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The role of the tachykinin NK1 receptor in
airway changes in a mouse model of allergic
asthma
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Background: Tachykinins are present in sensory nerves and in

nonneuronal cells like macrophages. Human data suggest a role

for these peptides in asthma, but the exact role of tachykinins

and their receptors in allergic airway inflammation is still

a matter of debate.

Objective: The aim of this study was to determine the role of

the tachykinin NK1 receptor in allergic airway responses in

a mouse model.

Methods: Tachykinin NK1 receptor wild-type and knockout

animals were sensitized intraperitoneally to ovalbumin and

subsequently exposed from days 14 to 21 to aerosolized

ovalbumin (1%). On day 22, the immunologic and histologic

changes were evaluated, and lung function measurements were

performed.

Results: Mice lacking the tachykinin NK1 receptor and their

wild-type litter mates developed inflammatory cell infiltrates in

the airways and ovalbumin-specific IgE on sensitization and

exposure to ovalbumin compared with saline-exposed controls.

No differences were detected between wild-type and knockout

mice. The substance P content of alveolar macrophages was not

influenced by ovalbumin or by the lack of the NK1 receptor.

Ovalbumin-induced hyperresponsiveness was not observed, but

at baseline, the knockout mice were more reactive despite

similar morphology. Ovalbumin induced more goblet cell

hyperplasia in wild-type animals compared with knockout

animals. No differences in airway wall thickness were observed.

Conclusion: These data suggest that tachykinin NK1 receptors

do not affect allergic airway inflammation or endogenous

substance P content of alveolar macrophages but influence

baseline responsiveness and promote features of remodeling

such as goblet cell hyperplasia. (J Allergy Clin Immunol

2004;113:1093-9.)
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The tachykinins, substance P, and neurokinin A are
present in sensory afferent nerves and inflammatory cells
in the airways. They may be released by a variety of
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stimuli (eg, allergen, ozone) and have various effects
including smooth muscle contraction; facilitation of
cholinergic neurotransmission; submucosal gland secre-
tion; vasodilatation; increase in vascular permeability;
stimulation of mast cells, B and T lymphocytes, and
macrophages; chemoattraction of eosinophils and
neutrophils; and the vascular adhesion of neutrophils.1

Tachykinins mediate their effects by stimulation of
tachykinin NK1, NK2 and NK3 receptors.

2 NK1 receptors
are mainly involved in neurogenic inflammation (micro-
vascular leakage and mucus secretion), whereas NK2

receptors are considered to be important in airway smooth
muscle contraction. NK3 receptors have not been detected
in the airways yet, despite emerging functional evidence
for a role in inflammation and responsiveness.
Several lines of evidence indicate a role for tachykinins

in airway diseases such as asthma. Elevated levels of
tachykinins have been recovered from the airways of
patients with asthma, and airway inflammation leads to an
upregulation of tachykinin NK1 and NK2 receptors.1 In
guinea pigs, the tachykinin NK1 receptor is involved in
both the antigen-induced airway hyperresponsiveness to
histamine and the infiltration of inflammatory cells.3

Substance P also exerts several proinflammatory actions
on macrophages4-7; even an autocrine function of this
peptide has been suggested.8 Because alveolar mac-
rophages can be considered the first line of defense
against inhaled particular matter and microorganisms, this
effect may also contribute to the pathology of asthma.
However, from animal studies, there is still debate about

the precise role of the tachykinin NK1 receptor in allergic
inflammation. An involvement of the tachykinin NK1

receptor in allergic airway inflammation could not been
detected in the Brown Norway rat model,9 and other
studies in guinea pigs demonstrated no influence of the
tachykinin NK1 receptor on antigen-induced airway
eosinophilia10 and cell influx in bronchoalveolar lavage
(BAL).11

Abbreviations used

Ao: Area defined by the adventitial perimeter

Abm: Area defined by the basement membrane

BAL: Bronchoalveolar lavage

Pbm: Length of basement membrane

UK: United Kingdom

WT: Wild-type
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Therefore, the aim of our study was to point out the role
of the tachykinin NK1 receptor in antigen-induced airway
inflammation, responsiveness, and structural changes by
using tachykinin NK1 receptor knockout mice, which is,
compared with antagonist studies, a strong model to
evaluate involvement of receptors. Furthermore, we
wanted to evaluate the role of the NK1 receptor in
controlling the endogenous substance P production of
alveolar macrophages during inflammatory stress.

