SACTIONS ONTE
2008: 39” | 1—712

ECOMMUNICATIONS

Communication Networks

y algorithn

Proxy caching

for af:;m@-s;?éi%ed T‘V services

. Wim Van De Meerssche!,
Piet Deme

Tirm Wauters!

ester’,

ZAle mz}i Rc&l. Access and Edge,

Peter
Tom Van Caenegem’ and Erwin Six”

Ui, Ghenr Universiry—IM
Francis Wellesplein 1, B-

Backx EA, Filip De Turck!, Bart Dhoedt',

—IBBT, Gaston Crommenlaan 8, bus 201, B-9050 Ghent, Belgium

2018 Annwerp, Belgium

SUMMARY

The increasing popularity of

distribution networks (CDNs). Streaming services such as Video on Demand

multimedia streaming applications introduces new challenges in content

(Vol3) or digital television

over the Internet (IPTV) are very bandwidth-intensive and cannot tlerate the high start-up delays and poor
loss properties of today’s Internet. To solve these problems, caching (the initial segment of) popular streams

at proxies could be env

shifted television (tsTV) and its implementation, using the [ETF’s Real-Time Streamin
The algorithm uses sliding caching windows with sizes depending on content popul:
metrics. The caches can work in stand-alone mode as well as in co-operative mode.
1etwork load can already be reduced considerabl ly using small diskless caches
caching. A prototype m;pmmu‘siamm is detailed and evaluated thr

that the
using co- opcrati\

aged. This paper presents a novel caching algorithm and architecture for time-

Protocol (RTSP),
wnd/or ¢ ce
his paper shows
especially when
mg performance

measurements. Copyright © 2007 John Wiley & Sons, Lid.

1. INTRODUCTION

rchitectural model ¢
and multi-

<>W&§'<Es multi-service

networks has evolved
works, Ethernet as well as full 1P alternatives

provider ne

TIE5S SUCCESSOrs,

€ connectior
slatforms. While the introduction
E’E*»E‘"{}iégi‘ YVIANsg) solves

have been investigated as vi
i ATM-basedp

up o the uigc {e.g

v Ones are
because of address

“ations, Ea‘i ge-scale

of the core ne
nerworks ine
network to congest. The solution
to focus
déiémai &zsif‘lbmeé c;zc%as

etwork and put a heavy burden on the access

ase of large depl s causing the

oyments, possi
pr@pizwﬁ in this paper is
0 (t8TV) and to deploy ad-

on time-shifted t

ted home L;Eiz%g)mua{ forvideos

o Recorder (PVR)L ¢

capacity and i

the end-user to waich

initial broa

G Orar £
3G

112 T WAUTERS ET AL

Video on
Demand

Video on
Demand

regional server

Broadecast TV

broadcast
server

Iimeshied
1V

Actess coval central server

feques&%

Start of live

ﬂ”ﬁ \! I t
broadcast 1 day 1 week
Figure |. Delivery mechanisms for IPTV.

core network regional network access network

. central server S T 1 R G,
ER: edge router »
AM: access mulliplexer . User 3: delayed ?2;

{ User 2: delayed 1y}

GeranasEsssEs moecenssvaneass

PUser2 i User3:

Faacuanusassud mhonsoasssesd

t _program

e

ure 2.

ogy and YV sireaming dis

PROXY CACHING ALGORITHMS 1

exponentially decreases wds. This means that Streaming Protocol (RTSP) tmplementation is studied
h

caching asegment with asliding window of several minues, more detail and evaluated :El‘(?dg measurements. Sectios
for each current program can serve a m}esxfd»zmk part of concludes this paper and presents ideas for future work.

