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A New Methodology for Anisotropic Mesh Refinement
Based Upon Error Gradients

Thomas Apel* Sergei Grosman* Peter K. Jimack! Arnd Meyer*
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Abstract

We introduce a new strategy for controlling the use of anisotropic mesh refinement based upon
the gradients of an a posteriori approximation of the error in a computed finite element solution.
The efficiency of this strategy is demonstrated using a simple anisotropic mesh adaption algorithm
and the quality of a number of potential a posteriori error estimates is considered.
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1 Introduction

The use of anisotropic mesh refinement in the adaptive finite element solution of partial differential
equations (PDEs) with highly anisotropic solutions is widely recognised as having significant potential
for improving the efficiency of the solution process, e.g. [3, 5, 12, 20, 26, 33]. Numerous schemes for
driving anisotropic mesh adaptivity have been considered in both the engineering, [3, 11, 12, 26, 33],
and the numerical analysis literature, [14, 30, 31, 32]. Typically, such schemes are based on a priori
knowledge of features of the equation and of the nature of the solution (e.g. [6, 23]) or on a posteriori
knowledge (the numerical solution) to drive the refinement (e.g. [10, 16, 18, 29]). A priori knowledge
of edge singularities is included in [5, 6] via a special coordinate transformation in the vicinity of
that edge leading to the effect that new nodes generated through the adaptive procedure are suitably
placed at a location different from the usual midpoints of edges. In [23, Section 6] the authors use
a priori knowledge of boundary and interior layers to generate a useful anisotropic initial mesh. A
different approach is described in [32, 33] where structured anisotropic meshes are used locally near
interior layers or shocks, and the approximate solution on a previous mesh is used to determine the
position of the layers and to guide the refinement outside the layer. Several authors use the heuristic
argument that the local element size parameters should correspond to the ratio of the eigenvalues of
the matrix of the (approximated) second order partial derivatives of the solution, with the stretching
direction determined by the eigenvector to the largest eigenvalue of this matrix, see [3, 14, 26, 33|
and the literature cited there. In this communication we propose an alternative technique for driving
anisotropic mesh refinement based upon a posteriori error estimation of the finite element error.
The technique is related to the method in [27] where local interpolation errors are estimated and
equidistributed. The purpose of this work however is to consider whether gradients of a posteriori
error estimates may be used to control anisotropic refinement in an effective manner.
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For creating a new mesh, there are three main strategies. The first demands complete remeshing
on the basis of background information (local mesh sizes, stretching direction); see the overview
article [31] and the literature cited therein. Some authors report on anisotropic meshes which have
nearly equilateral elements in a local non-Euclidean metric [8]. In this way standard mesh generation
techniques are used to solve the meshing problem [13]. Remeshing is quite expensive but one can
produce meshes with a gradually changing mesh size and arbitrary stretching directions. The second
strategy is based on a subdivision of the existing elements. This approach is inexpensive and fits
very well into multi-grid/multi-level strategies for the solution of the corresponding finite element
equation system. The subdivision strategy was adapted for anisotropic refinement in [19] and will
be investigated also in this paper. The disadvantage is that the initial mesh strongly determines
the possible stretching directions of the elements. This can be compensated for by node relocation
techniques, sometimes also called adaptive grid orientation [19] or node relaxation techniques [28].
In the third strategy one concentrates on relocating the nodes: this is also called the r-version of
the finite element method. In order to produce a converging method however, one has to combine
this with node insertion or element splitting. In [8, 12] such algorithms are described which allow
anisotropic refinement on the basis of a local non-Euclidean metric tensor.

