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Abstract

We describe the use of conceptual DFT based quantum chemical molecular fields for three-dimensional

quantitative structure-activity relations (3D-QSARs) and compare this new approach with the

use of the default molecular property fields. The use of the new molecular fields in 3D QSAR is

investigated by an application in the field of drug discovery, in which the antituberculotic activity of

salycilamide derivatives is investigated. It is shown that conceptual DFT molecular fields have an

added value to the default considered CoMFA fields.

Keywords: 3D QSAR, Conceptual DFT

1. Introduction

There can be hardly any doubt that one of the main contributors to our current quality of life

has been the development of medicine, including the availability of modern drugs and treatments for

many health problems. It can moreover be expected that development of new drugs will continue

to be important for at least three reasons. First, there remain diseases that, despite having been

known for long time, remain without cure although they affect the quality of life of millions or even

billions of people. A typical example is malaria. Second, as life expectation continues to increase,

especially in the developed world, some diseases associated with high age become more abundant

and require treatment. Third, new diseases show up from time to time.

The development of new drugs is a very time consuming and error prone venture. One of the

reasons why is the enormous vast chemical search space where new ligands (i.e. substances that
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eventually can become drugs) have to be sought. From a theoretical/computational chemistry

perspective, one of the most promising ways for ligand design would rely on a detailed dynamical

description of the ligand/target interaction, including all the essential characteristics of the environ-

ment (solvent, electrolytes, ambient temperature, ...) [1]. At present such methods still need to be

developed much further to have a sufficient level of detail. Moreover, these methods are so time

consuming that they can hardly be used for ligand design where thousands of candidates need to be

evaluated.

An alternative to the detailed dynamical description of the interaction are Quantitative Structure

Activity Relationships (QSAR), a field of study introduced by Hammet [2], Hansch and Fujita [3]

and Free and Wilson [4]. The fundamental assumption for a QSAR is that variations in biological

activity among a set of compounds can be related to variations in their chemical structures and

properties. In practice one largely abandons the detailed dynamical interaction but tries to establish

a mathematical connection between the biological activity of a compound and some key molecular

properties. The actual mathematical connection relies on statistics and relates biological activity to

so-called molecular descriptors. Such descriptors range in complexity from very simple features like

molecular mass, via absence/presence data for e.g. specific functional groups, to full 3D molecular

fields like the electron density. The statistical method used then identifies those descriptors that give

the best QSAR based on a set of known data for biological activity and descriptors for a so-called

training set. Once the QSAR is known, it can then be used to predict the activity of molecules for

which only the descriptors are known.

In the present paper we examine how well 3D molecular fields from conceptual or chemical DFT

perform as descriptors for antituberculotic activity of salicylamides. Do they offer added value

compared to simpler descriptors? In order to answer this question, we first describe in some more

detail the QSAR algorithm used, then the fields considered and eventually the results of the QSAR

in detail.

2. Quantitative structure activity relationships

For the construction of QSAR models, most often a linear model is sought, which can be expressed

as equation (1)

A = k1 ∗D1 + k2 ∗D2 + ...+ const (1)
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Here A stands for the biological activity, Di stands for the value of the ith molecular descriptor

retained in the QSAR, ki is the regression constant belonging to descriptor Di and C is a constant.

The core machinery of deriving a QSAR are statistical algorithms that pick the most discriminating

descriptors for each problem from a large pool of possible descriptors and yield the coefficients ki.

Obviously, in order to develop a QSAR, one first needs a set of molecules for which the activities

are known as well as a set of descriptors from which usually only a small fraction will be kept in

the final QSAR. Obviously, the better one can describe the molecule in terms of a set of molecular

descriptors, the bigger the chance of a better QSAR. As a consequence, there has been a lot of

research on the development of new descriptors that may be better at representing different aspects

of molecular behavior, e.g. reactivity [5]. Note that extending the pool of descriptors from which to

pick the significant descriptors for the problem considered is fruitful, provided the descriptors are

not correlated. Increasing the number of descriptors retained in the QSAR model has to be done

with great care in order to avoid overfitting and so is fundamentally different from increasing the

pool of descriptors.

2.1. Three-dimensional (3D) QSAR

In 3D-QSAR [6], one uses 3D molecular fields as molecular descriptors. Assuming that the

compounds considered in some application all bind in more or less the same way to the target, one

could use the value of a 3D molecular field at every point in space as a descriptor. If then one

assumes that variation in biological activity can be related to the change in these 3D molecular field

values between the molecules, a 3D-QSAR model can be obtained.

