit branch removal. However,
some paths requiring >403 cycles could remain.

On the downside, the complete process of transforming a regular, sequential ruleset into a
set of reduced BDDs requires a considerable amount of processing time (2-3 h on modern PC
hardware®). First, all 8! brute force variable orders are computed for each part of the ruleset,
whereafter additional-—computationally intensive—heuristics search for a local optimum order.
This makes the BDD approach less flexible than a sequential search packet classifier, where rules
can be updated on the fly. Nevertheless, the ability to classify packets at gigabit speed with a
single IXP2400 processor is appealing, especially for applications requiring infrequent updates to
the classification ruleset (e.g. assigning different QoS classes to different services). Using a two-
stage approach, applications with a more dynamic ruleset, such as a frequently updated firewall,
can also benefit from a BDD classifier. In the first stage, the bulk of the packets is processed by
a static BDD classifier, whereafter a sequential search classifier applies the dynamic part of the
ruleset.

6. CONCLUSION AND FUTURE WORK

Efficient packet classification on multiple criteria is a hard problem that requires platform-
specific trade-offs between execution time and memory size. In this paper, the hardware plat-
form of choice is a network processor. These units exhibit low power consumption and great
programming flexibility, making them a perfect fit for the expansion of existing network equip-
ment, especially access and aggregation nodes residing in remote offices and operating in a re-
stricted environment. In this context, state-of-the-art packet classification algorithms were explored
and their suitability with respect to an NPU implementation was investigated. This has led to
an implementation of two approaches lying at opposite ends of the time/space performance

YThe transformations were executed on an AMD64 3000+ Linux systemn with 512 MB of memory.
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spectrum: sequential search and BDD packet classification. For the sequential search classifier,
several hardware-specific optimizations to reduce the classification time were carried out. Despite
the optimization efforts, measurements demonstrate that this approach was only successful for
small- to medium-size classifiers. In contrast, the execution time of the BDD classifier is inde-
pendent of the ruleset size and it is shown that packets can be classified at gigabit line rate on an
Intel IXP2400 NPU. Space optimization is necessary to fit the BDDs in the limited ME instruction
stores, however. This is accomplished by BDD variable reordering, ruleset-based BDD splitting
technigues to distribute the BDD over multiple MEs, and an effective microcode compression
algorithm.

Of course, a persisting hunger for more bandwidth or a network technology change—including
the introduction of IPv6—will necessitate a proportional increase in processing power in NPUs.
At the same time, memory access latency might further restricts the number of accesses that
can be issued per packet, which would eliminate the use of most existing packet classification
algorithms. For IPv6 classifiers specifically, the ruleset database size for a similar ruleset and
the number of bits in a BDD classifier roughly quadruple, resulting in more memory accesses
for the sequential search approach and an increased classification time for the BDD classifier.
At present, migrating the IPv6 BDD classifier to a high-end IXP2800 network processor, would
suffice to achieve performance results similar to the IPv4 implementation on the IXP2400 network
processor, since its higher clock speed allows more processing cycles per packet. However, it is
unclear how the BDD size will evolve as the number of bits in the classifier increases and it is
possible increased parallelism—the IXP2800 offers 16 MEs instead of 8—would be necessary to
fit the BDD classifiers on the MEs. If the BDD classification trees become too large, a hybrid
approach—such as HiCuts—that combines a tree lookup with a sequential search through a small
number of rules might open up new opportunities.
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