In this paper we investigate the potential of a new strategy for controlling the use of anisotropic
mesh refinement. It is based upon the gradients of an a posteriori approximation of the error in a
computed finite element solution. We focus on a linear, second order, reaction-diffusion test problem

—Au+r*u=f; wueQ=(0,1)x(0,1), (1)
with Dirichlet boundary conditions on 9€2. Note that when f = 0 equation (1) is satisfied by
u=e "+e " (2)

which features highly anisotropic boundary layers when x > 1. In order to assess the quality of our
proposed mechanism for driving the mesh adaptivity described in Sections 2 and 3, we only use a
very simple mesh refinement algorithm in this work. This allows us to separate out the issue that
we are concerned with here, of how to drive the anisotropic refinement (i.e. provide the information
needed to decide where an existing mesh needs to be refined and in which directions) in a robust
manner, from the (equally important) issue of how to execute the refinement. The paper concludes
with a discussion of a number of important implementation issues and an assessment of the potential
of our new approach.

2 An adaptive strategy

The natural norm in which to measure the error of a numerical approximation to the solution of (1)
is the energy norm [22] given by
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0l = 152l + 152 + w21l (3)
where || - || represents the usual L? norm over . When a set of finite element solutions is obtained

using a nested sequence of progressively larger trial spaces (based upon conventional, isotropic, h-
refinement for example), the final term on the right-hand side of (3) will tend to zero faster than the
other two. It may be the case however that, although tending to zero at the same asymptotic rate,
the ratio between these two dominant terms is far from one. Our proposal is to drive an anisotropic
mesh refinement algorithm based upon the target of equilibrating these two terms, on each element,
before reducing them at the same rate using conventional h-refinement. Although the asymptotic



convergence rate will not be improved by such a strategy, we expect to see a significant computational
gain.
In order to demonstrate the effectiveness of the proposed strategy we begin by considering the

exact error to equation (1),
e =u—ul, 4)

where u is given by (2) and " is the Galerkin finite element solution to (1) (with f = 0), subject
to exact Dirichlet boundary conditions, on a given mesh. Moreover, we also consider only a very
straightforward anisotropic refinement algorithm based upon the refinement of rectangles in one of
the three ways illustrated in Figure 1 (see also [27]).

Figure 1: The three types of refinement allowed: regular (left), anisotropic in z (middle) and
anisotropic in y (right).

When an error on a particular rectangle exceeds some tolerance (typically 20% of the maximum
error over all rectangles) it is refined. If the x2||e”||?> component of the error is dominant on a rectangle
(i.e. 52||e"]|? > C|||e"|||?, where C is typically chosen to equal 0.5), or if
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then regular refinement takes place on that rectangle. Otherwise, anisotropic refinement takes place:

. . deh . : deh :
refining in z when || %~ || dominates and in y when || By || dominates. Rectangles are also refined when
any edges contain two or more “hanging nodes” (due to successive refinement of a neighbour) so as to
prevent excessively large changes in h; or hy (the mesh sizes in the = and y directions respectively).
This additional refinement is isotropic if the hanging nodes are due to isotropic refinement and
anisotropic if they are due to anisotropic refinement, with the former taking precedence in ambiguous
cases involving more than one edge of the element having hanging nodes.

Figure 2 illustrates graphs of the error against the number of finite element unknowns when
equation (1) is solved, with x = 10, using the above refinement strategy. In the first (left) case
f = 0 and the exact solution is (2), whilst in the second (right) case f # 0 and the Dirichlet
boundary conditions are chosen so as to permit the exact solution

u=-¢e " +e ¥ +1°+cos (10y) . (6)

The main difference between these two cases is that u is essentially zero away from the boundary
in the former but is a smooth non-zero function away from the boundary in the latter. The three
graphs plotted in each case are all obtained using the same initial isotropic mesh (where each element
has an aspect ratio of 1) and correspond to artificially imposing a maximum element aspect ratio
after refinement of 1 (i.e. only regular refinement allowed), 16 and 256 respectively. For the purposes
of this work we define the aspect ratio (AR) of a rectangular element to be max (hy/hy, hy/hs).
Furthermore, all finite element calculations are performed using piecewise linear elements obtained
by dividing each rectangle into two triangles (with exceptional divisions into three or four triangles



when hanging nodes are present). A discussion of the use of even larger aspect ratios is postponed
until Section 4. An illustration of the meshes obtained near to the bottom left corner of the domain
in the cases where maximum aspect ratios of 1 and 16 are used is provided in Figure 3: the total
error in the computed solutions on these two meshes being almost identical.
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Figure 2: Graphs of the error as a function of the number of unknowns for the two test problems
(with & = 10%) with a maximum possible aspect ratio of 1 (upper), 16 (middle) and 256 (lower) in
each case. For each calculation the adaptivity is based upon the energy norm of the (known) exact
error, calculated using a seven point quadrature rule with degree of precision five.

