
1730 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 55, NO. 8, AUGUST 2007

New Series Expansions for the 3-D Green’s Function
of Multilayered Media With 1-D Periodicity

Based on Perfectly Matched Layers
Hendrik Rogier, Senior Member, IEEE

Abstract—A new formalism based on perfectly matched layers
(PMLs) is presented to derive new series expansions for the Green’s
function of an infinite set of point sources with a 1-D periodicity
embedded in a layered medium. Several PML-based series expan-
sions, both in the spatial and spectral domains, combined with suit-
able convergence acceleration techniques such as the Shanks trans-
form and Ewald transform, are proposed and their efficiency is
evaluated. For each pair of excitation and observation locations,
an optimal series expansion in terms of accuracy and CPU time is
proposed, resulting in a significant speed-up compared to existing
approaches.

Index Terms—Green’s functions for multilayered media, inte-
gral-equation techniques, perfectly matched layers (PMLs), peri-
odic structures.

I. INTRODUCTION

MANY practical waveguiding, scattering, and radiating
devices, such as gratings [1]–[3], arrays [4], metama-

terials and electromagnetic (EM)-bandgap structures [5]–[7],
nonradiating dielectric waveguides [8], , can be efficiently
modeled as 2-D configurations [1]–[3], [5], [6], or 3-D con-
figurations [4], [7], [8] with 1-D periodicity [1]–[3], 2-D
periodicity [4], [6], or 3-D periodicity [7]. Moreover, several
configurations relevant in the analysis of EM field propagation,
such as EM shieldings [9] and reinforced concrete walls [10],
[11], are well approximated by a periodic structure with infinite
extent. By applying the Floquet–Bloch theorem, the analysis
of a periodic structure with infinite extent is restricted to a
representative unit cell. For the description of the fields by
means of an integral-equation technique, the periodic Green’s
function is required to account for the periodic character of the
configuration, as discussed in Section II. The Green’s function
approach is especially efficient for a configuration of scatterers
embedded in a planar multilayered dielectric background
medium since the effect of the background medium can be fully
incorporated into the Green’s function. However, in order to
determine the EM fields of a single point source located in the
layered medium, a time-consuming Sommerfeld integration is
required for the inverse Hankel transform that transforms the
analytical solution from the spectral domain to spatial domain.
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The periodic Green’s function is written as a spatial-domain
series or as a spectral-domain series of the field solution for the
single point source. For a 2-D periodic grid of point sources, the
spectral-domain series can be expressed in an analytical way and
Sommerfeld integrations are avoided. In this paper, however, we
consider a 1-D periodic grid of point sources. In that case, even
for the spectral-domain series, an inverse Fourier transform is
required, as demonstrated in Section III-A. An additional com-
plication results from the fact that both spectral- and spatial-do-
main series tend to be slowly converging for certain positions of
the excitation and the observation point. Therefore, much atten-
tion has been devoted to derive series expansions that converge
more rapidly, mainly by combining both the spatial- and spec-
tral-domain series. Convergence acceleration techniques were
proposed in literature for the 1-D periodic 2-D Green’s func-
tion [12]–[16] and for the 2-D periodic 3-D Green’s function.
In [17], we presented a new efficient approach to calculate the
1-D periodic 2-D Green’s function based on the use of per-
fectly matched layers (PMLs). Up to now, little has been pub-
lished about the 1-D periodic 3-D Green’s function. In [18] and
[19], the 1-D periodic 3-D Green’s function for a periodic set
of point sources located in free space is accelerated by means
of the Ewald transform. However, an extension of this approach
in order to include a stratified dielectric background medium is
not straightforward. In [20], the 1-D periodic 3-D Green’s func-
tions for a microstrip substrate are derived in the spectral do-
main first, and the corresponding spatial-domain quantities are
obtained through an efficient sum of inverse Fourier transforms.