The first commercially available 3D QSAR algorithm is known as CoMFA [7], where the default

interaction fields are the steric and electrostatic fields, evaluated on a common grid of points. The

same grid is used for all molecules, so molecular alignment plays an important role. The Partial

Least Squares (PLS) technique [8] is used to handle the high number of descriptors.

3D QSAR models are relatively easily interpretable through visualization of where the important

regions that correspond to descriptors retained in the QSAR are located. Once it is known in what

region these reside and what effect they have on the QSAR, drug designers can manipulate the

ligand candidates to maximally exploit these regions and hence increase the (predicted) activity of

the compound.

CoMFA is still used very often as it does often give good working QSAR. Over the years, several
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workers have introduced several new types of fields, adding hydrophobic [9], hydrogen donor and

hydrogen acceptor [10] or lipophilic [11] information to the model. Our interest lies mainly in the use

of fields originating from so-called conceptual or chemical DFT [12]. The use of these fields is very

attractive in 3D QSAR, as they can be interpreted as reactivity indices representing the response

of a system to a perturbation[13]. In as far as the system modeled can be assumed to represent

the actual drug or ligand in its working environment, the biological activity could be expressed

completely in terms of the electron density, or the shape function, or the response functions such as

the Fukui function or the local softness.

In the next section the 3D fields are introduced. The final section presents the application for a

real test case.

3. 3D QSAR molecular property fields

3.1. Default considered CoMFA fields

In standard CoMFA, two fields are generated on a regular grid : the electrostatic and the steric

field. The electrostatic field at a point j is expressed as its approximate Coulomb point-charge based

potential function. The steric field is based on the Lennard-Jones potential function. Both fields are

extensively described in reference work about 3D QSAR [7].

3.2. Fields based on conceptual DFT

It is known that the insufficient representation of the investigated structures in CoMFA is

still an inherent deficiency in the algorithm, despite the widespread use and success of 3D QSAR.

Representing a molecule by a set of atom-centered partial charges to calculate its Coulomb interaction

is a very crude approximation, corresponding to the assumption that the charge distribution is

locally isotropic close to the atoms. As a consequence, the models do not always represent the

real situation. Therefore, together with the invention of the 3D QSAR technique, a search for new

descriptor fields originated as well.

The fields introduced here are obtained from conceptual density functional theory and are extensively

reviewed in reference [12]. The solid theoretical foundation of these fields does not stand any intuitive

interpretation in the way, which is important for use as QSAR descriptors.

The fundamental property in conceptual DFT is the molecular electron density ρ, which is related

to the shape and the size of a molecule. A molecular 3-dimensional descriptor closely related to
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the electron density is the shape function. The molecular shape function, or shape factor σ(r) as

introduced by Parr and Bartolotti in reference [14] characterizes the shape of the electron distribution

and carries relative information about its electron distribution as described in references [15, 16, 17].

The next field used in this study is the Fukui function, a 3-dimensional descriptor that allows

understanding and predicting relative reactivities of different sites in a molecule. Due to the

discontinuity in the ρ versus N curve, two fukui functions need to be distinguished [18, 19], where at

the point r, f+(r) and f−(r) are direct measures of reactivity toward nucleophilic and electrophilic

attack. That is, regions where f+(r) is large capably stabilize additional electron density and hence

are especially reactive towards electron-rich reactants. Regions where f−(r) is large readily give up

their electrons, and are thus reactive towards electron-poor reactants.

The final conceptual DFT field introduced in the 3D QSAR context is the local softness, which

describes the tendency of a particular site to be involved in “frontier-controlled” interactions [20].

As for the fukui function, two softness functions need to be distinguished. These has been shown to

play a key-role in the application of the HSAB principle at local level [21, 22], and has been used in

a variety of studies on regioselectivity [12].

3.3. Pretreatment of fields

It is well known in the QSAR methodology that a proper pretreatment of variables is crucial for

the outcome of the analysis.

Intrinsic to 3D QSAR, there are many grid points with only minor variation in the field values

throughout the compound set, e.g. the field values far outside the molecules. To eliminate such grid

points, a ‘minimum sigma’ condition is defined. The grid points with a variation in the field value

among the molecules lower than the minimum sigma value are not considered in the subsequent

PLS analysis.

