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Abstract. The iterative complex Jacobi technique has been extended to simulate the third order Kerr
effect in wavelength scale dielectric structures. This method solves the Helmholtz equation in a dis-
crete finite simulation space by an iterative process. An update equation refines the field values at each
iteration step, until a desired accuracy is achieved. We have extended the iterative process with an
extra calculation step which allows simulating materials with the non-linear third order Kerr effect. Our
adjustment of the discrete field operators in the update equation also introduces PMLs as absorbing
boundaries and the total field/scattered field formalism as field source for this method.

Key words: central differences, complex Jacobi iteration, Helmholtz equation, Kerr effect, PML, total
field/scattered field

1. Introduction

In this paper several improvements to the recently introduced complex
Jacobi (CJ), (Hadley 2005) technique are discussed. The proposed exten-
sions allow modeling of dielectric structures with the instantaneous non-
linear Kerr effect. This Kerr effect is modelled as an intensity dependent
refractive index. High intensity is achievable by increased confinement of
light in advanced dielectric structures, e.g. photonic crystals and photonic
wires. The fabrication of these structures has been made possible by recent
advanced production techniques.

Finite Difference Time Domain (FDTD), (Taflove 1995), Beam Propaga-
tion (BPM), (Burzler et al. 1996) and eigenmode expansion (EME), (Maes
et al. 2005) are able to simulate a wide variety of non-linear dielectric wave-
length scale components. FDTD gives insight in the time-evolution of the
fields by numerically integrating Maxwell’s equations in the time domain.
A steady state solution however requires all transient fields to be extinct.
The extinction rate of these transient fields is completely dependent on the
reflections in the structure. BPM only gives an accurate solution for the
steady state fields if reflections are negligible. The lack of bidirectionality is
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a limiting assumption. EME is a bidirectional frequency domain method.
Its main application area are dielectric structures which consist of a few z-
invariant sections.

We propose several extensions of the complex Jacobi method, a general
frequency domain method which numerically integrates the central differ-
ence equivalent of the Helmholtz equation. Bidirectionality is automatically
implied by the Helmholtz equation. There is also no assumption of
z-invariance. The found field-amplitudes are located on an equidistant
mesh. These amplitudes are invariant in time, save a phase factor.

Our improvements allow modeling of general non-linear components.
Good absorption at the boundaries is achieved by extending the method
with perfectly matched layers (PML). We inject a field profile in the simu-
lation area by an adjusted total field/scattered field formalism (TFSF). The
PML and TFSF extensions are respectively based on (Chew and Weedon
1994) and (Taflove 1995). Although the basic complex Jacobi method is a
fully vectorial solver in 3 dimensions, the proposed extensions have only
been tested for the scalar 2D Helmholtz equation.

In Section 2 we will give an overview of the linear extensions for the
complex Jacobi method, such as PML and TFSF. In Section 3 we will
introduce the non-linear extension. A quantative comparison of the pro-
posed simulation technique has been made with non-linear EME in Sec-
tion 4. Another example, a propagating soliton in homogeneous space, is
discussed in Section 5.

2. Linear complex Jacobi Method

The basic complex Jacobi method (Hadley 2005) is an iterative method
which solves the Helmholtz equation on a mesh. Only the fields at equi-
distant points are calculated. The derivatives in the Helmholtz equation are
replaced by central differences:

�

�x
ei,j ≡ ei+1,j − ei−1,j

2�x
(1)

The field ei,j is located at the point (i�x, j�y), i and j are integers, �x

and �y are the discretization steps in x and y directions. This gives us the
following scalar Helmholtz equation for a discrete mesh:

∇2ei,j +k2ei,j =
(

�2

�x2
+ �2

�y2
+ (k0ni,j )

2
)

ei,j

=0 (2)
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ni,j =n(i�x, j�y)

k0 = 2π

λ0
(3)

The wavelength in free space is λ0, ni,j is the position dependent refractive index.
The two step iteration process refines the fields with a correction factor

until a desired accuracy has been achieved.

en+1
i,j = en

i,j +
(

2α1

(
1

�x2
+ 1

�y2

))−1
((

δ2
x + δ2

y +
(

2π

λ
ni,j

)2
)
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)
(4)

The superscript n is the iteration step. The iteration process consists of
repeatedly updating the fields with this equation, firstly with α1, then with
α2, until a desired accuracy is achieved.

