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1 The dependency of wave velocity in reaction-diffusion (RD) systems on the local front curvature

determines not only the stability of wave propagation, but also the fundamental properties of other spatial

configurations such as vortices. This Letter gives the first derivation of a covariant eikonal-curvature

relation applicable to general RD systems with spatially varying anisotropic diffusion properties, such as

cardiac tissue. The theoretical prediction that waves which seem planar can nevertheless possess a

nonvanishing geometrical curvature induced by local anisotropy is confirmed by numerical simulations,

which reveal deviations up to 20% from the nominal plane wave speed.
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Reaction-diffusion (RD) equations govern a wide range
of biological, physical, and chemical systems. A highly
important emergent phenomenon is wave propagation,
which is found in many RD systems such as flame-front
propagation [1], waves in the Belousov-Zhabotinsky reac-
tion [2], chemotactic signaling during morphogenesis of a
social amoeba [3], waves of intracellular calcium [4], and
electrical signaling in neuronal tissue [5]. The waves of
excitation in cardiac tissue that initiate cardiac contraction
are also being intensively studied, as abnormal wave
propagation in the heart may lead to the formation of
vortices and results in dangerous cardiac arrhythmias
[6,7]. The key parameter that characterizes a propagating
wave is its velocity; it turns out that the velocity of wave
propagation in RD systems is affected by several factors,
the curvature of the wave front being one of the most
important. The dependency of the wave velocity on front
curvature, i.e., the eikonal-curvature relation, was found in
many systems [4,8–10], and it was also shown to be
essential to the stability of the wave front and properties
of vortices in the particular RD system. The simplest
eikonal-curvature relation is given by the following linear
relationship [8,9]:

cðkÞ ¼ c0 � �k; (1)

with c0 the speed of a traveling plane wave in the given
medium and � a medium-dependent constant close to the
scalar diffusivity of the isotropic medium [8,11]. Although
stability analysis of Eq. (1) ensures stable propagating
waves for positive �, stability in critical media where �
lies close to zero is not guaranteed [12]. Remarkably, even
when � > 0, the linearized equation (1) exhibits no stable
stationary solutions, although biological pattern formation
is commonly modeled as a RD system, for which Eq. (1)
can be derived. Another relevant RD system that conflicts
with Eq. (1) is cardiac tissue, in which the propagation

velocities of cardiac depolarization waves have been
demonstrated to possess a ratio of (4:2:1) in orthogonal
directions [13]. An earlier attempt to derive Eq. (1) in
anisotropic media led to a complicated vectorial expression
without a clear geometric interpretation [14].
Fortunately, the mathematical treatment of local anisot-

ropy is greatly simplified when the curved-space formal-
ism introduced in [15] is adopted. This formalism will not
only allow us to generalize Eq. (1) to homogeneous excit-
able media of an arbitrary anisotropy type, but it also
simplifies calculations such that the quadratic curvature
corrections to the wave speed can be calculated for the
first time. Our mathematical derivation provides an alter-
native and a generalization to Keener’s seminal proof
for the isotropic case, which relies on a boundary layer
approximation and is thus restricted to the limit of steep
wave fronts [9]. Here, Kuramoto’s approach [8] is elabo-
rated in a Riemannian context and pursued to higher order
in curvature.
To start the derivation, the set of coupled reaction-

diffusion equations (RDE) is written in terms of a column

matrix u of state variables uðmÞ, with the summation con-
vention for repeated spatial indices,

@tuð ~r; tÞ ¼ @iðDijð ~rÞ@jPuð ~r; tÞÞþ Fðuð~r; tÞÞ: (2)

Local anisotropy of the medium is embodied by the spa-
tially varying diffusion tensor Dijð~rÞ. The constant projec-
tion matrix P selects only those state variables which
diffuse into the medium. Inspired by studies on scroll
wave filaments in excitable media, functional anisotropy
will be handled by introducing the metric tensor [15,16]:

gij ¼ D0ðD�1Þij; gij ¼ D�1
0 Dij: (3)

After denotingD0P ¼ P̂, we may recast the diffusion term

in RDE (2) into P̂@iðgij@juÞ. For homogenous media, the
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determinant g of the metric in Cartesian coordinates is
constant; long-wavelength deviations from homogeneity
can be treated in perturbation theory [17]. Under such a
condition, the diffusion term is proven to be equal to a
covariant Laplacian [15]:

@iðDij@jPuÞ ¼ g�1=2@iðg1=2gij@jP̂uÞ: (4)

Subsequent calculations will greatly simplify if spatial
Gaussian normal coordinates [18] are chosen, as depicted
in Fig. 1; the time coordinate will be denoted �. Defining
the instantaneous wave front� as the hypersurface where a

state variable uðsÞ crosses a threshold value uðsÞc , it may be
arbitrarily parametrized spatially as Xið�AÞ; A 2
f1; . . . ; d� 1g, in a RD medium with d dimensions.
Points near � are represented by

xið�;�A; �Þ ¼ Xið�A; �Þ þ �nið�A; �Þ; (5)

with ~n the local unit vector perpendicular to� and directed
in the sense of wave propagation. This procedure reduces
the metric tensor to

g ð�;�A; �Þ ¼ 1 0 0
ð0 0ÞT hð�;�A; �Þ

� �
; (6)

with hAB ¼ eiAgije
j
B the components of the metric that are

induced on the wave front surface by the Riemannian
background geometry. The change of coordinates gives
rise to an associated biorthonormal reference triad ~e� ¼
@� ~x, ~e

� ¼ ~r��, (� 2 f�;�1; �2g) that satisfies ~e� � ~e� ¼
�
�
� . In terms of that triad, the wave front’s geometric

curvature with respect to the ambient RD medium is
determined by the extrinsic curvature tensor K [18]:

KA
B ¼ ~eB �DA ~e� ¼ �B

A�; (7)

with � the metric connection and DA a covariant deriva-
tive. Note that for � � 0, the tensor K refers to the local
extrinsic curvature of surfaces at a fixed distance from the
wave front. In definition (7), the sign of KA

B is taken such
that convex fronts have positive curvature, in accordance
with the chosen sign in Eq. (1). The trace of the extrinsic
curvature tensor, denoted

K ¼ TrðKÞ ¼ hABKAB ¼ �A
A� ¼ h�1=2@�h

1=2; (8)

is the unique geometric invariant with dimension of inverse
length that could replace k in Eq. (1); we will demonstrate
shortly that this is indeed the case. Since the spatial extent
over which the Gaussian normal coordinates can be con-
sistently defined is limited by the front’s local radius of
curvature kKk�1

2 , we introduce the dimensionless expan-
sion parameter � ¼ akKk2 for bookkeeping the sustained
extrinsic curvature, with a the typical wave front thickness.
Importantly, the geometrical expansion in � distinguishes
our approach from singular perturbation theory [9], and
allows us to identify the higher order curvature corrections.
Another source of curvature is the spatial variations in the
diffusion tensor D. Because of equivalence (3), the local
anisotropy acts as an intrinsic curvature of the ambient
space, which is fully captured by the Ricci curvature tensor
R�� in three spatial dimensions [18]. Of special interest to

wave front propagation is the R�� component, quantifying

the relative acceleration of the geodesics perpendicular to
the front surface. With Eq. (7) follows that

R�� ¼ RA
�A� ¼ �@�K � TrðK2Þ; (9)

such that R�� can be considered Oð�2Þ in what follows.

Knowing how both intrinsic and extrinsic curvature
effects are bound by the parameter �, we can now write
down a gradient expansion series. Herein, the true solution
u is approximated by the traveling wave profile u0 that
satisfies RDE (2) in one spatial dimension:

u ð�;�A; �Þ ¼ u0ð�Þ þ ~uðKð�;�A; �Þ; �A; �; �Þ: (10)

Remark that in lowest order, the correction ~u will only
depend on the wave front coordinates �A through the
curvature K. Because of translational symmetry of the
RDE in an isotropic medium, this decomposition is
a priori only fixed up to a term proportional to c ¼ @�u0.