all user requests for

§§3 %"1‘1'%%3'«* Ezs, user |

b

ELATED WORK

Pminutes, the window

presented,
Uing mdénw 5o that user 3 cannot be

sting solutions in

I be redirected to the {(central or Previous studie

re gmm} > of co-operative mnmm. toa tributeds

eighbour proxy wm e umpmp;f&? vgsr ent, if preseni. networks

en in Figure 2b. take distance wuz;u an cé content pophs ari i\, into accot

User I watches the program in rezxtmm user 2canbeserved perform better than more straightfory
e

within the cached w 3

heuristics, such
T oy

u
east recently used (LRU) or least frequently used (LFU

P
=

ndow, while user 3 cannot. Pausing

(parailel to the horizontal axis) can also be supported within Segment-based caching techniques have been studi
the segment window. as well as fast forward or rewind extensively for streaming media, due to the huge size
(parallel to the vertical axis). mujtimedia streams, cor mured to traditional web objec

The above-mentioned servers can be distinguished as A survey on different strategies such cachi
foliows, based on their location and the streaming service [9], segment caching §3, E(121, rate-split caching |1
offered: and sliding-interval caching [14, 15] has been present

, \ in Reference [2]. The main goal of prefix L“mzm is
¢ The central server stores all available content {?V

programs}, but typically only has to serve requests for
less popular or older ;}z(;ﬂmms.

N ¢ P o oy
e The i();’;’wi i s ’rogenera

reduce the stari-up delay by caching the initial portion
the stream at the pr()xv. This paradigm is gmgm%gsw !
segment caching, x%/hm ache decis

tons are made for
e sir 1. In rate-split caching, t
ng the rate axis, instead of '
takes care of the peak rat

programs, such as recently ’Wo&ucastef'i series or falk
shows. These servers are located at the edge of the core

network {see Figure 2a), ther
video o

time axis. T' is way, fézs; cache
in VBR streaming, while th
itk ower coﬁsmm rate.

0 Col

¢ within the access
¢ The proxy servers are located close to the users and only

store fragments of the most popular umﬁw{ Contrary to
i al Vol tecd i
nd regional server

choice for these pro

pti

ctive con

can be %mmiw by . as lon

time-shifts within the szzma seg

- of this
sarch work related to this research
Section 3

oresents

)

use of

al uzd ter perfo

Li4

Similar peer-to-peer caching techniques have also been
introduced in streaming CDNs, where whole files are
stored instead of segments [191.

Several studies such as Reference [20] have been

investigating the implementation of segment-based caching
technigues on proxies using the RTP/RTCP/RTSP protocol
suite.

B iginality of i

H
H

The on 1is work is in the combination of the
abovementioned techniques, applying the pZp
*%sn'w from previously studied Vo> content place-
sliding-interval caching. The proposed
storage m@dc is waiuazed and implemented for IPTV, as a
novel time-shifted TV service. The RTSP protocol allows
for transparent request forwarding, which further optimises

placement by creating one large virtual cache.

and caching

mecha

the content

ANALYTICAL APPROACH

re presenting our sliding-interval caching algorithm,
we introduce an analytical model of a TV solution
based on sliding-interval caching with fixed window sizes,
offering a method to estimate the required storage space in
the network.

3.1. Model parameiers

Consider a model where each TV program is characterised
by a start time 77, a duration 7; and a function A;(7}, repre-
senting the request arrival rate for this program. N(1) denotes

the mm number of programs with 7; é t. The proxy cache
& i
. placed between the server and the clients, contains the first

¥
i
X min of any currently streaming file withr - 7; <7 < 1.

3.2. Cache hit rate

We derive an expression for the hit rate of cache 1, h;(0).
Consider further the time period |1, 7 + Z}fk then the total

number of requests is given by

Niny

Z},;{f‘;ﬁ(?}.

=3

:“Ei;i ;"f:sgucsis (i.e.