In this paper, a new formalism based on PMLs is proposed to
derive a fast converging series expansion for the 1-D periodic
3-D Green’s function of layered media. As in [21]–[25], PMLs
[26]–[29] are used to transform the open layered medium into a
closed waveguide configuration. An efficient expansion for the
3-D Green’s function of a point source in the stratified back-
ground medium in terms of a set of discrete modes of the closed
waveguide containing the PML is then possible, while the PMLs
mimic the open character. For a theoretical background about is-
sues of completeness and convergence, the reader is referred to
[30] and [31]. Based on the PML-based modal expansion, an-
alytical series expansions are then derived in Section III-B. As
both the spectral- and spatial-domain series suffer from slow
convergence, special attention is devoted in Section III-C to ac-
celerate convergence of the PML-based series. This accelera-
tion is based on the use of the Shanks transform and the Ewald
transform. Moreover, as in some cases, the accuracy and effi-
ciency of the PML-based series is not ensured in the singularity
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region (when source and observation point are close to each
other), a hybrid series is derived in Section III-C that combines
the classic nonperiodic Green’s function, capturing the correct
singularity, with a PML-based series for the remaining periodic
part. In Section IV, we validate the new series and evaluate their
accuracy and efficiency in terms of CPU time. For each combi-
nation of excitation and observation locations, an optimal series
expansion in terms of accuracy and CPU time is proposed.

II. INTEGRAL EQUATION FOR A 1-D PERIODIC CONFIGURATION

OF CONDUCTORS IN A LAYERED MEDIUM

Consider a planar stratified medium of dielectric layers
with finite thickness along the -direction, but of infinite extent
in the - and -directions. The stack of dielectric layers can
be backed by a perfect electrically conducting ground plane. A
1-D periodic 3-D configuration of planar conductors, located in
different layers parallel to the -plane and infinitely thin in the

-direction, can be described by means of the mixed potential
integral equation

(1)

provided that we are able to determine the kernel func-
tions and that account for
both the 1-D periodicity and the presence of the multi-
layered background medium. The excitation rep-
resents the component tangential to the -plane of the
electric field response of the background medium to an
imposed electric field, which can, e.g., be an incident
plane wave of the form .
The solution of (1) yields the surface current distribution

on all planar con-
ductors. By considering only planar conductors, the Green’s

function dyadic was reduced to a single com-
ponent in (1).

III. 1-D PERIODIC 3-D GREEN’S FUNCTIONS

AND

A. Classic Green’s Function Series

Consider a planar multilayered dielectric background
medium in which we place a 1-D grid of point sources. We
assume that the problem is periodic in the -direction with the
period given by ; two adjacent point source excitations differ
by, at most, a phase factor . The conventional approach of
finding the 3-D Green’s function for this 1-D periodic configu-
ration proceeds by first determining the spatial-domain Green’s
functions and for
a single point source of elementary current and charge, re-
spectively. In order to evaluate these Green’s functions in a
multilayered medium, a time-consuming Sommerfeld inte-
gration is required to convert the spectral-domain Green’s

functions to the spatial domain. Moreover,
the resulting series

(2)

is known to be slowly convergent so many spatial Green’s func-
tion evaluations are required in order to obtain an accurate result.

In free space, (2) reduces to

(3)

with , and the Poisson transform can be applied to
obtain the spectral-domain analog on

(4)

with and . In this
case, both spectral- and spatial-domain series can be combined
efficiently using the Ewald transform in order to obtain two fast
converging series [18], [19].

In the general case of a multilayered background medium,
however, no analytical expressions are available for the terms in
the spectral-domain series [20]

(5)

Now, a time-consuming inverse Fourier transform must be eval-
uated for each term in the spectral series. In [20], a fundamental
speedup is obtained by extracting the singular behavior and by
transforming that part into two fast converging series by means
of the Kummer and Poisson transforms.