Therefore, we additionally impose that the correction ~u
should be orthogonal to the unique zero mode Y of the

adjoint operator L̂y ¼ D0P
T@2� � c0@� þ ðF0ðu0ÞÞT . With

bracket notation to indicate integration over � and summa-
tion over all state variables, the gauge condition that guar-
antees that ~u ¼ Oð�Þ can be written hYj~ui ¼ 0. Inserting
Eqs. (4), (5), and (10) into RDE (2) then yields

@tu ¼ @�~u� ð ~e� � _~XÞð@�u0 þ @�~u

þ @�K@K~uÞ þOð�3Þ;
@iðDij@jPuÞ ¼ �A

A�P̂@�ðu0 þ ~uÞ þ P̂@2�ðu0 þ ~uÞ
þ 2@�KP̂@�ð@K~uÞ þOð�3Þ;

FðuÞ ¼ Fðu0Þ þ F0ðu0Þ~u
þ 1

2
~uF00ðu0Þ~uþOð�3Þ:

(11)

FIG. 1. Gaussian normal coordinates near the wave front.
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Using these relations along with ~e� � _~X ¼ c and Eq. (8),
the RDE transforms into an evolution equation for ~u:

ð@� � L̂Þ~u ¼ ðc� c0Þð@�u0 þ @�~uþ @�K@K~uÞ
þ KP̂@�ðu0 þ ~uÞ þ 2@�KP̂@K~u

þ 1
2
~uF00ðu0Þ~uþOð�3Þ: (12)

After hYj has been normalized such that hYjc i ¼ 1, rela-
tion (12) can be projected onto this mode. With

� ¼ hYjP̂jc i; (13)

we obtain following eikonal-curvature relation that holds
for RD media with generic local anisotropy:

c ¼ c0 � �K þOð�2Þ: (14)

Importantly, the suitable modification to the wave front
curvature k that was sought for in [14] is recognized here
as the trace of the extrinsic curvature tensor defined by
Eq. (7). Alternatively, Eq. (14) could have been obtained
directly by writing Eq. (1) in a covariant way.

To track higher order curvature effects, the perturbation
~u to the wave profile needs further specification. As we
intend to develop a theory that is local in space and time, an
estimate to ~u using Eq. (12) can be easily made in the
quasistationary regime, i.e., if ~u accommodates nearly
instantaneously to its stationary state after a change in
the extrinsic curvature. Taking into account the first-order
result (14), the perturbative correction is then found from

Eq. (12) as the solution to L̂j~ui ¼ ð�I� P̂Þjc iK þ
Oð�2Þ. Since the right-hand side of this equation has no

component along the null space of L̂, it follows that j~ui ¼
Kju1i þOð�2Þ, where ju1i ¼ L̂�1ð�I� P̂Þjc i. Plugging
this result into Eq. (12) and projecting onto the zero mode
hYj delivers

c ¼ c0 � �K � 	@�K � 
K2 þOð�3Þ; (15)

with two novel coefficients that arise as overlap integrals:


 ¼ hYjðP̂� �IÞ@�ju1i � 1
2hY j u1F

00ðu0Þu1i;
	 ¼ hYj�P̂jc i þ 2hYjP̂ju1i:

(16)

Equations (14)–(16) are the main result in this work, as
they generalize and extend previous descriptions of wave
propagation in RD media obtained for specific approxima-
tions [8,9,11,14,19]. In general geometrical terms, Eq. (15)
demonstrates that the intrinsic curvature of the RDmedium
does not directly alter the wave velocity; local anisotropy
only affects wave dynamics by changing local length
scales and through the extrinsic curvature. The absence
of a R2

323 term could have been expected, since this

quantity probes the internal structure of the front, along
which no physical diffusion takes place.

Another merit of Eq. (15) is the quantification of two
previously inaccessible effects: a correction (@�K) due to

the finite width of the wave front, and a term (K2) that
captures how wave propagation is altered by curvature-
induced modification of the wave profile. A first corollary
of the second order curvature corrections is that a nonlinear
cðKÞ relation could explain how patterns of finite size may
emerge in an otherwise homogenous RD medium, thereby
allowing richer dynamics in pattern formation. Second,
linear stability analysis shows that small ripples with
wave vector p ~u on the wave front surface grow with a
rate � ¼ �p2�effðKÞ, where

�effðKÞ ¼ �þ 2
K þ 2	KABu
AuB þOð�2Þ: (17)