%}a currently
situation,

o the
L :%;i/

ang

rvalions:

T.WAUTERS ET AL

Therefore the total number of successful requests i

given by

A A =
' £y
A\umomv over all programs j for which 7 — X < 1, «
i, multp i iumi ;mﬂ% r of channels K an

SUpPposi
obtain the

fc Ekm g

(;r;‘

< T N©O
Z }»uj(f)
i=1
with <>* denoting averaging, on the condition thatf — X =
7; < 1. Supposing further that A; is a separable function ¢
i and ¢, such that A;(r) = A; f(r — 1y, with f{7) a normalise
function such that f{z) = 0 fors < O and

Efmmzy
0

we can wrife:

< Ai{t) > k=< hj>< fli—71j) > *
J J : J

(%4

=% JSlode
‘ 0
as long as X < <7>. Hence,
X
; <A>jﬂfm&
hi(ty = K— ;
= T = N
> hilD)

Fome]

eriod P, then the total numbe
KP/< T >.Suppose

Y FPrOgrams persecor

Further consider a time p

of broad

casted programs 15 N{ P}

e, then the total mmbu of requests is given b
efore. {

mzh f}u“sed of time will satisly

he average number of requests for a lor

GrP

PROXY CACHING

simplifying our expression for the cache 7 hit ratio to

X
hip = Lgf{z;df
0

Taking for f{r) an exponentially decreasing function
bexp(—bry (for 1 > 0), we get

hy=1—et¥

as fong as X << 7T >. The size of cache 7 i1s simply KX.

shows the server load for
. If the content popularity
(L g, b} 10% after each interval, & =

erver load cannot be reduced signifi-

the czzch@é coment size

C‘

ami Vx hen :E% content popularity is halved after each in-
mmﬂ A(h = —In(0.5)/ A), the server load is halv
when the segment size is A (Figure 3). It is then given by

EX”

SN FR— —
1 fryp o= 2}
X =qaA.

Similar results for the server load can be found using

red as well

the sliding-interval caching aéworiihm prewn‘ied in the
following section (compare the curve for b = —In(0.5)/ A

o é'gf" ‘s-»cl’ curve in Figure 10a, for mws}d—alo;}a caches
at level 2 and a halved content popularity after A).

4. SLIDING-INTERVAL CACHING
ALGORITHM

Our caching 3 5TV services is pre

in this section. Since we assume that, in general,

100%
’ b=-In(0.9)/A
80% - |
g 0% -
S 40% \
% \
209 \\
~
0%
6 1 2 3 4 5 8 7 8

/ John Wii

ey & Sons, Lid

different values of

LGORITHMS 1

LA

segments of programs will m stored, cache sizes can be

w o hours

ted to a few gigab

reaming content}. 'E‘%m w

loser to the

users, withou

capn be deploved ¢

instatlation cost excessively.

4.1. Basic principle

o

The cache will be virtually «

S aﬁd amain part L. Part S w

i re‘;;iaiij;;xi(u?}

v, Its size

ally Th of streaming

Part L will be used to store the segments (with growing or
sliding windows) of the currently most ’}()i)uh* programs.
The actual size of each segment in part L will be determined
and, if necessary, adapted after each interval A (e.g. 5 min).
During A, the cache is learning about the popularity of the
programs.

o

Figure 4 shows the basic principle of the TV caching
algorithm. During each interval A, program requests arrive

at the different proxies. Each
be updated
parameter tries to determine the popularity of

time, a parameter A, ,, will
program p. E ge . this

in proxy n, for genere
€ program,

o

while taking distance metrics into account.

This means that a (se tof a) popular program might
not be cached, because a nearby proxy already stores that
(segment of the) program.

cgment

Ay, p 15 calculated as follows:

JROETAn O arrives at

{populariry

Fvery Hme a request for Proxy
) Prox;

n, Ay p Is iif(ffwzsw! !}) f only) or by

the hopcount between proxy n and the serving node

:!}{/f?f’!ésig v and distar 1085

After each interval A, first all segments

growing) with status set
L. After

‘occupied’ are

wards, £ is filled with segments with

request fo

ogram o

program |

window
| appropria

- giream ‘??m@ - 81 rear | lozally

other cache

116

T.WAUTERS E7T'/

e SETVET

BHEEE

&

requesis
&

o 8

saIver

server

Figure 5. Server foad without caches. All

total.