B. Series Based on PMLs

Assume that the background medium (Fig. 1) is translation
invariant in the - and -direction (a planar stratified medium)
and that all material variations in the -direction are located in
a region that is bounded in that direction. The largest distance
over which material variations extend in the -direction is de-
noted by (in Fig. 2, where a single-layered microstrip substrate
is shown, this coresponds to the thickness of the substrate). For
a faster evaluation of the 1-D periodic 3-D Green’s functions, we
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Fig. 1. Pertinent to the calculation of the Green’s function.

Fig. 2. 1-D periodic configuration of point sources on a microstrip substrate
terminated by a PML.

then construct a parallel-plate waveguide by terminating the free
space with two perfect electrically conducting plates backed by
an isotropic PML with thickness and with material pa-
rameters and [32], as shown in Fig. 1. As the constitutive
parameters are chosen the same as for the air layer, the isotropic
PML can be combined with the air region to form a new air re-
gion with a complex thickness. A similar approach also applies
to a planar stratified medium above a ground plane, as for the
microstrip substrate in Fig. 2.

As in [21] and [22], the 3-D Green’s function can be expanded
into a series of discrete eigenmodes of the resulting parallel-
plate waveguide in the following way:

(6)

with being the eigenvalues and with
being the excitation coefficients of the eigenmodes.
Note that, in a free-space environment terminated by
two PMLs forming a waveguide of total thickness

, the eigenvalues are given

by and the excitation coefficients are

given by ,
where the origin for and is chosen at the bottom PEC
plate (Fig. 1). For a microstrip substrate of thickness (Fig. 2),
we distinguish between TE and TM eigenmodes [33]. The
eigenvalues of the TE and TM modes are the solution of

(7)

with , , and ,
with and for
the TE case, and and

for the TM case. For both TE and TM modes, the
propagation constants of the leaky modes (which concentrate
in the microstrip substrate) and of the Berenger modes (which
concentrate in the PML) can be determined very rapidly based
on analytical approximations derived in [34]. Given the initial
estimates, the exact locations of the propagation constants of
the TE and TM modes are found by performing a few iterations
with Newton’s method, as described in [35]. For general multi-
layered substrates, this technique is applicable for the Berenger
modes only. The leaky modes are then determined based on the
complex root finders proposed in [36].

In (6), the Green’s function can be ex-
panded into the TE modes of the closed PML-waveguide, and
the excitation coefficients of the TE eigenmodes in or on top of
the substrate are given by (8), shown at the bottom
of this page.1 No TM modes are needed.

As for the Green’s function , (6) is com-
posed of both TE and TM modes. The excitation coefficients of
the TE eigenmodes in or on top of the substrate
are given in (9), shown at the bottom of this page,1 whereas the
excitation coefficients of the TM eigenmodes in or on top of the
substrate are given by (10), shown at the bottom
of the following page.1

1The index n is omitted for simplicity of notation.

(8)

(9)
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The 3-D Green’s function for a 1-D periodic grid of point
sources can then be written as

(11)

Application of the Poisson transform leads to the following
equivalent series expansion

(12)

with .

C. Convergence Analysis and Acceleration

By applying the PML formalism, we have replaced series (2),
which is a series over a single index of a spatial Green’s
function terms that require time-consuming Sommerfeld inte-
gration, by two equivalent series (11) and (12), over double in-
dices and , but for which the terms are easy to evaluate. Let
us first concentrate on the index , which runs over the different
modes in the waveguide formed by the substrate together with
the PMLs. In [33], the convergence of a 2-D Green’s function
expansion for a line source on a microstrip substrate is analyzed
and it is shown that exponential convergence is obtained pro-
vided the distance is not too small. In a similar way,
series (12) converges at a rate proportional to
for large, being constant for fixed, thus exponentially
as a function of , yielding a rapidly converging series provided
the distance is not too small. Series (11) converges at a

rate proportional to , for large,
a constant, thus exponentially as a function of , yield a fast

converging series provided that either the distance or
the distance is not too small. As a function of , on
the other hand, series (12) converges at a rate proportional to

, for large and for arbitrary, but fixed ,
thus exponentially as a function of , resulting in a rapidly con-
verging series provided the distance is not too small. Yet,
in order to obtain exponential convergence for series (11) as a
function of , it is required that the index is sufficiently large.

