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SUMMARY

The increasing popularity of

distribution networks (CDNs). Streaming services such as Video on Demand

multimedia streaming applications introduces new challenges in content

(Vol3) or digital television

over the Internet (IPTV) are very bandwidth-intensive and cannot tlerate the high start-up delays and poor
loss properties of today’s Internet. To solve these problems, caching (the initial segment of) popular streams

at proxies could be env

shifted television (tsTV) and its implementation, using the [ETF’s Real-Time Streamin
The algorithm uses sliding caching windows with sizes depending on content popul:
metrics. The caches can work in stand-alone mode as well as in co-operative mode.
1etwork load can already be reduced considerabl ly using small diskless caches
caching. A prototype m;pmmu‘siamm is detailed and evaluated thr

that the
using co- opcrati\

aged. This paper presents a novel caching algorithm and architecture for time-

Protocol (RTSP),
wnd/or ¢ ce
his paper shows
especially when
mg performance

measurements. Copyright © 2007 John Wiley & Sons, Lid.
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PROXY CACHING ALGORITHMS 1

exponentially decreases wds. This means that  Streaming Protocol (RTSP) tmplementation is studied
h

caching asegment with asliding window of several minues,  more detail and evaluated :El‘(?dg measurements. Sectios
for each current program can serve a m}esxfd»zmk part of  concludes this paper and presents ideas for future work.
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Similar peer-to-peer caching techniques have also been
introduced in streaming CDNs, where whole files are
stored instead of segments [191.

Several studies such as Reference [20] have been

investigating the implementation of segment-based caching
technigues on proxies using the RTP/RTCP/RTSP protocol
suite.

B iginality of i

H
H

The on 1is work is in the combination of the
abovementioned techniques, applying the pZp
*%sn'w from previously studied Vo> content place-
sliding-interval caching. The proposed
storage m@dc is waiuazed and implemented for IPTV, as a
novel time-shifted TV service. The RTSP protocol allows
for transparent request forwarding, which further optimises

placement by creating one large virtual cache.

and caching

mecha

the content

ANALYTICAL APPROACH

re presenting our sliding-interval caching algorithm,
we introduce an analytical model of a TV solution
based on sliding-interval caching with fixed window sizes,
offering a method to estimate the required storage space in
the network.

3.1. Model parameiers

Consider a model where each TV program is characterised
by a start time 77, a duration 7; and a function A;(7}, repre-
senting the request arrival rate for this program. N(1) denotes

the mm number of programs with 7; é t. The proxy cache
& i
. placed between the server and the clients, contains the first

¥
i
X min of any currently streaming file withr - 7; <7 < 1.

3.2. Cache hit rate

We derive an expression for the hit rate of cache 1, h;(0).
Consider further the time period |1, 7 + Z}fk then the total

number of requests is given by

Niny

Z},;{f‘;ﬁ(?}.

=3

:“Ei;i ;"f:sgucsis (i.e.

%}a currently
situation,

o the
L :%;i/

ang

rvalions:

T.WAUTERS ET AL

Therefore the total number of successful requests i
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PROXY CACHING

simplifying our expression for the cache 7 hit ratio to

X
hip = Lgf{z;df
0

Taking for f{r) an exponentially decreasing function
bexp(—bry (for 1 > 0), we get

hy=1—et¥

as fong as X << 7T >. The size of cache 7 i1s simply KX.

shows the server load for
. If the content popularity
(L g, b} 10% after each interval, & =

erver load cannot be reduced signifi-

the czzch@é coment size

C‘

ami Vx hen :E% content popularity is halved after each in-
mmﬂ A(h = —In(0.5)/ A), the server load is halv
when the segment size is A (Figure 3). It is then given by

EX”

SN FR— —
1 fryp o= 2}
X =qaA.

Similar results for the server load can be found using

red as well

the sliding-interval caching aéworiihm prewn‘ied in the
following section (compare the curve for b = —In(0.5)/ A

o é'gf" ‘s-»cl’ curve in Figure 10a, for mws}d—alo;}a caches
at level 2 and a halved content popularity after A).