METHODS

Mice

TachykininNK1 receptor knockout andwild-type (WT)micewere

derived as described from the mating of heterozygous tachykinin

NK1 receptor mice.12 The tachykinin NK1 receptor knockout andWT

breeding pairs were provided by the lab of S. Hunt (Cambridge,

United Kingdom [UK]). The animals were bred locally and

maintained under germ-free conditions in a conventional animal

house in the animal research facilities of the Faculty of Medicine and

Health Sciences, Ghent University Hospital, and received food and

water ad libitum.

Immunization and exposure of mice

On day 0, all mice where actively immunized with ovalbumin

(grade III; Sigma Chemical Co, Poole, UK) by intraperitoneal

injection of 10 lg ovalbumin, adsorbed to 1 mg Al(OH)3. From days

14 to 21, the mice were exposed daily to PBS or ovalbumin aerosols

(1%) for 30 minutes as previously described.13

Airway responsiveness

Airway responsiveness to carbachol was measured 24 hours after

the final allergen exposure. The mice were anesthetized with

pentobarbital (100 mg/kg intraperitoneally; Sanofi, Libourne,

France), and a tracheal cannula was inserted. The femoral artery

and the jugular vein were cannulated. The animals were placed on

a 378C heated blanket and ventilated with a Harvard Apparatus

mouse ventilator, model 687 (Holliston, Mass) at 130 strokes/min

(stroke volume, 0.5 mL). Neuromuscular blockade was induced by

injecting pancuronium bromide (1 mg/kg) intravenously (Organon;

Teknika N.V., Turnhout, Belgium). Lung resistance was calculated

from the differential pressure between the airways and the pleural

cavity, tidal volume, and flow. These parameters were measured with

a computerized pulmonary mechanics analyzer (Mumed lung

function recording system, version 5.0, 1999; Mumed Systems,

London, UK). Increasing doses of carbachol were administered

intravenously (microinfusion pump: 5, 10, 20, 40, 80 lg/kg).
Between each dose, the lung resistance was allowed to return to

baseline level. The concentration of carbachol causing a 50% increase

of baseline resistance (PC50 value) was calculated by log-linear

interpolation of the dose-response curve. To evaluate the possible role

of the tachykinin NK1 receptor in airway responsiveness through

vagal effects, mice were vagotomized before lung function

measurements. Both cervical vagal nerves were dissected free and

cut. A piece was resected for histologic evaluation. Control micewere

sham-operated. During pilot experiments, heart frequency was

evaluated before and after vagotomy. An increased heart frequency

was observed in vagotomized animals. The effect of exogenous

administered substance P (Bachem, Bubendorf, Switzerland) on

carbachol-induced contractions was evaluated (protocol adapted

from Folkerts et al14). On the basis of the dose-response curve, a dose

of carbachol was selected that caused approximately 80% of the

maximal response in WT animals. Bronchoconstriction was repeated

at 10-minute intervals. The first response was variable, but thereafter,
reproducible constrictions could be achieved. After 2 responses to

carbachol (80 lg/kg), substance P (40 lg/kg) was injected together

with carbachol.

Bronchoalveolar lavage

Immediately after the assessment of airway responsiveness, lungs

were lavaged as previously described.13 A total cell count was

performed in a Bürker chamber, and the differential cell counts on at

least 400 cells were performed on cytocentrifuged preparations

(Cytospin 2; Shandon, Runcorn, UK) by using standard morphologic

criteria after staining with May-Grünwald-Giemsa. Cell amounts

were expressed as amounts present in the complete lavage sample.