For small mode orders , series (11) is slowly convergent as a
function of .

In [33], the Shanks transform is proposed to accelerate con-
vergence of the PML-based mode expansion of the 2-D Green’s
function for a line source on a microstrip substrate. In a sim-
ilar way, we apply the Shanks procedure for both series (11)
and (12) in order to accelerate convergence as a function of the
PML-based mode index . Moreover, in this paper, for each
index , the Shanks transform is applied to accelerate conver-
gence as a function of the periodicity index for both series
(11) and (12). For a successful acceleration of convergence by
means of the Shanks algorithm, the series must asymptotically
behave as a geometric series. In general, this is not the case for
(11) as a function of , when considering small values of the
PML-based mode order and, hence, the Shanks algorithm is
not very effective in accelerating the slow convergence. There-
fore, an Ewald transform is applied for mode orders . To
this end, we rewrite the periodic Green’s functions as a sum of
the modified spectral-domain series (12)

(13)

and the modified spatial-domain series (11)

(14)

in which is the th-order exponential integral defined
as

(15)

A suitable choice for the Ewald splitting parameter has to be
made. Based on the theory developed in [37] for the periodic
2-D Green’s function series in free space, a suitable choice is

(16)

(10)
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where is the maximum exponent permitted in the spec-
tral series (13), is the desired error, and is the number of

terms necessary to achieve convergence in the spatial series
(14). Typical choices are , , and
[37]. In practice, only the two lowest order TE leaky modes,
the two lowest order TE Berenger modes, the two lowest order
TM leaky modes, and the two lowest order TM Berenger modes
are used in the Ewald accelerated series (13) and (14) so we
choose for and for

. The two series are to be comple-
mented with either the remaining spectral-domain series

(17)

or the remaining spatial-domain series

(18)

such that the complete series expansion accelerated by the
Ewald procedure is given by

(19)

All acceleration schemes presented up to now do not allow
to calculate the 1-D periodic 3-D Green’s function accurately
and efficiently when both distances and are
very small. Indeed, in [38], it is shown for the 2-D case that the
PML-based series does not capture the correct singular behavior
of at the interface of a nonmagnetic microstrip
substrate. Therefore, we combine part of the PML-based series
(11) with one term of the classical series (2) to capture the cor-
rect singularity. The following series is proposed in order to
evaluate the 1-D periodic 3-D Green’s function for
very small distances and at the interface:

(20)

The evaluation of the Green’s function for
a single point source in the stratified medium is then performed
by means of the classical Sommerfeld integration.

IV. EXAMPLES

In order to assess the accuracy and efficiency of the different
series expansions for the 1-D periodic 3-D Green’s functions

Fig. 3. Classic versus PML series for 1-D periodic 3-D Green’s function
jG (0; y; 10 mm; 5 mm; y ; 9:5 mm)j.

, we consider a microstrip substrate with thickness
mm, permittivity , and permeability . In

order to obtain an expansion into PML-based modes, a closed
waveguide is formed by adding a perfect electrically conducting
plate above the substrate such that mm and

mm. A strongly absorbing PML is obtained for
and . The free-space wavelength at the operating
frequency is chosen to be cm. Based on the root-finding
approach described in [35], it takes 1.56 s to determine the first
1000 Berenger TE modes, 2.22 s for the first 1000 leaky TE
modes, 1.20 s for the first 1000 Berenger TM modes, and 1.83 s
for the first 1000 leaky TM modes.