Using exp(−jωt) as convention for the time dependent phase factor of
the invariant field amplitudes results in the following optimal constants:
α1 =√

3 − 1j and α2 =−α∗
1 . Derivation of these optimal values for α1 and

α2 can be found in the original paper (Hadley 2005).
The implementation of the TFSF and PMLs results in the simulation

area of Fig. 1. The photonic structure under investigation is placed in the
total field region. These extensions are respectively described in subsection
2.1 and 2.2.

2.1. total field/scattered field

The TFSF formalism allows to inject a desired wave in the simulation
space. Figure 1 demonstrates how the scattered field/total field interface

Fig. 1. A simulation box with ‘total field/scattered field’ as field source and PMLs as absorbing bound-
ary conditions.
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Fig. 2. Interface between scattered field–total field.

injects the desired field profile in the total field region. In the scattered field
region only the scattered field, i.e. the total field without the exciting field
is calculated.

Equation 4 allows us to calculate en
(i,j),tot in the total field region,

en
(i,j),scatt in the scattered field region. The use of the update equation in the

scattered field region implicitly assumes superposition of exciting field and
scattered field. This also implies the exciting field is a solution for the dis-
cretized Helmholtz equation and the scattered field region consists of linear
materials. Non-linear materials have to be located in the total field region.

The calculation of an amplitude at the interface between the regions is
illustrated by Fig. 2.

en
(i ′−1,j),scatt = en

(i ′−1,j),tot − e(i ′−1,j),source

en
(i ′,j),tot = en

(i ′,j),scatt + e(i ′,j),source, ∀n,∀j (5)

The injected field amplitudes e(i ′−1,j),source and e(i ′,j),source are the ampli-
tudes of the exciting wave at respective positions (i ′ − 1, j ) and (i ′, j ).
Substituting Equation (5) in the update Equation (4) in order to calculate
en
(i ′−1,j),scatt and en

(i ′,j),tot gives the required update equations. The following
equations have omitted the j -index of the y-direction for simplicity.

en+1
i ′−1,scatt = en

i ′−1,scatt

+C

(
en
i ′,tot − esource,i ′ + en

i ′−2,scatt −2en
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With these adjusted update formulae, it becomes possible to inject any
desired field.

2.2. absorbing boundaries based on PML

Elimination of reflections at the boundaries of a finite simulation box is
necessary to achieve physical simulation results. Every wave incident on
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these boundaries should be absorbed for any polarization and incident
angle, without any spurious reflections. One of the most efficient absorbing
boundaries is the Perfectly Matched Layer (PML). In this paper we report
on the extension of the complex Jacobi method with a PML based on com-
plex coordinate stretching (Chew and Weedon 1994). Complex Coordinate
stretching results in the easiest implementation of PML for the complex
Jacobi method.

The implementation of PMLs is based on adjusted difference operators
in the absorbing boundary layer:
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x)e= 1
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(6)

For sx = 1.0 the previous formula reduces to the classical Helmholtz
equation. A complex function sx results in absorption in the x-direction, a
complex function sy results in absorption in the y-direction.

A finite difference equivalent of Equation (6) gives us:
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In our experience, optimal absorption was achieved with linearly increas-
ing PML from sx = 1.0 to sx = 1.0 + 0.75j over 30 grid-points. These com-
plex coordinates implicitly assume the time dependant phase factor of the
amplitudes is exp(−jωt).

3. Extending the iterative process to simulate Kerr non-linearities

Simulating structures with the instantaneous Kerr effect can be modeled
with an extra extension besides TFSF and PML. The basic idea is an extra
update-step of the refractive index after each iteration step. The instanta-
neous Kerr effect is modeled by n=nlin +n2|E|2. This formula for the spa-
tially dependent refractive index can be transformed in the following update
equation:

εn
i,j = (ni,j,lin +ni,j,2|ei,j |2

)2
(7)

This equation is used in combination with the iteration process, described
in Equation (4). After each iteration step, the field at a certain location
results in an adjusted refractive index.
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Fig. 3. Two Bragg mirrors encapsulate a cavity. (λresonance =1.56µm).

Validation of this principle has been done by comparing with nonlinear
eigenmode expansion, as described in (Maes et al. 2005). The first simula-
tion test setup consists of a resonant cavity for both the linear and non-
linear case. The simulation time needed by both methods is also discussed.
The end of this section also addresses the influence of the discrete mesh.
The second simulation test setup shows the calculation of a soliton in free
space.