Figure 3: Sections of typical meshes near the bottom left corner of the domain when maximum aspect
ratios of 1 and 16 are used.

The results shown in Figure 2 are typical of those obtained for all large values of x and clearly
show a significant advantage from the use of our anisotropic refinement strategy. Note that the
asymptotic convergence rates are the same in all cases so the improvement is by a constant factor.
Also note that in both examples our adaptive algorithm begins with uniform refinement to drive
down the large initial L? error before the advantage of using anisotropic refinement is seen.



3 A posteriori error estimation

Whilst the numerical results exemplified by those presented in the previous section are extremely
encouraging, it is clear that for the proposed methodology to be of any practical value a similar
quality of results must also be achievable using a posteriori error estimates (as opposed to the
exact error). Recently there has been a significant amount of research into the development and
analysis of a posteriori error estimates that are effective on highly anisotropic grids (see, for example,
[15, 20, 21, 30]). Our requirement is even more demanding than this however, since we are restricted
to those techniques which yield local estimates of the error as a function: thus enabling us to compute
each of the three L? norms that appear in (3) on each element.

For the purposes of this investigation we have selected a small number of well-known a posteriori
error estimation algorithms and contrasted their use with that of the exact error as described in the
previous section. The oldest one, BW, is due to Bank and Weiser [9] and consists of locally solving
for nf, € Vi such that

aT(n%Wavh) = (f, Uh)T - GIT('U/h,’Uh) Vol € Vr

where ar(u,v) = [7(Vu - Vv + k?w), (f,v)r = [; fv, and V7 is a finite dimensional space spanned
by the quadratic edge bubble functions belonging to all edges E C 9T \ df2. For the second error
estimator considered, AO due to Ainsworth and Oden [2], one has also to solve a local problem, for
n"o € Vi such that

ar(no,0") = (f,o")r — ar(u®,v") + gro" Vot € Vr,
aT\80
where g7 is an approximation to the normal flux Vu|r -nr on 0T, and nr is the outer normal vector.
The space V7 is in theory infinite-dimensional and in practice a small finite element space, see Section
4. For the determination of gr, Ainsworth and Oden introduced the equilibrated residual method,
which was modified by Ainsworth and Babuska [1] for the use of large k; here this modified error
estimator is abbreviated as AB. Another approach is to recover improved gradients VEu" by locally
averaging Vu” and to use Vg%, = VEu" — Vul. This approximation is due to Zienkiewicz and Zhu
[34] and is therefore denoted by ZZ. Note that this estimator provides no estimate of of the L2-part,
lle”||, of the error. Recently, Kunert [21] investigated an error estimator, referred to here as GK,

which is based on solving local Dirichlet problems for ng x € Vo,
Quwr (ngKa vh) = <fa Uh)wT — Qurp (Uh, 'Uh) V’Uh € VT s

where wr is the union of T" with all elements sharing a face with T, and V' consists of the element
bubble function related to T and certain so-called squeezed edge bubble functions. This error estima-
tor is proved to be reliable and efficient on sensible anisotropic finite element meshes with constants
that neither depend on the parameter x nor on the aspect ratio of the elements. Since all of these
error estimators are defined on triangles, piecewise linear triangular finite elements have again been
used, as described in the previous section.