Measurement of ovalbumin specific
serum IgE

At the end of the experiment, blood was drawn from the heart for

measurement of ovalbumin specific serum IgE. IgE levels were

determined as previously described.13

Substance P content of bronchoalveolar
macrophages

The remaining bronchoalveolar lavage cells (per mouse for

ovalbumin-exposed animals; pooled for PBS-exposed or naive

animals) were plated in plastic petri dishes pretreated with human

and normal goat serum (Gibco BRL, Merelbeke, Belgium) and

allowed to adhere for 2 hours at 378C in a humidified atmosphere

containing 5% carbon dioxide. Nonadherent cells were removed by

washing monolayers with PBS, and the adherent cells were collected.

The macrophages were purified by cell sorting on a FACSvantage

flow cytometer (Becton Dickinson, Mountain View, Calif) by using

the autofluorescent capacity of these cells. To ensure that the isolated

cells were macrophages, cytospin preparations were made and

stained with May-Grünwald-Giemsa. The sorted cells were at least

99% macrophages on the basis of morphologic criteria. The

macrophages were immediately lysed by resuspending 100,000 cells

in 50 lL 2N acetic acid. The amount of substance P in the lysates was

measured in duplicate with the use of a sensitive (20 pg/mL detection

limit) competitive peptide enzyme immunoassay (Bachem-

Peninsula, San Carlos, Calif) as prescribed by the manufacturer.

The assay is specific for substance P with minimal ( < 0.01%) cross-

reactivity for neurokininA. The concentration of SP in the lysates was

used to calculate the amount of SP (pg)/106 lysed cells.

Histologic and morphometric analysis

The lungswere infused via the tracheawith 4% paraformaldehyde.

After excision, the lungs were immersed in fresh fixative overnight.

Pieces from all lung lobes were embedded in paraffin and cut in

2-lmethick sections.Histologic analyseswere performed on sections

stained with periodic acid-Schiff, Congo red (0.5% in 50% ethanol),

or eosin/hematoxylin, respectively. In the stained tissue sections,

airways cut in a reasonable cross-section (defined by a ratio of

maximal internal diameter to minimal internal diameter <1.8) and

with a length of basement membrane (Pbm) >800 lmwere examined

by light microscopy at magnification 2003. A camera sampled the

image of each airway and quantitative measurements were performed

on the digital representation of the airways via a computerized image

analysis system (KS400; Zeiss, Oberkochen, Germany). The

morphometrical parameters15 that were marked manually on the

digital representation of the airway were as follows: Pbm, the area

defined by the basement membrane (Abm), and the area defined by

the total adventitial perimeter (Ao). The total bronchial wall area

(WAt) was calculated from these values (WAt = Ao e Abm), and

WAt was normalized to the square length of the basement membrane
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(WAt/Pbm2). Airway morphometry was measured in hematoxylin

and eosin stained sections. Goblet cells were quantified in periodic

acid-Schiff stained sections. Results were expressed as number of

goblet cells per millimeter basement membrane. Peribronchial

infiltration with eosinophils was evaluated in lung sections stained

with Congo red and expressed as total number of eosinophils per

square millimeter WAt.

Statistical analysis

All results are reported as means ±SEMs. Dose-response curves

were compared through univariate ANOVA. Post hoc analysis (least

significant difference or Scheffé) for groups was performed when

ANOVA test was significant. Bronchoconstriction in the presence or

absence of substance P was compared with a paired samples t test.

Data of quantitative measurements in the airway wall of different

mice were pooled together. Mean values of different groups were

compared through the Kruskal-Wallis test for multiple comparisons.

If significance was reached between the groups, pairwise com-

parisons were made by using aMannWhitneyU test with Bonferroni

corrections. Differences were regarded as significant when P values

were < .05. The statistical analyses were accomplished with SPSS for

Windows 11.0 software (SPSS Inc, Chicago, Ill).