Hence, wave fronts are dynamically stable only if
�eff > 0. This observation suggests to enlarge Kuramoto’s
notion of surface tension � [8] to the effective dynamical
surface tension �effðKÞ defined by Eq. (17). Consequently,
the stability of systems with � � 0 depends on their
local curvature. This effect was seen already in the
numerical simulation of RD systems with high inhibitor
diffusion [12].
To highlight the importance of the curved-space view-

point, we next provide an example of wave fronts that
appear flat to a laboratory observer. The parameters (�1,
�2) within a seemingly planar wave front surface can be
chosen linear in the Cartesian coordinates, whence the ~eA
are constant. As such, those waves would bear a constant

induced metric HAB ¼ eiA�ije
j
B if the ambient space had

been Euclidean. When anisotropy is taken into account,

however, a spatially varying metric hAB ¼ eiAgije
j
B is seen

to be induced, delivering nonvanishing curvature terms in
Eq. (16) through Eq. (8). Therefore, waves that appear
planar from the laboratory viewpoint do not necessarily
travel at the nominal plane wave speed c0, even when the
traveled distance is measured using the metric (3). This
prediction is confirmed below by numerical simulation.
Three steps of numerical validation of Eqs. (15) and (16)

were performed using Barkley’s model with equations as in
[20], which is often used as a paradigm for RD systems, as
it is computationally efficient and exhibits the key features
of an excitable medium [21]. First, theoretical predictions
for the coefficients �, 
 , 	 were explicitly evaluated as
overlap integrals (13) and (16) of the adjoint zero mode
hYj, which had been obtained as the stationary solution to

@tu ¼ L̂yu, similar to [22]. Second, these coefficients
were estimated from the dynamics of inwardly traveling
spherical wave fronts, which were simulated using finite
differences in the radial coordinate r. Repeating the simu-
lations for a d-dimensional isotropic RD medium, with
d 2 f2; 3; 4g allowed to separate all contributions by linear
regression, as the waves have K ¼ �ðd� 1Þ=r. Note,
however, that the wave front’s position is found in practice
by applying a threshold to u, not u0, which shifts the

measured coefficient of @�K from 	 to 	0 ¼ 	�
c0u

ðsÞ
1 ð0Þ=c ðsÞð0Þ. Figure 2 displays the values of �, 
 , 	0
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obtained from forward numerical simulation and theory,
for varying model parameter �. The quantitative compari-
son demonstrates an excellent agreement between
predicted and measured values with average relative errors
of 0.2%, 2.2%, and 5.4% in the predictions for �, 	0, and 
 ,
even though 
 and 	0 are composed of 2 and 3 terms of
comparable magnitude.

In a third numerical simulation, traveling waves were
studied in a model geometry for the cardiac wall exhibiting
transmural myofiber rotation [23]. In terms of Cartesian
coordinates (x, y, z), the medium with so-called rotational
anisotropy is considered invariant in X and Y directions,
and a prototypical fiber with diffusion tensor D ¼
diagð9; 1; 1Þ rotates at a pitch p around the Z axis with
increasing z; the angle � between the fiber direction and
X direction is thus equal to pz. At the start of each
simulation, a plane wave was initiated containing the Y
direction and enclosing a chosen angle c with the
X direction. After a short transient time, wave front veloc-
ity was recorded, using Eq. (3) as a measure for the
traveled distance. The numerical result is presented in
Fig. 3 in terms of the transmural position � ¼ pz, together
with the prediction of Eq. (15) up to zeroth, first, and
second order in curvature. Substantial curvature effects
were observed, which caused deviations up to over 20%
of the wave speed. Notwithstanding the magnitude of this

effect, the velocities predicted by Eqs. (13)–(15) were
found to match the simulated values within 0.5%, without
any free parameters present.
Our results show that the smallest curvature effects are

found for nearly transmural wave propagation (i.e., along
the Z axis or c ! 90�), which typically occur in the
heart’s natural activation sequence. On the other hand,
for intramural wave propagation (c ! 0�), which may
occur during abnormal activation and arrhythmias [6],
considerably larger curvature corrections are found in the
computational example (Fig. 3), consistent with Eq. (13).
In this case, the linear term does not longer suffice to
correctly predict wave front velocity.
In summary, we have taken a curved-space viewpoint on

local anisotropy of RD systems to establish an accurate
velocity-curvature relation for activation waves in its sim-
plest form. Although our approach was tailored to describe
wave phenomena in anisotropic cardiac tissue with in-
creased accuracy, our findings can be readily applied to
wave propagation problems in a wide variety of RD sys-
tems, including bistable and excitable media.
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