In a first test we repeat the calculations of Section 2 on isotropic meshes (i.e. with a maximum
aspect ratio of 1). For both examples, and after each finite element solve, we not only compute the
exact error function, e”, but also each of the a posteriori estimates (7" say) described above. Table 1
presents the results of these calculations in the form of effectivity ratios ||["(||/|||€"|||. The results
presented in Table 1 indicate that all estimators can be used on isotropic meshes. The effectivity
ratios tend asymptotically to a constant. The ZZ estimate is extremely poor on the very coarse
meshes, which is due to the fact that it does not approximate the L? component of the energy norm



Problem 1 Problem 2
Vertices | AB | AO | BW | GK | ZZ | Vertices | AB | AO | BW | GK | ZZ

25 0.83 | 1.36 | 0.72 | 0.69 | 0.01 || 25 0.87 | 2.45 | 0.82 | 0.74 | 0.01
o7 0.85 | 1.42 | 0.73 | 0.69 | 0.01 || 81 0.83 | 1.40 | 0.71 | 0.67 | 0.01
121 0.86 | 1.44 | 0.74 | 0.69 | 0.02 || 145 0.87 | 1.55 | 0.74 | 0.68 | 0.02
249 0.90 | 1.47 | 0.76 | 0.70 | 0.04 || 278 0.91 | 1.68 | 0.78 | 0.69 | 0.04
505 0.98 | 1.47 | 0.82 | 0.72 | 0.09 || 673 0.98 | 1.49 | 0.83 | 0.72 | 0.09

1017 1.07 | 1.36 | 0.88 | 0.68 | 0.19 | 1185 1.07 | 1.42 | 0.88 | 0.67 | 0.18
2041 1.12 | 1.12 | 0.94 | 0.60 | 0.36 | 2288 1.11 | 1.39 | 0.93 | 0.59 | 0.35
4089 1.13 | 1.13 | 1.00 | 0.63 | 0.56 | 4929 1.13 | 1.17 | 0.99 | 0.62 | 0.56
8182 1.20 | 1.20 | 1.00 | 0.66 | 0.66 || 9181 1.19 | 1.32 | 0.99 | 0.64 | 0.64
28533 1.28 | 1.28 | 1.00 | 0.72 | 0.72 || 31491 1.27 | 1.33 | 1.00 | 0.71 | 0.71
75598 1.28 | 1.28 | 1.00 | 0.75 | 0.69 || 81309 1.28 | 1.34 | 0.99 | 0.74 | 0.68
277101 | 1.27 | 1.27 | 1.00 | 0.78 | 0.65 || 293067 | 1.28 | 1.30 | 1.00 | 0.77 | 0.65

Table 1: The effectivity ratios of a number of error estimates when the adaptive algorithm (based
upon the elementwise energy norm of the exact error) is applied to the two test problems with a
maximum permitted aspect ratio of 1. The first column for each problem gives the total number of
vertices in each mesh.

of the error. Once this component has been driven down the ZZ estimate performs well: consistently
yielding an effectivity index of between about 0.6 and 0.7.

In order to assess the suitability of these indicators for our purposes, we return to the calculations
that led to the best results shown in Figure 2 (i.e. with a maximum aspect ratio of 256). Table 2
presents the results in a form analogous to the former table. These results show that the GK estimate
is the only one that performs uniformly well for the whole range of mesh sizes and aspect ratios (as
predicted by the theory [21]). On very coarse meshes, where all elements have an aspect ratio of
one, the AB and the BW estimates both appear to perform quite well, and as the meshes are refined
uniformly the effectivity index gets closer to one in each case. However, when anisotropic refinement
begins to occur the quality of these estimates tends to deteriorate as the maximum aspect ratio grows.
This is clearly a potentially undesirable property for our approach. Similar behaviour is observed for
the AO algorithm when anisotropic refinement occurs, although this is perhaps not surprising since
this estimate yields the same approximation as AB when an element is sufficiently small. For the
coarse initial meshes the AO estimate always overestimates the error. (The AO and AB estimates
in their theoretical definition, i.e. by solving infinite-dimensional problems, always overestimate the
error, but the practical estimates can underestimate it.) As in the previous test the ZZ error estimate
underestimates the error on coarse meshes severely. However most significantly, and in contrast to
the AO, AB and BW estimates, the ZZ estimate does not appear to be adversely affected by the
increasing aspect ratio.