RESULTS

BAL fluid

Sensitization and subsequent exposure to ovalbumin
induced a significant increase in total cell numbers in BAL
fluid (P< .01; Table I). No differences could be observed
between ovalbumin-exposed WT (n = 11) and tachykinin
NK1 receptor knockout animals (n = 10). Differential cell
counts showed that ovalbumin-exposed groups also had
significant increases in percentages of eosinophils
(P < .001), macrophages (P < .001), and lymphocytes
and neutrophils (P < .05) in their BAL fluid compared
with PBS-exposed controls (WT, n = 11; knockout,
n = 9; Table I). No differences in eosinophil, macrophage,
lymphocyte, and neutrophil numbers were observed
between ovalbumin-exposed tachykinin NK1 receptor
knockout and ovalbumin-exposed WT mice. A more
detailed figure is provided in the Journal’s Online
Repository (Fig E1; see www.mosby.com/jaci). A
possible trend toward a lower number of cells in the
knockout mice was not confirmed in additional, in-
dependent experiments. Total cell numbers in lavage fluid
from naive animals did not differ from each other.
Differential cell counts revealed that lavage samples from
untreated mice contained nearly 100% macrophages
(Table I).

Peribronchial eosinophils

Both tachykinin NK1 receptor WT and knockout
animals developed peribronchial eosinophilia on sensiti-
zation and exposure to ovalbumin (P< .001; Table II). The
numbers of infiltrated eosinophils per square millimeter of
airway wall were similar in ovalbumin-exposed
tachykinin NK1 receptor WT and ovalbumin-exposed
tachykinin NK1 receptor knockout mice.
Ovalbumin specific IgE

As proof of active immunization, ovalbumin-specific
serum IgE levels were elevated in sensitized mice exposed
to ovalbumin compared with those in PBS-exposed
animals (P < .001 in WT; P < .01 in knockout; Table II).
No significant difference could be observed between
ovalbumin-exposed tachykinin NK1 receptor WT and
ovalbumin-exposed tachykinin NK1 receptor knockout
mice.

Goblet cells

Ovalbumin exposure induced goblet cell hyperplasia in
both tachykinin NK1 receptor WT and knockout animals
(P < .001 vs PBS-exposed controls; Table II). The amount
of goblet cells per millimeter of basement membrane
(Pbm) was significantly higher in the ovalbumin-exposed
tachykinin NK1 receptor WT mice (P< .01 vs ovalbumin-
exposed knockout mice; Table II).

Substance P content

No differences in substance P content of bron-
choalveolar macrophages could be observed between
naive tachykinin NK1 receptor WT and knockout animals
(Table III). The influence of ovalbumin sensitization and
exposure was also evaluated. No differences could be
observed between PBS and ovalbumin-exposed groups or
between ovalbumin-exposed tachykinin NK1 receptor
WT and ovalbumin-exposed tachykinin NK1 receptor
knockout mice (Table III).

Morphometry

No differences in airway wall thickness could be
observed between naive tachykinin NK1 receptor WT
and knockout animals (Table III). A 1-week allergen
exposure did not induce an increase of the airway wall
thickness of tachykinin NK1 receptor WT and knockout
animals. No differences could be observed between PBS-
exposed and ovalbumin-exposed groups or between
ovalbumin-exposed tachykinin NK1 receptor WT and
ovalbumin-exposed tachykinin NK1 receptor knockout
mice (Table III).

Airway responsiveness

Fig 1, A, shows the dose-response curve of the in vivo
airway responsiveness to intravenous carbachol of naive
tachykinin NK1 receptor knockout and WT animals.
Tachykinin NK1 receptor knockout mice responded
significantly more to carbachol than the tachykinin NK1

receptor WT mice, as demonstrated by a significant
leftward shift of the curve and a decreased PC50 value
(P < .001). Vagotomy did not influence the response to
carbachol in the naive tachykinin NK1 receptor WT or in
the naive tachykinin NK1 receptor knockout mice (Fig 1,
B). No shift of the dose-response curve to carbachol or
a decrease in PC50 value was observed. Vagotomized
tachykinin NK1 receptor knockout mice were still more
responsive than the WT counterparts. Baseline lung
resistance was the same for tachykinin NK1 receptor
knockout and WT animals. Exogenous administered
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TABLE I. Total and differential cell count in BAL fluid

Group Total cells (3103) Macrophages (%) Eosinophils (%) Lymphocytes (%) Neutrophils (%)