FEQUESLS per |

250

Ny

SUUU T CUUCSEs 4t mad

e SEFVET

200

requests

o

time [h]
{(a)

Figure 6. Server load with caches. All requests are

windows for the most popular programs {(i.e. with the
highest values of A, ,). All other ség ents are dropped,

S is cleared and all values of A, , are reset to 0.

The influence of premature termination, im‘ example due
on the caching behaviour is much
smaller than for the storage of whole video files [21], since
the small cache part 5, which is cleared after every learning
interval A, handles most of these speci quests.

to channel hopping,

g

zég re

4.2. Numerical resuits for stand-alone cachis
4.2.1. Input parameters

itustrate the caching principle, in fé;sﬁwiss‘:
was performed on one branch of the ac g
Figure 2a: a regional server %ii‘ WO iwwaf“ hic

s 20 ¢
W}HQSE'\% 5
10 meo pular

(Figure 7). The regic i “hannels:
ular ch;zszszds (80% of all 1

fall re

less g}o;)iz%zir

uests) and

made within 30 min. The ca

server
s sache 1

cache 2

time [hj

(0)

50 1

i\/\ \/‘\/ \/\j\/t\‘

server
s 0TS 1

cache 2

4
time {hj

(©)

whe sizes are 0GB (a), 0.5GB (b) and 4 GB (¢).

evening, of which 200, for the most popular program

the most popt

The popularity of a program

the first inter

afterwards (halved every interval
el offers six g
'd?"zu%fv’hih of 2.5

Fach chann
W ;ih a strear

ular channel.

val A {(=5min)

n i3

programs of 45 mi

reaches a peak duw
decreases exponenti
A (similar

and

to Figure
in per even

5 Mbps (1 GB per hot

|

Telecorms., 20

PROXY CACHING ALGORITHMS I

Note that the values for these inpur parameters are
very general, since Zipf-like content popularities are very
commonly used in content distribution networks {221 and
the relative
TV programs or their duration or bandwidth.

The caching algorithms have been impfszzxeme{i i O+t
and evaluated in a standard discrete event simulator using
the LEDA [23] library.

Server and cache load

In case no caches are in use, the load onthe r
is shown in Figure 5 (cumulated per interval A). The Eonger
the period during which all requests are made, the smoother
the traffic at the server (the total number of requests and
the exponential decrease remain the same, while the initial
popularity is different).

in Figure 6, caches are introduced. When both cache sizes
are limited to 0.5 GB (S only: the number of channels times
A or 25 min), the server load is already much lower and the
caches serve most of the tsTV requests. What happens is
that cache 1 (closest to the server) and cache 2 first store all
5-min prefizes of each new program, but since only cache
2 receives new requests afterwards, cache | will drop these
segments after A, Afterwards cache | will store the next
5 min of each program, while cache 2 is storing the sliding
‘occupied” windows from the first interval. This means that
the caches serve all requests made during the first 10 min of
each single program.

For infinite cache sizes {or 4GB or higher in this
example), the regional server only serves the YoD requests
for channels 6-20. Cache 2 stores and serves all « ur{ﬁndy
broadcasted pmvra;m

More detail on the gi onal server and cache load
in Figure 8 (tsTV only, top five channels). Note that the
server load never drops %{é {i since at least the first request for
a certain program has to be served from the regional server.
In Figure 9, the server load is shown for different values
of the maximum request period per pro . Since no
upstream links are used in these simulations, the bandwidth
on the links can easily be determined from the ser

C,{E(\;ﬁa(serve

cache load.

4.3. Numerical results for co-operative caching

The same caching princis for a co-

‘e caching mechanism,

ere caches on the same

-

peer prot ocols to ex g content,

nere areguestinal cannot

results below are independent of the number of

100
80
@ e server
% B0 -
% s Cache 1
g 4o cache 2
= T
20 -
g : :

cache size [GB]

Figure 8. Server and cache load. All requests are made with

30 min.

the central server (hierarchical caching), caches can nc
forward requests to caches on the same level. Howew
the decision onn when to store a certain fragment not on
depends on the value of A, ,, but also on the source no
serving the request. Two different approaches have be
implemented.