4. Comparison with non-linear eigenmode expansion

Comparison with eigenmode expansion (EME) has been done by simu-
lating the 1-dimensional structure of Fig. 3. The refractive indices in this
setup are na =2.6 and nb =2.36. The distances da, db and dcavity are respecti-
vily λresonance/4na, λresonance/4nb and λresonance/2nb. This structure is basically
a cavity encapsulated by two Bragg mirrors.

The cavity causes a resonance peak in the middle of the bandgap, as
illustrated in Fig. 4. A non-linear material in the central cavity causes a
shift of the central resonance wavelength to a higher wavelength. Figure 5
illustrates this behaviour. The incoming plane wave has an amplitude e =
1V

m
. The non-linear cavity uses n2 = 5. × 10−3 m2

V 2 , n2 as defined in formula
7. Figure 5 also illustrates a good agreement between the results calculated
by EME and the results calculated by the complex Jacobi method (CJ).

Another point under discussion is the simulation time. EME has an
advantage if large sections of the simulation space can be modeled as
linear. When using EME, these linear sections only need to be calculated
once. EME uses an iterative process for the non-linear sections, which
results in the re-calculation of the eigenmodes in these sections for every
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Fig. 4. Power transmission and reflection, see structure in Fig. 3.

Fig. 5. Power transmission for linear and non-linear cavity. (�x =15 nm).

iteration. This quickly becomes a bottleneck when increasing the amount
of non-linear sections.

Convergence of our method is guaranteed even for an extremely large
non-linearity of n2 = 0.025m2

V 2 with the previously described simulation
parameters. This results in an increase of refractive index of approximately
�n≈ 0.6. We did not notice a significant decrease of convergence rate for
these large non-linearities in this setup.

Therefore, our proposed extension to CJ is very well suited for struc-
tures where the non-linearity is present in a large portion of the simulation
domain. In such a situation EME would not be very efficient.

Simulating the steady state solution of the previous problem with a time
domain simulation method – e.g. FDTD – would require extremely long
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Fig. 6. Resonance peak -cfr. Fig. 3- shifts in function of the discretization step. (The analytical disper-
sion model uses Equation (8) to adjust na and nb in the calculated structure.).

simulation times. This is especially the case for a structure with many reflec-
tions, as is the case for this example. The bidirectionality of the component
eliminates BPM as a simulation tool.

4.1. influence of discretization step

A coarse grid for simulating the linear structure of Fig. 3 results in a reso-
nance peak shift to higher wavelengths, as can be seen in Fig. 6. The ‘ana-
lytical dispersion model’ curve calculates the shift of the resonance peak by
only taking into account numerical dispersion. The effective refractive index
−neff = ωc

k0
-, ‘felt’ by a plane wave in a discrete simulation space is different

than the actual refractive index. Based on Fig. 6 we can conclude that the
shift is mostly caused by numerical dispersion.

The analytical dispersion model ignores the staircase phenomena which
is caused by only taking into account the refractive indices at an integer
(�x,�y). This is also an intrinsic property of a discrete mesh.

The analytical dispersion model curve calculates the resonance peak of
Fig. 3 with the effective refractive indices neff,a and neff,b. These effective
refractive indices are calculated with the dispersion relationship of plane
wave in a homogeneous wave.

4 sin2
(

k0neff �x

2

)
�x2

= ω2

c2

neff = arcsin
(

k0n�x

2

)
k0�x

2

(8)
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Fig. 7. Injection of a gaussian field profile in a linear and non-linear medium. ((a): diffraction in linear
medium, (b): soliton in non-linear medium).

For a small value formulae 8, neff reduces to the refractive indices in
continuous space: neff =n.

5. Spatial soliton in a non-linear Kerr-material

We have validated our extensions by simulating the self-focusing of a gauss-
ian beam in non-linear space. In linear space, the injection of a Gaussian
field profile by the total field/scattered field formalism results in a diffrac-
tion pattern. Both effects can be seen in Fig. 7. The Gaussian field profile

is described by e=1.0 e
x2

2∗0.252 V
µm . The material is described by the refractive

index n=3.6 and n2=. 0.2m2

V 2 .
Eigenmode Expansion would require a large amount of eigenmodes to

simulate the same straight forward simulation setup. The lack of linear
regions, which should only be calculated once, takes away the main advan-
tage of non-linear EME.

6. Conclusion

Our extensions to the recently introduced complex Jacobi method allow the
simulation of 2D-components with Kerr-based materials in the frequency
domain. Our proposed extension to the complex Jacobi method is very well
suited for structures where the non-linearity is present in a large portion of
the simulation domain.
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