WT-naive 91.4±21.1 97.47±0.39 0.1±0.07 1.71±0.51 0.71±0.35

KO-naive 147.5±20.1 97.80±0.62 0.38±0.27 1.58±0.65 0.24±0.07

WT-PBS 190.0±28.5 98.27±1.74 0.31±0.31 1.05±0.29 0.35±0.15

WT-OVA 2492.7±938.6� 50.11±6.90� 46.1±7.26� 2.03±0.82 1.82±0.50

KO-PBS 136.3±15.5 98.8±0.33 0.10±0.10 0.93±0.19 0.18±0.10

KO-OVA 767.0±258.4� 58.47±7.87� 36.00±7.84� 5.01±1.12* 0.54±0.24

KO, NK1 receptor knockout; OVA, ovalbumin.

*P< .05.

�P< .01.

�P< .001, PBS vs OVA.

TABLE II. Ovalbumin specific serum IgE, peribronchial eosinophils, and goblet cells in epithelium

Group IgE(U/mL) Eosinophils (cells/mm2 airway wall) Goblet cells (cells/mm Pbm)

WT-PBS 1.95±0.25 41.40±5.01 0.05±0.04

WT-OVA 63.14±12.15� 211.88±25.22� 40.27±4.93�
KO-PBS 1.70±0.49 40.73±5.63 0.03±0.02

KO-OVA 38.16±6.83* 176.50±26.79� 21.76±4.08� �

KO, NK1 receptor knockout; OVA, ovalbumin.

*P< .01.

�P< .001, PBS vs OVA.

�P< .01, WT-OVA vs KO-OVA.
substance P together with carbachol decreased the
observed bronchoconstriction to carbachol alone in the
tachykinin NK1 receptor WT mice (57.28% ± 13.29% vs
82.24% ± 15.96% increase in lung resistance; n = 8;
P < .01). This inhibitory effect was not observed in the
tachykinin NK1 receptor knockout animals (129.88% ±
25.34% vs 134.60% ± 27.79% increase in lung resistance;
n = 8). A 1-week exposure to aerosolized ovalbumin was
not able to induce airway hyperresponsiveness to carba-
chol in the tachykinin NK1 receptor WT and the knockout
mice versus the PBS-exposed controls. Neither leftward
shift of the dose-response curve nor a decrease in PC50

value could be observed in either strain (P > .05; Fig 1, C).
However, PBS-exposed and ovalbumin-exposed tachykinin
NK1 receptor knockout mice respond significantly more
to carbachol in comparisonwith theWT counterparts. This
is illustrated by a significant leftward shift of the dose-
response curve (P < .01) to carbachol in the PBS-exposed
animals and in the ovalbumin-exposed mice.

TABLE III. Airway wall thickness and substance P content

in alveolar macrophages

Airway wall

thickness

(WAt/Pbm2)

Substance P

content

(pg/100,000 cells)

Treatment WT Knockout WT Knockout

Naive 23.2±0.9 24.2±0.8 402±14 405±14

PBS exposure 19.7±0.8 17.7±0.7 462±58 487±26

Ovalbumin

exposure

21.4±0.9 21.1±1.4 440±20 450±21
DISCUSSION

In our mouse model, no effect of the tachykinin NK1

receptor on the allergic airway inflammation could be
observed. Ovalbumin-induced inflammatory cell influxes
in BAL fluid and ovalbumin-specific serum IgE levels of
tachykinin NK1 receptor knockout mice were similar to
those obtained from WT littermates. Also, the peri-
bronchiolar eosinophilia was similar in both groups,
suggesting no proinflammatory action of tachykinins
through this receptor. These findings corroborate studies
in rats and guinea pigs in which the use of tachykinin NK1

receptor antagonists indicated that the tachykinin NK1

receptor is not involved in antigen-induced inflammatory
cell influxes in BAL.9-11 Our results contrast with another
study in guinea pigs in which signaling through the
tachykinin NK1 receptor augmented the allergen-induced
infiltration of eosinophils, neutrophils, and lymphocytes in
the airways.3 Differences according to species specificity
and/or methodology may explain these conflicting results.
In another mouse model of lung inflammation, a NK1