The first heuristic only takes the values of 4, , into a
count {“cache from all sources’, CfA). This means that m¢
caches store the same fragments, since content popularity
similar for most nodes. The numerical results will therefo
be comparable to the results for stand-alone caching.

The second heuristic also takes the values for A, , in
account, but never stores content that é@ &ili‘ﬁady s‘é‘{‘;{ed (
another cache (‘cache from server only’, CfS). This we
the central server will be offloaded w;}szde; aﬁﬁy even wi
small caches, but many requests will have to be served |
other caches over the access network links.

max 50 min
max 30 min

e X 5 min

% requests

Lond
Y
S O]
[
s

18

Both alternatives have their benefits (the first one is
optimal in case of larger

caches, the second one in case
of small caches). The optimal heuristic, however, takes the
f both content ¢
one part of cache L (called Ly, us

best © worlds, storing unique ments in

ed in the C fS
another part

and locally popular segments in
the CfA

A heuristic).

used in

NFry] o
Wral se

load v

can

then be det
i

The access nerwork load

ermined out

gdmu%

e 1
parts L.

can be

4.3.1.

;r’l}){{;’ paramerers

The input parameters for the simulations are the same as
in the previous section. The network topology (similar to
Figure 7) now consists of a central server, one node at level
1 {without storage capabilities) and six proxy caches at level
2. The level 1 node is connected to the level 2 caches with
bidirectional links, so that cache co-operation is possible.
Note that no storage space is available at the level one
node so that the resulis of cache co-
iching.

er to the

f the simulations for ¢
operation are not influenced by hierarchical ca
The cost of using the link from the central se
node at level | has been set to 10 (in fact, any va EUL higher
than | will do), instead of 1. This way, ihc central server
will be avoided when the requested segment can already be
found on a neighbour level 2 cache (when calculating the

foun
shortest path, using the weighted Dijkstra algorithm).

Server, cache and nerwork load

&;ézzné—;é‘mzc caching, the netw

niined out of the cs

fra

since only downstream is present on the

HCCESS s}e‘zwork

v‘v"ém waﬁmrqf‘w caching, the uplinks in

s well,

el 2 are use

o RPN .
7 caches

for stana-aion

T. WAUTERS £T

% reguests

% requests

% requesis

AL.

&0

40 -

20

100

80

40 -

20

] N —e— g «> o1
ol ->c2
\\% g 02 = o1
\\\
NS
1] 1 2 3 4
cache size [GB]
(@)
g
\
- \ ’ e & =3 1
80 \ /
\/ cl->c2
f‘ —— 2 > o1
A
;5‘
/’g g\%\
/
¢ 1 2 3 4
cache size [GB]
(b)
1 R
L
L/ Y [—
| h N R g3
éi/{l : ¢t -» 2
E é\, m%w c2 -> ¢l
g i ‘\\% 7777777777777777777777777
Af \@ \’ﬁ“\&
P .
} \ \'%-.M
1] i 2 2 2

Forise Foppere F
[oES I R A C A

ich

Hecoimnns. 2

PROXY CACHIN

the central server load is already almost zero for the TV
c%"zammh when only 0.5GB caches are used.
storage space 18 then 3 GB, therefore, one could expect that
the results
the situation with 3 GB caches in stand-alone mode.
notentirely the case, since itis possible t
or anew program arr ive

The total

for the central server load would correspond to

Thisis

that the first requests
at caches that have

no storage place

¢
{
lettin

wetwork load” (represented by the link s
educed considerably. while the “access network
‘el <->¢27yis load halanced.
ffers the best of both

i
vV
Ie)
7
I

load’ fi"cg*; -esented by the links
fE heuristic (Figure 10¢) o
worlds. The server foad is reduced effectively, while, inca
of larger caches, the access network is offloaded as well. ?hc
server load (link ‘s -=> ¢17) is even lower then for the CfS
heuristic. This is due to ihe RTSP request forwarding mect
anism, allowing requests that arrive at a cache that has no
storage space leftin Ly, to be forwarded automatically to an-
other cache with enough storage space. This way the virtual
cache consisting of all parts Ly is filled up in an optimal way.