Having assessed the effectiveness of our selected error estimators on sequences of meshes deter-
mined from the exact error, we now contrast these meshes with those obtained when the adaptivity is
driven by the estimated errors. Results for the same two examples, with the same maximum aspect
ratio of 256, are presented in Figure 4. The graphs shown are of the exact error in each case but
do not include the graph for the AO estimate. This is because it turns out that, despite providing
different numerical values to AB on the coarse initial grids, this estimate leads to very similar se-
quences of grids to those obtained using AB in both examples (the graphs of error against unknowns
are almost indistinguishable).

The graphs shown in Figure 4 are again typical of those obtained for other large values of k. In



Problem 1 Problem 2
Vertices (AR) | AB | AO | BW | GK | ZZ | Vertices(AR) | AB | AO | BW | GK | ZZ

25 (1) 0.83 | 1.36 | 0.72 | 0.69 | 0.01 || 25(1) 0.87 | 2.45 | 0.82 | 0.74 | 0.01
57(1) 0.85 | 1.42 | 0.73 | 0.69 | 0.01 | 81(1) 0.83 | 1.40 | 0.71 | 0.67 | 0.01
121 (1) 0.86 | 1.44 | 0.74 | 0.69 | 0.02 | 145 (1) 0.87 | 1.55 | 0.74 | 0.68 | 0.02
249 (1) 0.90 | 1.47 | 0.76 | 0.70 | 0.04 | 278 (1) 0.91 | 1.68 | 0.78 | 0.69 | 0.04
505 (1) 0.98 | 1.47 | 0.82 | 0.72 | 0.09 | 673 (1) 0.98 | 1.49 | 0.83 | 0.72 | 0.09
1017 (1) 1.07 | 1.36 | 0.88 | 0.68 | 0.19 | 1185 (1) 1.07 | 1.42 | 0.88 | 0.67 | 0.18
2041 (1) 1.12 | 1.19 | 0.94 | 0.60 | 0.36 || 2288(1) 111 | 1.39 | 0.93 | 0.59 | 0.35
2567 (2) 1.20 | 1.21 | 1.03 | 0.68 | 0.56 || 3407 (2) 1.19 | 1.25 | 1.02 | 0.67 | 0.55
3086 (4) 1.40 | 1.41 | 1.08 | 0.74 | 0.66 | 4085 (4) 1.38 | 1.50 | 1.07 | 0.72 | 0.63
4643 (8) 1.63 | 1.63 | 1.15 | 0.70 | 0.72 || 7351 (8) 1.60 | 1.70 | 1.13 | 0.69 | 0.70
7256 (16 1.84 | 1.84 | 1.20 | 0.65 | 0.70 | 10533 (16 1.78 | 1.91 | 1.17 | 0.63 | 0.66

8

1 (16)

(32) 2.16 | 2.16 | 1.36 | 0.62 | 0.65 || 22090 (32) 2.09 | 2.15 | 1.31 | 0.60 | 0.62
24352 (64) 2.69 | 2.69 | 1.62 | 0.60 | 0.62 || 37921 (64) 2.56 | 2.59 | 1.54 | 0.59 | 0.60
45350 (128) | 3.44 | 3.44 | 2.20 | 0.58 | 0.61 || 85765 (128) | 3.24 | 3.25 | 2.06 | 0.58 | 0.59
83765 (256) | 4.42 | 4.42 | 3.38 | 0.57 | 0.60 | 138298 (256) | 3.93 | 3.93 | 2.99 | 0.59 | 0.58
261030 (256) | 3.65 | 3.65 | 3.17 | 0.57 | 0.59 | 368598 (256) | 3.30 | 3.30 | 2.84 | 0.61 | 0.58