receptor antagonist reduced significantly the total number
of inflammatory cells retrieved by BAL,16 but this model
represented inflammation compartmentalized in lung
parenchyma. Several studies using tachykinin NK1 re-
ceptor knockout mice suggested a role for this receptor in
inflammation in various organs.1Bozic et al17 reported that
the disruption of the tachykinin NK1 receptor protected the
lung from immune complex injury. Their animal model is
also not designed to evaluate allergic airway inflammation
and therefore does not contrast with our observations.



J ALLERGY CLIN IMMUNOL

VOLUME 113, NUMBER 6

De Swert et al 1097

M
e
ch

a
n
is
m
s
o
f
a
st
h
m
a
a
n
d

a
ll
e
rg

ic
in
fl
a
m
m
a
ti
o
n

Because macrophages are the first line of defense, they
may play a role in allergic inflammation. An autocrine and
autofeedback function (maintaining baseline and increas-
ing endogenous substance P levels on stress) for substance

FIG 1. A, Airway responsiveness to carbachol in naive NK1 receptor

WT (closed squares) and NK1 receptor knockout animals (closed

circles). B, Responsiveness to carbachol in vagotomized and sham-

operated naive WT (open and closed squares, respectively) and

naive knockout animals (open and closed circles). C, Responsive-

ness to carbachol in ovalbumin-exposed and PBS-exposed WT

(open and closed squares) and knockout (open and closed circles)

animals.
P in these cells has been suggested.8,18-20 Pascual and
Bost8 reported that P388D1 macrophages produced
substance P and responded to that production in an
autocrine or paracrine fashion, leading to release of IL-
1elike activity during stress. Lai et al18 demonstrated that
a specific NK1 receptor antagonist abrogated not only the
exogenous substance Peinduced substance P mRNA
expression but also resulted in substance P mRNA
expression that was lower than that of baseline control,
suggesting that endogenously produced substance P
controlled its own mRNA expression. Therefore, we
hypothesized that the lack of the receptor might influence
the endogenous substance P levels of alveolar mac-
rophages. However, no differences in endogenous
substance P levels of these cells from NK1 receptor WT
and knockout animals were observed, suggesting
no autofeedback mechanism in these conditions.
Furthermore, if substance P and its receptor were involved
in an autocrine loop to release proinflammatory cytokines
on inflammation, as suggested by Pascual and Bost, 8 we
expected to observe higher substance P levels in alveolar
macrophages of allergic WT animals compared with
controls, because signaling through the receptor would
also activate the autofeedback system. Although higher
numbers of alveolar macrophages were retrieved from
lungs of ovalbumin-treated animals, no alterations of
endogenous substance P levels from macrophages from
PBS-exposed and ovalbumin-exposed WT mice were
observed. These data suggest that the endogenous
substance P levels are not upregulated and probably not
involved in the augmentation of cytokine release in this
model of allergic inflammation. However, the activation
status of the macrophages of ovalbumin-exposed WT and
knockout animals may be different, as was suggested by
an in vitro study in which release of endogenous substance
P altered the activation status of P388D1macrophages.8 If
this is the case, nevertheless, no differences in inflamma-
tion are induced by the altered activation status.
Furthermore, antagonizing the NK1 receptor has no
influence on the increased activation status of alveolar
macrophages after ovalbumin challenge in sensitized
guinea pigs, suggesting no effect of the NK1 receptor on
the activation of macrophages in ovalbumin-sensitized
and ovalbumin-exposed animals.11