Let us determine the Green’s functions
and for

a 1-D periodic set of point sources with spacing cm
(Fig. 2). The number of terms for each series evaluation
is chosen in an adaptive manner in order to ensure that
the relative error is smaller than 10 . Moreover, for the
PML-based series, no more than 1000 Berenger TE modes,
1000 leaky TE modes, 1000 Berenger TM modes, and 1000
leaky TM modes are taken into account. In a first numerical
experiment, we investigate whether the PML sufficiently
mimics the open character of the microstrip substrate by
placing both excitation and observation points in the air
region. The excitation point is located 0.5 mm above the
substrate–air interface, whereas the observation point is placed
at a height of 1 mm above the substrate–air interface. Both
points are separated by a lateral distance of mm.
In Fig. 3, we compare different PML-based expansions for

mm mm mm , choosing
with the classic Sommerfeld integrated spectral series (2)
accelerated by the method proposed in [20]. The agreement
between different approaches is seen to be excellent.
Specifically, for distances ranging from up to

, the relative error between the hybrid series expansion
(20) and the approach proposed in [20] remains below 0.14%.
Concerning mm mm mm , it
was found that the relative error between the hybrid series
expansion (20) and the approach proposed in [20] remains
even below 0.006%. Hence, it is illustrated that the PML
modes yield a sufficiently accurate representation of the
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Fig. 4. Classic versus PML series for 1-D periodic 3-D Green’s function
jG (0; y; 9 mm; 0; y ; 9 mm)j.

evanescent spectrum in order to represent the open character
of the structure.

Let us now turn our attention to a more practical situation and
place both excitation and observation points at the substrate–air
interface. In order to evaluate mm mm
with efficiently in the singularity region, i.e., for dis-
tances smaller than , we make use of the hy-
brid series expansion (20). Comparing this result to the classic
Sommerfeld integrated spectral series (2), accelerated by the
method proposed in [20], a relative error smaller than 0.11%
is found. In Fig. 4, the results of different series expansions
for mm mm are shown as a func-
tion of , excluding the singularity by evaluating the
series starting from distances of . A small discrepancy
between the classic Sommerfeld evaluation and PML-based se-
ries expansions is noticed due to the fact that the first series
had not fully converged. For the classic Sommerfeld integration
(2), 400 terms and Shanks acceleration were used. Yet, the clas-
sical 1-D periodic Green’s function evaluation had not fully con-
verged. However, the agreement between the PML-based series
and classic Sommerfeld integration spectral series (5), acceler-
ated by the method proposed in [20], is excellent. A more de-
tailed view is presented in Fig. 5, where the relative error of the
different series expansions is presented. The hybrid series ex-
pansion (20) is used as the reference solution since it is the only
expansion that provides accurate results (convergence within a
relative error smaller than 10 ) at all distances (the spectral se-
ries (5) is divergent for ) and it was found to be stable
for a large range of PML parameters. It is found that the relative
error between the hybrid series (20) and the Baccarelli approach
[20] remains smaller than 0.14% for all values of . As
for the spectral-domain expansion (12) with Shanks accelera-
tion for both indices and , the relative error drops below
0.03% for distances larger than . As for the spa-
tial-domain expansion (11) with Shanks acceleration for both
indices and , the relative error drops below 1% for distances

larger than .
Concerning the different series expansions for

mm mm , a higher accuracy
is obtained for the Green’s function than for

Fig. 5. Relative error of the different PML and classic expansions for
jG (0; y; 9 mm; 0; y ; 9 mm)j.

TABLE I
CPU TIMINGS FOR CALCULATING 200 POINTS OF

jG (0; y; 9 mm; 0; y ; 9 mm)j FOR jy � y j 2 [� =60;3:2� ]

, especially near the singularity (for small values of
). In agreement with the theory derived in [38], all

PML-based series expansions for already exhibit
an accuracy better than 0.004% at distances as small as

. The discrepancy between the hybrid series
(20) and the classic Sommerfeld integration spectral series (2),
accelerated by the method proposed in [20], is smaller than
0.02%.