Table 2: The effectivity ratios of a number of error estimates when the adaptive algorithm (based
upon the elementwise energy norm of the exact error) is applied to the two test problems with a
maximum permitted aspect ratio of 256. The first column for each problem gives the total number
of vertices in each mesh along with the maximum aspect ratio of any rectangle in that mesh.

both examples we see that the AB error estimate proves to be a better driver of the adaptivity than
BW, despite there being little to choose between them from the results presented in Table 2. In
particular, once the aspect ratio becomes significantly greater than one, the AB estimate appears to
. . 1- . . . del del

provide the better indication of the relative sizes of ||F-| and |||l on each element.

The ZZ estimate also leads to interesting behaviour in these two tests. In each case it begins
anisotropic refinement much sooner than any of the other estimates permit since it has no approxi-
mation of the L? component of the error. Hence the condition

w2 le|I* < Cllle]]” (7)

is always satisfied. In the first example this proves to be advantageous (thus demonstrating that
our choice of C = 0.5 in (7) is over-cautious in this case), leading to the maximum aspect ratio of
256 being reached far sooner than when the exact error is used. Since the ZZ estimate is apparently
unaffected by these large aspect ratios it continues to do well and ultimately leads to meshes of
almost identical quality to those obtained using the exact error to drive the adaptivity. In the second
example however, where the solution is a non-zero function away from the boundary, the ZZ estimate
performs less well. Again it leads to anisotropic refinement in the boundary layer sooner than the
other estimates but, since the L? component of the error in the interior has not been eliminated at
this stage, the adaptive algorithm runs into difficulties later on. In particular, the actual error in the
interior of the domain completely dominates at latter stages of the calculation and is significantly
under-estimated by ZZ. This can be seen to result in only small improvements being made between
each refinement and solve.

The GK estimate produces a sequence of meshes with an error behaviour closest to the AB
estimate. In a first stage both estimators lead to similar meshes, in a second phase the AB estimate
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Figure 4: Graphs of the error as a function of the number of unknowns for the two test problems
(with x = 103 and a maximum aspect ratio 256). Each problem is solved five times: the adaptivity
being driven by the exact error and the error estimates AB, BW, ZZ, and GK.

is superior while in a third phase this gap is closed by the better performing GK estimate. Clear
advantages of the GK estimate are that it yields a better estimate of the norm of the error, see above,
and a simpler implementation. In our tests, however, this estimator needs more refinement steps to
drive the error down than the exact error or the AB estimate (even though we are careful to ensure
that the refinement regimes are the same in all other respects for each of our computations).

Overall therefore, we see that, of the error estimates considered, the AB and GK estimates appear
to be the most appropriate to use in the practical situation where the exact error is unavailable, with
AB producing slightly better sequences of meshes and GK producing more reliable numerical error
estimates.

4 Implementation issues

The results presented in the preceding sections are a small selection from a much larger number of
computations, performed with a variety of different parameter choices. In this section we provide a
brief overview of some of these parameters, such as the maximum aspect ratio, the interval in (5) and
the constant C in (7), and discuss the significance of the particular values selected. We also make
some observations on the practical implementation of our chosen error estimates.

Perhaps the most fundamental parameter in our anisotropic algorithm is the maximum permitted
aspect ratio, which is taken to be 256 for the examples in Section 3. One advantage of this choice
is that, for the sizes of mesh that we consider, the maximum AR is reached before the end of
the refinement process and so we are able to observe that the rate of convergence reverts back to
approximately one for further refinements. From a theoretical point of view however there is a strong
argument against imposing any such upper limit. Instead one could just rely on the refinement
selection mechanism (5) to decide whether anisotropic refinement is no longer appropriate since,
for any fixed choice of k, this situation should eventually arise. Practically however this approach
leads to a number of difficulties (although, if these can be overcome, permitting larger aspect ratios
certainly can deliver superior results in terms of the energy norm of the error versus the number of
unknowns).