4. SLIDING-INTERVAL CACHING
ALGORITHM
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Part L will be used to store the segments (with growing or
sliding windows) of the currently most ’}()i)uh* programs.
The actual size of each segment in part L will be determined
and, if necessary, adapted after each interval A (e.g. 5 min).
During A, the cache is learning about the popularity of the
programs.

o

Figure 4 shows the basic principle of the TV caching
algorithm. During each interval A, program requests arrive
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be updated
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PROXY CACHING ALGORITHMS I

Note that the values for these inpur parameters are
very general, since Zipf-like content popularities are very
commonly used in content distribution networks {221 and
the relative
TV programs or their duration or bandwidth.

The caching algorithms have been impfszzxeme{i i O+t
and evaluated in a standard discrete event simulator using
the LEDA [23] library.

Server and cache load

In case no caches are in use, the load onthe r
is shown in Figure 5 (cumulated per interval A). The Eonger
the period during which all requests are made, the smoother
the traffic at the server (the total number of requests and
the exponential decrease remain the same, while the initial
popularity is different).

in Figure 6, caches are introduced. When both cache sizes
are limited to 0.5 GB (S only: the number of channels times
A or 25 min), the server load is already much lower and the
caches serve most of the tsTV requests. What happens is
that cache 1 (closest to the server) and cache 2 first store all
5-min prefizes of each new program, but since only cache
2 receives new requests afterwards, cache | will drop these
segments after A, Afterwards cache | will store the next
5 min of each program, while cache 2 is storing the sliding
‘occupied” windows from the first interval. This means that
the caches serve all requests made during the first 10 min of
each single program.

For infinite cache sizes {or 4GB or higher in this
example), the regional server only serves the YoD requests
for channels 6-20. Cache 2 stores and serves all « ur{ﬁndy
broadcasted pmvra;m

More detail on the gi onal server and cache load
in Figure 8 (tsTV only, top five channels). Note that the
server load never drops %{é {i since at least the first request for
a certain program has to be served from the regional server.
In Figure 9, the server load is shown for different values
of the maximum request period per pro . Since no
upstream links are used in these simulations, the bandwidth
on the links can easily be determined from the ser

C,{E(\;ﬁa( serve

cache load.

4.3. Numerical results for co-operative caching
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Figure 8. Server and cache load. All requests are made with

30 min.

the central server (hierarchical caching), caches can nc
forward requests to caches on the same level. Howew
the decision onn when to store a certain fragment not on
depends on the value of A, ,, but also on the source no
serving the request. Two different approaches have be
implemented.

The first heuristic only takes the values of 4, , into a
count {“cache from all sources’, CfA). This means that m¢
caches store the same fragments, since content popularity
similar for most nodes. The numerical results will therefo
be comparable to the results for stand-alone caching.

The second heuristic also takes the values for A, , in
account, but never stores content that é@ &ili‘ﬁady s‘é‘{‘;{ed (
another cache (‘cache from server only’, CfS). This we
the central server will be offloaded w;}szde; aﬁﬁy even wi
small caches, but many requests will have to be served |
other caches over the access network links.
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Both alternatives have their benefits (the first one is
optimal in case of larger

caches, the second one in case
of small caches). The optimal heuristic, however, takes the
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4.3.1.

;r’l}){{;’ paramerers

The input parameters for the simulations are the same as
in the previous section. The network topology (similar to
Figure 7) now consists of a central server, one node at level
1 {without storage capabilities) and six proxy caches at level
2. The level 1 node is connected to the level 2 caches with
bidirectional links, so that cache co-operation is possible.
Note that no storage space is available at the level one
node so that the resulis of cache co-
iching.

er to the

f the simulations for ¢
operation are not influenced by hierarchical ca
The cost of using the link from the central se
node at level | has been set to 10 (in fact, any va EUL higher
than | will do), instead of 1. This way, ihc central server
will be avoided when the requested segment can already be
found on a neighbour level 2 cache (when calculating the

foun
shortest path, using the weighted Dijkstra algorithm).
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PROXY CACHIN

the central server load is already almost zero for the TV
c%"zammh when only 0.5GB caches are used.
storage space 18 then 3 GB, therefore, one could expect that
the results
the situation with 3 GB caches in stand-alone mode.
notentirely the case, since itis possible t
or anew program arr ive