. PROXY IMPLEMENTATION

A transparent RTSP proxy for time-shifted TV has been
implemented (in C++) for evaluation purposes. This section
gives an overview of the different components and protocols
used and evaluates a prototype
measurements.

throu é_:ii

p&fi ‘ormance

5.1, Functionality

In order to implement the
into logical parts. The co

DYOXY, its fur
mmunication wi

the central server includes messages

which program or channel has to be strear
as PAUSE

oy thic

- ‘v’{,‘é
tike commands such

streams themselves are encapsulated and deli
Real-Time Protocol (RTP), a standard protocol

streamed medi

;(‘}?Eip(nent of th

proxy is the R7SP
the 5TV

1
P srets thelr messa

Proxy, a coz};;‘m ent that communicates with

ke
z«s;.

and

G ALGORITHMS i

protocol. The task of the Cacher component is o sic
popular streams, sent to the proxy by the server {or anoth
cache), in shiding windows. The streams are sent to 1
clients from these windows, a function that is handled
the Streamer component. The proxy also keeps wack of't

e being sent to the proxy (which progras

4

streams that

channel, starting time, ...}, through the Stream Track

:
component, with help from the Program Guide ¢

wnicates with the electronic
The Puacker Handler

i E(?X’*J—ié’f\"{) Pnetw

which comn
(EPQ) server.
deals

acts as an interfac
H
i

wk interaction. Figure 11

3O Wit
&

an overview of the different components.

5.2. Detailed scenario

Figure 12 shows a detailed setup of a streaming sessi
between the client, the proxy caches and the server.

First, the client sends an RTSP request to the server, t
this request is intercepted by the proxy. In a first scenar
(part Jain Figure 12), the proxy does not store the request
fragment, forwards the request (with the destination
address of the proxy) to the server, starts caching the strea
from the server and forwards the RTP stream to the us
Afterwards, the proxy exchanges its new cache state in
buted way to all other caches (part 2a in Figure 12).
a second possible scenario (part 1b in Figure 12), the pro
does not store the requested fragment and decides not
store the fragment locally. It forwards the RTSP request
another {proxy) cache, keeping the destination IP addre

distrik

gu
&
Js

r proxy decides to forward the request to
hu the fragment locally and sends the R1
3
i

stream directly to the client. Afi

terwards, the new cacl

states are exchanged gh ‘ough a centralised C5

&

E protoc

Cache
Verdict
Manuger

Stream
Tracker

e

Cache e
RTSP [Program
State ~ {acher N
i ! Proxy Guide
Muanage

126 T. WAUTERS ET AL.

cache proxy

&
Eﬁ sPHIp Rleag et Y
P
play sy aime
&
_________________ RI} .
Za
Session
setup “glreums {0 nuh”’ pott %
ok
olay =program urle at <iime
& Cacher
CVM: CacheVerdictManager
RP: RTSPProxy
ib PH: PacketHandler
BUTUE
piay ST
g
. 3 et U PO L RfPsweamtoplientdPporex >
b update cache state — BTG
~-=- RTP
TSE

e e imternat

Figure 12. Detailed setup of a streaming session between client, proxy, any other cache and the server. In scenario a, the proxy cach
the requested program from the server; in scenario b, the proxy forwards the RTSP request transparently to another cache.