In Table I, the total CPU timings are shown for calcu-
lating 200 points in the range from up to

based on the different series expansions
for mm mm with a relative con-
vergence error smaller than using a Pentium T7400
Centrino Duo 2.16-GHz machine with 2-GB RAM. It is clear
that the PML-based expansions are several orders of magnitude
faster than the series based on 400 conventional Sommerfeld
integrations, accelerated by the Shanks algorithm. Moreover,
all PML-based series evaluations are clearly much faster than
the acceleration method proposed in [20] based on the classic
Sommerfeld integration spectral series (2). The spectral series
(12) with Shanks acceleration only performed on index is
the fastest and most accurate approach. Given the exponential
convergence rate proportional to ,
which leads to very fast convergence for large and for all
values of and , the convergence acceleration
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Fig. 6. Classic versus PML series for 1-D periodic 3-D Green’s function
jG (0; y; 9 mm; 5 mm; y ; 9 mm)j.

obtained by performing Shanks acceleration also on index is
clearly insignificant and the overhead of the algorithm results in
a slower evaluation procedure. For the spatial series, however,
applying the Shanks transform on both indices and or
using the Ewald technique by combining series (13), (14), and
(18), clearly helps in terms of CPU time. In this range, however,
all spatial series perform slower than the spectral PML-based
series. As for the singularity region, the hybrid series expansion
(20) is the preferred approach in terms of accuracy and effi-
ciency. The evaluation of mm mm
in the range from to
based on (20) takes 0.35 s so the optimal evaluation based
on (20) for the singularity region and (12) with Shanks
acceleration performed only on index outside the singu-
larity region takes in a total of 0.81 s for distances
up to . Similar conclusions can be drawn for the cal-
culation of mm mm : the most
optimal evaluation based on (20) for the singularity region
and (12) with Shanks acceleration performed only on index

outside the singularity region takes in a total 1.20 s for
distances up to (compared to 242 m 23 s for
the classic series (2) with Sommerfeld integration). In Fig. 6,

mm mm mm is shown as a func-
tion of for a separation mm and for

. The convergence problems with the series of 400
terms based on classic Sommerfeld integration and Shanks
acceleration are again obvious, whereas an accuracy better than
0.007% is achieved for both the spectral- and spatial-domain
series. The discrepancy between the hybrid series (20) and the
classic Sommerfeld integration spectral series (2), accelerated
by the method proposed in [20], is now smaller than 0.004%.

Let us now choose a fixed distance and
study the relative error for the different series expansions for

mm mm as a function of ,
as plotted in Fig. 7 for . Although the spectral-domain se-
ries (12) does not exhibit an exponential decay for ,
performing the Shanks transform on both indices and
yields an accuracy better than 1% as long as .
In order to obtain the same accuracy with the spatial-domain

Fig. 7. Relative error of the different PML and classic expansions for
jG (x; 0; 9 mm; x ; 0; 9 mm)j.

series (11) or with the Ewald technique by combining series
(13), (14), and (18), the separation in the -direction must at
least be . Yet, even with convergence accel-
eration by means of the Shanks algorithm, slow convergence
is seen for the spectral-domain series (12) in the range from

up to . Within that range,
it is found that the hybrid spatial series (20) is more efficient
in terms of CPU time. In the range from to

, the spectral-domain series (12) is the
most efficient technique, provided that, in this case, the Shanks
algorithm is applied for both indices and . The optimal
evaluation technique for mm mm ,
based on the hybrid spatial series (20) in the singularity region
and spectral-domain series (12) for , takes
2.47 s of CPU time (compared to 159 m 53 s for the classic
series (2) based on Sommerfeld integration).