The growing aspect ratio leads to three types of ill-conditioning which are each addressed here.
First, it is necessary to solve the linear systems corresponding to the approximate solutions on the
series of meshes. If very anisotropic elements are allowed then these algebraic systems may become



very ill-conditioned. This is clearly a demand on the preconditioner used when solving these systems
but is not considered here, see for example [7] and the references therein for work in this direction.
In our tests only a simple, sub-optimal, tridiagonal preconditioner is used. Therefore this paper does
not consider any time comparisons (although it is reasonable to expect that with an optimal solver
the solution time will depend solely on the number of degrees of freedom). Finally we note that, in
order to concentrate on the discretization errors alone, these linear systems are always solved more
accurately than would normally be the case in this study.

Second, the error estimator itself can be influenced by the anisotropy of the single elements.
The estimates AO and AB, for example, require the solution of an infinite-dimensional Neumann
boundary value problem on each element, which is usually undertaken with the aid of a small finite
element calculation (e.g. using nine or ten cubic basis functions or ten piecewise linear basis functions:
we have implemented both but use the latter in this work). The difficulty that occurs is different
to that described above since, due to the small number of degrees of freedom, a direct solver is best
in this case. The issue here is that the error equation, a partial differential equation with Neumann
boundary conditions, must be solved on a very thin domain, i.e. the anisotropic element. This can
lead to the occurrence of instabilities due to the shape of the element, and is an inherent property of
the AO and AB approaches, thus restricting their applicability (this is discussed in Section 3). Note
however that this problem does not produce any errors on the approximate solution u” itself. Also
note that this kind of instability is not necessarily inherent in the local error equation approach: the
GK estimate can be proved to be computable in a stable manner [21] independent of the aspect ratio
used.

Third, we are able to obtain the correct approximate solution for a mesh within the adaptive
series only if the element stiffness matrices of all elements are computed accurately enough. Classical
finite element routines cannot guarantee this if the coordinates of adjacent nodes coincide in too
many bits (the Jacobian of the mapping from the master element to the real element usually requires
differences of coordinates). Here, we restricted the number of succeeding subdivisions to about 20
(usually less), therefore this problem does not occur. A much longer series of subdivisions of some
elements requires a special alternative calculation of the Jacobians, other than with differences of
nodal coordinates, see for example [24].

A further significant parameter is our choice of C' = 0.5 in (7). Recall that unless (7) is satisfied,
anisotropic refinement is not permitted and so increasing C' allows such refinement to occur for a larger
relative component of the L? norm of the error. It is apparent from the first graph in Figure 4 that
in some cases C' = 0.5 is too cautious a choice (since the ZZ estimate performs better than using the
exact error, due to the fact that the former has no L? component). Our initial implementation of the
adaptive algorithm used C = 1 however this generally performs poorly on our second example (and
problems similar to it). Other moderate choices for the value of C' tend to yield similar performance
to C' = 0.5: altering the point at which the anisotropic refinement begins but generally leading to
final meshes of a very similar quality.

The choice of the exact interval on the right-hand side of (5) is also not too critical. Clearly
when the quotient on the left-hand side is either very large or very small then we would wish to
refine anisotropically (provided that (7) is satisfied). Similarly, when the quotient is very near to
one, uniform refinement is appropriate. Calculations using the intervals [£, 3] and [2, 3] for example
both lead to results for which the graphs of error against unknowns are virtually identical to those
obtained when using the interval [3,2] in (5).

Our final remarks concerning implementation issues relate to the complexity of the implementa-
tion and the cost of execution of each of the error estimates that have been considered. For the exact
error calculations on each triangle we have used a 7-point quadrature rule with algebraic degree of
precision 5 throughout this work. A small number of calculations with a more accurate formula (37



points and degree of precision 13) show that the 7-point formula is adequate in almost all cases.
The only inaccuracies occur on very coarse grids but these tend to be refined in an identical manner
whichever formula is used. Other than the numerical calculation of the energy norm of the exact er-
ror, the simplest estimate to compute is ZZ since, unlike the other estimates that we have considered,
this does not require any error equations to be solved. The most complex estimate to implement and
compute is AB (closely followed by AQO) as this requires the careful calculation of Neumann data for
the error equations on each triangular element. The BW estimate also requires an error equation to
be solved on each triangle however the edge data is far simpler to compute and it is only necessary
to solve a 3 x 3 linear system on each element. The GK estimate does not involve the computation
of boundary data for the error equation however the numerical integration over the squeezed bubble
ansatz functions does require care. Finally, we remark that the total computational cost for all error
estimates is proportional to the number of elements in the mesh, regardless of their anisotropy.