300 5.3. Test setup and measurements
250 in this section, performance measurements on a prototyr

proxy are presented, implemented on an AMD AthlonT!
200 64 processor 3000+ (512MB RAM). Figure 13 show
the number of client RTSP requests that can be handle

simultaneousty by the proxy, already serving RTP strean
100 . (’7_5 Mbps) over a gigabit link (560 Mbps throughp
: measured with Iperf [26]). The proxy uses high-priorn
50 ; RTP threads and low-priority RTSP threads. We obsen

150

RTSP/s

o » ‘ : ‘ that the RTSP handling decreases linearly and fails
o 50 100 150 200 190 simultaneous RTP streams 5‘-?%!} Mb p\} due 1o limite

em resources. Figure 14 shows the delay betwe
a PC client Vm@ the arrival of the fir

© client, for rent configuration

streams y
PLAY iuimm sent by

igure 13, RTSP requests handling (AthlonTM 64

o
F
DIOCEssor).

. Bven when t he proxy has to feich tf

ond sce

(Figures

GCis A% A

orithm (Section 4

co-operative o
streamer I 2

links b

PROXY CACHING ALGORITHMS

40
35 & min delay
g i -
30 E : av detay
- i max del
= 25 E = ay
E L
= 20 |
= L
§ B 4
C |
0- E
content not content server only
cached at cached at {proxy
pBroxy proxy disabled)
Figure 14. Delay between a client request and the actual start of
the RTP stream on a client PC.

6. CONCLUSIONS

In this paper, a novel sliding-interval caching algorithm fora

8TV service was presented. Cache decisions (segment size,
stored programs, ...) at low cost distributed streamers are

made after each learning interval A, based on popularity and
distance metrics. Experimental results for a basic network
topology showed promising results in terms of server and
network load, especially for co-operative caching. An RTSP
proxy implementation has been introduced as well. A
prototype, integrating the caching algorithms has been built
and evaluated through measurements.

Future work includes the introduction of E2E resilience
aspects (e.g. RTP retransmission [28]} and other concepts
such as storage of content at the user premises, p{)‘sib v

served through peer-to-peer content streaming, will be
investigated as well,

ACKNOWLEDGMENT

[

14,

. Sen S, Rm'

. Wu K, Yu P, Wolf 1. S

. Fahmi H,

. Zhang Z, Wang Y. Du D, Su D. Video staging:

. Chen S, Shen B, Yan Y, Basu 8

121

Hlacement of Web

rence on Computer

Jocont 20t
April 2001, ¢
Aahalingam
orithrms

S Replicas, [EEE
Communications, no. 1,
. A Framework for
chnical Report HPL-

ries, July 2
Roberts J, Ross K. Ob

bution networks. Computer Conmunications 2002;

ject replication siratevies

Borr

and ,‘wie‘mk /

thms in S -

ey D. Proxy prefix caching for multimedia
M 1999—The Conference on Computer
1999; 1:1310-1319.

Wee S, Zhang X.

streams, 1
Communications

. Chen 5. Shen B, Designs of high quality
streaming proxy systems. [FOCOM ’)i) 4—The Conference

on Computer Communications 2004; 23(1):1513-1522.
egment-based proxy de ing of multimedia
streams. In Proceedings of World Wide Web Conference WWW 1 10,
Hong Kong, 2001

Latif V‘E Sedigh-Ali
servers for scalable interactive video support. JEEE
43(91:54-60.

S, Ghafoor A, Liu P, Hsu L. Proxy
Computer 2001;

A proxy-server-
based approach to end-to-end video delivery over wide-area networks,
IEEE/ACM i:mnaumu\ on Networking 2000; 8(4):426-442,

Tewari R, Vin H, Dan A, Sitaram D. Resource-based caching for
Web servers. In Proceedings of SPIE/ACM Conference of Multimedia
Computing and Networking MMCN"98, San Jose, CA, 1998,

Zhang X. SRB: Shared running buffers
of multiple streaming media
International Conference

. 2004.

in proxy to exploit memory locality
sions. In Proceedings of the 24th
Distributed Compu stems (ICDCS)

Acharya S, Smith B. Middleman: A video caching proxy server.
in Proceedings of 10th International Workshop on Network
and {}pq ting Systems Support for Digital Audio and Video

!}{‘.} '7() ﬂ

Guo K, Bud Suri S, Z

caching token: Schemes for scalab

o IEEFE Journal on Selected Areas in
) ¢

o
and

Communications 2002;

technique\ for
Report, Bell Lab

ams. Compuier !