As for mm mm , the spectral-do-
main series (12), spatial-domain series (11), or the Ewald tech-
nique by combining series (13), (14), and (18) yield an accuracy
better than 0.02% for separations in the -direction of at least

. Again, slow convergence is observed for
the spectral domain series (12) in the range from

up to . Within that range, it is found
that the hybrid spatial series (20) is more efficient in terms of
CPU time. In Table II, the total CPU timings are shown for
calculating 150 points based on different series expansions for

mm mm in the range from
to on a Pentium T7400 Centrino

Duo 2.16-GHz machine with 2-GB RAM. The optimal evalua-
tion technique for mm mm , based
on the hybrid spatial series (20) in the singularity region and
spectral-domain series (12) for , takes 3.68 s
of CPU time.

In Fig. 8, we show the results for the Green’s function series
mm mm inside the dielectric sub-

strate, calculated as a function of for and
for a fixed distance . The theory derived in [38]
predicts that the Green’s function converges to the correct
singularity when evaluated inside the substrate, but not on the



ROGIER: NEW SERIES EXPANSIONS FOR 3-D GREEN’S FUNCTION OF MULTILAYERED MEDIA 1737

TABLE II
CPU-TIMINGS FOR CALCULATING 150 POINTS

jG (x; 0; 9 mm;x ; 0; 9 mm)j FOR jy � y j 2 [� =10;3� =8]

Fig. 8. Classic versus PML series for 1-D periodic 3-D Green’s function
jG (0; y; 7 mm; 0; y ; 7 mm)j.

interface. The resulting function near the singularity is, how-
ever, highly oscillating, thus the application of the Shanks trans-
form is required to ensure convergence for all PML-based se-
ries expansions for , resulting in relative accuracies
better than 0.08% at distances as small as .
The accuracies obtained with the PML-based series expansions
for are of the same order of magnitude with a rela-
tive error smaller than 0.1% at distances as small as

. The optimal periodic series solution in terms of accu-
racy and CPU time consists of applying the hybrid series (20)
in the singularity region and the spectral-domain series (12) for

. This approach takes 0.58 s of CPU time for
and 0.96 s for . For comparison, an exten-

sion of the technique proposed in [20] takes 9 min 9 s for eval-
uating and 18 min 7 s for evaluating .

Finally, we study the Green’s function series
mm mm for the excitation

at the substrate–air interface and the observation point inside
the dielectric substrate. In agreement with the theory derived
in [38], the application of the Shanks transform is again able
to ensure convergence for all PML-based series expansions for

. The spectral PML-based series (12) is again found
to be the most accurate with a relative accuracy better than
0.2% at distances as small as . The accuracies
obtained with the PML-based series expansions for
are of the same order of magnitude with a relative error smaller
than 0.2% for both the spectral and spatial PML-based series

at distances as small as . The application
of the hybrid series (20) in the singularity region and the
spectral-domain series (12) for takes 0.66 s
of CPU time for and 0.88 s for . As a
reference, the extension of the technique proposed in [20]
takes 5 min 48 s for evaluating and 11 min 35 s for
evaluating .

V. CONCLUSIONS

A new efficient and accurate formalism based on PMLs has
been presented to derive new series expansions for the Green’s
function for both the magnetic vector potential and scalar poten-
tial of a set of point sources with 1-D periodicity embedded in
a layered medium. Several PML-based series expansions, both
in the spatial and spectral domain, combined with suitable con-
vergence acceleration techniques such as the Shanks transform
and Ewald transform, were examined in terms of accuracy and
CPU time. In the singularity region, i.e., for the excitation and
observation point locations for which

(21)

the most efficient approach is to combine the classic nonperi-
odic Green’s function based on Sommerfeld integration with
a PML-based spatial-domain series for the remaining periodic
part. For all other observation/excitation pairs, the spectral-do-
main PML-based series with Shanks acceleration for both the
and indices is the preferred approach. Future research con-
sists of applying the new periodic series expansion to a variety
of scattering and microwave applications.
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