5 Discussion

The numerical calculations reported in Sections 2 and 3 are all based upon x = 103, which is chosen
to be representative of large values of k. When much smaller values of k are used the anisotropy in
the problem decreases and there is less to choose between the different error estimates in terms of the
refinements that they induce. In the limiting case where x = 0 the solutions to our test problems are
simple smooth functions. However, choosing the right-hand side of (1) appropriately it is possible
to manufacture an artificial problem whose solution contains a steep boundary or internal layer. In
this situation the energy norm reduces to the H' semi-norm and the resulting problem has been
considered by a number of authors, including [17, 20, 27]. Our approach works well in this case too
however, in practice one would always choose an initial mesh that is able to approximate the data, f
in (1), accurately (see, for example, [17, 25]). Hence the initial mesh for this type of problem should
always be anisotropic when an anisotropic refinement algorithm is available. There are situations
in three dimensions however where an anisotropic solution exists to the Poisson problem with an
isotropic right-hand side on certain domains: see [4, 20] for example.

There are a number of additional computational comparisons that could be made in order to
obtain further data on the performance of our proposed technique. One particular approach would
be to produce a hybrid algorithm based upon combining ZZ with an estimate which is able to provide
an approximation to the L? norm of the error. This could be achieved in at least two ways. For
example, the AB estimate, say, could be used until (7) is satisfied and then the ZZ estimate could be
used instead. Alternatively, the two estimates could be combined so as to estimate the energy norm
of the error by the sum of the L2 norm of the AB estimate plus the ZZ estimate. Initial experiments
with the first of these strategies are encouraging: generally leading to an improvement over the use
of AB alone, as illustrated in Figure 5.

Further comparisons, against existing ad hoc refinement strategies, such as those mentioned in
the introduction, would also be worth undertaking. The difficulty with this however is that most
such strategies implicitly link the criteria for adapting the mesh with the process used for executing
the adaptivity. This link makes reliable comparisons quite difficult to achieve. A Hessian approach
(e.g. [16]) might be used within the context of our existing refinement algorithm however by only
performing anisotropic refinement when eigenvectors of the Hessian are nearly parallel with rectangle
edges.

One of the main advantages of the simple mesh refinement algorithm used in this work is its lack
of complexity. This therefore allows us concentrate on assessing the quality of the information that
we are able to extract from the exact error and the selected error estimates. For practical problems
however this Cartesian refinement algorithm is not sufficiently general since there is a need to be able
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Figure 5: Graphs of the error as a function of the number of unknowns for the two test problems
(with k = 10% and a maximum aspect ratio 256). Each problem is solved three times: the adaptivity
being driven by a hybrid of the AB and ZZ estimates, by the AB estimate alone, and by the exact
error.

to align an anisotropic mesh with solution features which may occur in arbitrary directions. It is not
the goal of this short paper to consider algorithms for undertaking refinement in this general manner,
however we do expect the ideas introduced here still to be applicable in such cases. In particular,
provided the adaptivity procedure is able to produce an anisotropic mesh that is well aligned with
the anisotropy present in the solution (see, for example, [20] for a discussion of a matching function
which is able to quantify this), then it should be possible to drive this adaptivity using the approach
described in this work. Developing such an adaptive algorithm, which should be robust and, ideally,
maintain the hierarchical data structures required for the fast solution of very poorly conditioned
systems of equations, is still a topic of current research however.
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