192 T, WAUTERS ET AL,

\pplications. 29, Akamai. htlp:/;‘\&'\&f\u;;akzmmi.mm,
seolancnet/ 300 Mirror Image. ht 3 Ye.Com.
31, Gilon E. er al. Demonstration of an [P aware iu “service w
27, Darwin Sts“ni;mg Server, hupi/fdeveloperapple.com/opensource/ network. Proceedings of BroadBand Europe _{*i) Decembe
server/streaming Bordeaux, Fra

ar wixxw m E)\z load Format, hitp//

CIETE dr

fravi-rip-retransmission- [2.x0

C:
e
o)
3
o3
o
jony
Cu
o
-
¢

} ion communication techniques) in 20
design of content distribution and peer-to-peer networks u

s
H is work has been published in several scientific publicat

wm. In Au
INTEC), a

Wim Van De Meerssche rccec%\fcd his M.Se. degree in software development 1 4 from the University of Ghent, Belg

2004, he started working on software technologies for access networks in ‘d.; D rtment of Enfomm{am Technology
His work has been published in several scientific publications in mzwmm I conferences.

Pater Backy received his PhD in Computer Science engineering at the University of Ghent in 2005. He specialized in compo

based programs and their automatic and distributed deployment in wide-area networks. Since then he has been working at LogicaC

Belgium consulting for 2 wide range of problems from Ajax enabled web frontends to optimizing network traftic of targe scale busi

applications.

¥

same universi

Filip g}t Turck received his M.Sc. degree in Electronic Engineering from the thm University, Belgium, in June 1997. In
2002, he obtained the PhDD. degree in Electronic Engineering from the same university. From October 1997 to September 2
Filip De Turck was research assistant with the Fund for Scientific Research-Flanders, Belgium (FEW.0.-V.). At the moment, |

par“*im professor and a pos{-docmm fellow of the FLW. G -V, affiliated with the Department of Information Technology ¢
(s hent University. Filip De Turck is author or co-author of approximately 80 papers published in international ;(\unmfs or ir
proceedings of mtu‘mimm& conferences. His main research interests include scalable software architectures for telecommunict
agement, performance evaluation and optimization of routing, admission control and traffic manageme

network and service 1w
telecommunication §
Bart Dhoedt recei
Information Tech
iw realize paralle }
e became professor
several courses on al
& wireless communi
sroceedings of inter

ee in meu; ing from the {‘ hent University in 1990, In September 1990, he joined the Departme
h* “‘aculty of Applied Sciences, Uniwrsii,' hent. His rescarch, addressing the use of micro-o
optical interconnects, resulted in a PhD degree in 1995, After a 2 year posi- em in ~opto- dtcim
du;iw of Applied Sciences, Department of Information Technology. Since & sponsi
gorithms, programming Lm(ﬁ software development. His research interests are softwar and me
ations. Baii Dhoedt is author or co-author of approximately 100 papers publis in internationa E journa
national conferences. His current research addresses software technologies for communication netws

le networks and active networks,

in the

ctro-technical engineering and the Ph.D degree from ‘éc Ghent University

1 activity on broadband communication networks resu

nications network i group). Since 1993 he became professor at the ©

; and education on o mzmmzcmma networks. The research activities cover va

i k planning, network and service manager
i

N 1e
emeester is author of more than 400 publicatio
international journals

he started a new resea

£searcn

s, active, mobile),

the editorial board of sever:

L DRONVICCON IZS..

eering in 1995 and a Ph.Dy deg gree in electrotechnical cng';
stical Access networks grou éici Rcscm‘ds anc
:E‘ PON access and was

rehitecture subgroup of

Caenegem receis

"E Emm Ghent

n 2){;
"‘)fgi }’*

Since 2 termns engineerin

Afterwards, as & memt

-}

s rosears