We did not observe any induced hyperresponsiveness
in our model, although others did report allergen-induced
hyperresponsiveness in mice,21,22 guinea pigs,23,24 and
rats.25 Therefore, no conclusions about the role of the NK1

receptor in allergen-induced hyperresponsiveness could
be made. This conflicting result may be related to the
marked variation among the used models with respect to
the background strains of the animals,26-28 the variety of
sensitization and challenge protocols used, and the
different readouts used to assess the airway responsive-
ness.29,30 It is of interest to note that in naive animals
lacking the tachykinin NK1 receptor, an increased
responsiveness to intravenous carbachol was observed.
This observation corroborates the fact that mice with
a targeted deletion of the tachykinin I gene (mice lacking
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substance P) are hyperresponsive to intravenous meth-
acholine.31 Hyperresponsiveness must be a function of
excessive airway narrowing. Possible mechanisms re-
sponsible for this excessive narrowing include altered
neural pathways, remodeling of the airways, and the
presence of inflammatory mediators.32 In this particular
case, the effect of inflammatory mediators can be
neglected, because in naive animals, no inflammation
was observed. Moreover, no altered airway morphology
was observed. The thickness of the airway wall was
similar in tachykinin NK1 receptor WT and knockout
animals. The dominant neural control of the airway
smooth muscle is provided by the parasympathetic fibers
of the vagus nerves. The tachykinin NK1 receptor may be
involved in central vagal control.10,33 However, cutting of
these vagus nerves had no effect on the observed
responsiveness in the naive NK1 receptor knockout
animals or in the WT mice. This means that central neural
elements do not influence the observed response to
carbachol. Altered smooth muscle contractility to carba-
chol in the NK1 receptor knockout animals does not seem
to be the cause, either.34 On sensory nerve activation
(through contraction), an antidromic release of
tachykinins from c-fibers via an axon reflex may occur.
These peptides may in turn mediate a relaxation through
binding with the epithelium and subsequent release of
prostaglandin, as was described in vitro.34 Exogenous
substance P indeed has an inhibitory effect on carbachol-
induced bronchoconstriction in NK1 receptor WT mice.
This inhibition was abolished in the NK1 receptor
knockout mice, suggesting that this protective effect is
mediated through the NK1 receptor. Exposure to ovalbu-
min increased the numbers of goblet cells in both WT and
knockout animals, but the amount of goblet cells per
millimeter of basement membrane was significantly less in
the knockout mice, suggesting a role for the NK1 receptor
in goblet cell hyperplasia. Increased numbers of goblet
cells are considered part of airway remodeling in
asthma.35 The hyperplasia is linked with increased mucus
secretion and consequent airflow obstruction, an impor-
tant feature of asthma. The mechanisms underlying the
development of goblet cell hyperplasia are now being
unraveled, mainly through the use of murine asthma
models. Several mechanisms may explain our findings.
First, inhaled allergens induce a TH2 lymphocyte response
with release of cytokines that induce goblet cell
hyperplasia either directly or indirectly.36 As substance
P37 and its receptor38,39 are expressed in and on
lymphocytes, these cells may be influenced in an autocrine
or paracrine fashion to augment the release of these
cytokines. Several studies have already shown that
substance P is able to modulate the chemotaxis, pro-
liferation, and activation of lymphocytes.40 Second,
substance P may influence the goblet cell hyperplasia by
a direct effect on tachykinin NK1 receptors on the
epithelium. The peptide may be released by a variety of
stimuli and stimulate goblet cells to proliferate. Substance
P is present in nerve profiles, found beneath and within
the epithelium and around submucosal glands.41,42
Furthermore, Chu et al43 demonstrated that epithelial
cells are an additional source of substance P. They also
demonstrated expression of the tachykinin NK1 receptor
on goblet cells. Further evidence for this hypothesis is
provided by their work demonstrating increased expres-
sion of substance P and its receptor in asthmatics, which
was correlated with the mucus content in the airway
epithelium.43 In conclusion, the tachykinin NK1 receptor
is involved in the secretory response of goblet cells,44-48

and we provide evidence for an involvement of this
receptor in proliferation of these cells induced by antigen.

To conclude, we can state that despite the fact that the
tachykinin NK1 receptor is not involved in the antigen-
induced airway inflammation, it does augment the
antigen-induced goblet cell hyperplasia in a mouse model
of allergic asthma. This may have important implications
for the use of specific NK1 receptor antagonists in
pathologies like asthma, in which goblet cell hyperplasia
and mucus hypersecretion are important features.
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