The total

for the central server load would correspond to

Thisis

that the first requests
at caches that have

no storage place

¢
{
lettin

wetwork load” (represented by the link s
educed considerably. while the “access network
‘el <->¢27yis load halanced.
ffers the best of both

i
vV
Ie)
7
I

load’ fi"cg*; -esented by the links
fE heuristic (Figure 10¢) o
worlds. The server foad is reduced effectively, while, inca
of larger caches, the access network is offloaded as well. ?hc
server load (link ‘s -=> ¢17) is even lower then for the CfS
heuristic. This is due to ihe RTSP request forwarding mect
anism, allowing requests that arrive at a cache that has no
storage space leftin Ly, to be forwarded automatically to an-
other cache with enough storage space. This way the virtual
cache consisting of all parts Ly is filled up in an optimal way.

. PROXY IMPLEMENTATION

A transparent RTSP proxy for time-shifted TV has been
implemented (in C++) for evaluation purposes. This section
gives an overview of the different components and protocols
used and evaluates a prototype
measurements.
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protocol. The task of the Cacher component is o sic
popular streams, sent to the proxy by the server {or anoth
cache), in shiding windows. The streams are sent to 1
clients from these windows, a function that is handled
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5.2. Detailed scenario

Figure 12 shows a detailed setup of a streaming sessi
between the client, the proxy caches and the server.

First, the client sends an RTSP request to the server, t
this request is intercepted by the proxy. In a first scenar
(part Jain Figure 12), the proxy does not store the request
fragment, forwards the request (with the destination
address of the proxy) to the server, starts caching the strea
from the server and forwards the RTP stream to the us
Afterwards, the proxy exchanges its new cache state in
buted way to all other caches (part 2a in Figure 12).
a second possible scenario (part 1b in Figure 12), the pro
does not store the requested fragment and decides not
store the fragment locally. It forwards the RTSP request
another {proxy) cache, keeping the destination IP addre

distrik
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Figure 12. Detailed setup of a streaming session between client, proxy, any other cache and the server. In scenario a, the proxy cach
the requested program from the server; in scenario b, the proxy forwards the RTSP request transparently to another cache.

300 5.3. Test setup and measurements
250 in this section, performance measurements on a prototyr

proxy are presented, implemented on an AMD AthlonT!
200 64 processor 3000+ (512MB RAM). Figure 13 show
the number of client RTSP requests that can be handle

simultaneousty by the proxy, already serving RTP strean
100 . (’7_5 Mbps) over a gigabit link (560 Mbps throughp
: measured with Iperf [26]). The proxy uses high-priorn
50 ; RTP threads and low-priority RTSP threads. We obsen

150

RTSP/s

o » ‘ : ‘ that the RTSP handling decreases linearly and fails
o 50 100 150 200 190 simultaneous RTP streams 5‘-?%!} Mb p\} due 1o limite

em resources. Figure 14 shows the delay betwe
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40
35 & min delay
g i -
30 E : av detay
- i max del
= 25 E = ay
E L
= 20 |
= L
§ B 4
C |
0- E
content not content server only
cached at cached at {proxy
pBroxy proxy disabled)
Figure 14. Delay between a client request and the actual start of
the RTP stream on a client PC.

6. CONCLUSIONS

In this paper, a novel sliding-interval caching algorithm fora

8TV service was presented. Cache decisions (segment size,
stored programs, ... ) at low cost distributed streamers are

made after each learning interval A, based on popularity and
distance metrics. Experimental results for a basic network
topology showed promising results in terms of server and
network load, especially for co-operative caching. An RTSP
proxy implementation has been introduced as well. A
prototype, integrating the caching algorithms has been built
and evaluated through measurements.

Future work includes the introduction of E2E resilience
aspects (e.g. RTP retransmission [28]} and other concepts
such as storage of content at the user premises, p{)‘sib v

served through peer-to-peer content streaming, will be
investigated as well,
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