Some fields, as the default CoMFA fields and the electron density, have in close proximity to the

surface of the atoms very steep slopes. It is common to truncate the field values at some arbitrary

level to eliminate these points. It is necessary to use only well investigated cutoff values as the

model quality depends critically on this value. Both the Fukui function and the softness field do

not require any cutoff, as they are computed as finite differences. Hence, the large extremes in the

unperturbed neutral system are compensated by nearly exactly the same extremes in the perturbed,

anion or cation, density function.
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4. Antituberculotic activity of Salicylamides : a 3D QSAR case study

4.1. Dataset

44 derivatives of salicylamides [23], with possible antituberculotic activity, are used for 3D QSAR

model development. All molecules have one of the five basic structures shown in figure 1, presented

together with the possible substituents R. The compounds cover a promising group of potential

drugs with a new, yet unrevealed, mechanism of action. They are assumed to serve as structural

templates of inhibitors of the two-component regulatory system in bacteria[24]. The derivatives of

salicylamides are tested for in vitro activity against Mycobacterium tuberculosis. As tuberculosis is

still a considerable illness causing the death of more than a million people a year, it remains a main

target for drug discovery. Analysis of structure-activity relationships of salicylamide derivates can

produce fruitful suggestions for further research of antituberculotics. Using computed properties of

the salicylamide derivatives we wish to identify the essential conditions depending on which the

compounds elicit a stronger/weaker biological response.

In vitro antimycobacterial activities of compounds 1 - 5 against Mycobacterium tuberculosis CNCTC

My 331/88 are taken from the literature[23]. The antimycobacterial activities of the compounds

are determined as minimal inhibitory concentrations (MIC) after incubation at 37 ◦C for 14 days.

The concentrations of the compounds applied in the assay are 1000, 500, 250, 125, 62.5, 32, 31,

16, 8, 4 and 2 µmol/l, giving rise to a discrete character of MICs. The activities for the tested set

of molecules are presented in table 1, with the compound name composed corresponding to the

numbering of the basic structures and the name of the substituents in figure 1.

4.2. Algorithmic details

Any 3D QSAR analysis requires a list of algorithms and parameters which all need to be

established beforehand. These are all investigated in depth in reference [25] and the final selected

algorithms and parameters will be summarized here.

Starting from the set of molecules, a subset of compounds is selected as a training set by K-means

clustering [26]. The test set contains five molecules, indicated with an asterisk in table 1.
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Figure 1: Molecular set investigated for antituberculotic activity.
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Table 1: Biological activities for the molecular set tested for antituberculotic activity on Mycobacterium
tuberculosis. Molecules constituting the test set are indicated by an asterisk.

MIC -log(MIC)

1b 62.5 4.20
1c 31 4.51
1d 16 4.80
1e 8 5.09
1f 16 4.80
1g 62.5 4.20
1h* 31 4.51
1i 8 5.09
1j 8 5.09
1k 16 4.80
1l 62.5 4.20
2a 250 3.60
2b 125 3.90
2c 62.5 4.20
2d 62.5 4.20
2f 62.5 4.20
2g 125 3.90
2i* 32 4.50
2l 125 3.90
3a 500 3.30
3c 125 3.90
3d 125 3.90

MIC -log(MIC)

3e 62.5 4.20
3g 250 3.60
3i 125 3.90
3j* 125 3.90
4a 32 4.50
4b 16 4.80
4c 32 4.50
4d 32 4.50
4e 62.5 4.20
4f 62.5 4.20
4g* 16 4.80
4h 32 4.50
4l 16 4.80
5a 8 5.09
5b 8 5.09
5c 8 5.09
5d 8 5.09
5e 32 4.50
5f 8 5.09
5g 8 5.09
5j* 8 5.09
5k 8 5.09
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The molecular structures have been geometry optimized at the DFT level using the B3LYP

functional and 6-31G* basis set as implemented in Gaussian03 [27].

As the electrostatic field is calculated as an atomic point charge approximation, an optimal

partial point charge calculation scheme has to be selected. Several charge calculation methods has

been investigated in [25], as the partial charges derived from Gasteiger-Marsili[28, 29], the MMFF94

force field [30], Mulliken population analysis [31], Natural population analysis [32], Hirshfeld analysis

[33] and the iterative Hirshfeld analysis [34]. It was found that simpler methods, such as the

Gasteiger-Marsili method, yield results of good quality, and thus can confidently be used to construct

the electrostatic field.

There is no structural information available on the target or receptor environment. As a

consequence, the alignment is restricted to these algorithms which do not make use of any information

about the target. The molecular set is subjected to different so called ligand-based alignment

techniques, in order to select the most promising alignment [25]. Out of several alignment techniques

(TGSA[35], ROCS[36] and QSSA[37]), the ROCS algorithm implemented in the Openeye Software

Suite [38] performed the best. ROCS stands for ‘rapid overlay of chemical structures’, a rigid body

optimization process that maximizes the overlap volume between the compounds.

For the default CoMFA studies, with the electrostatic and steric field only, a spacing of 1 Å in a

box extending to 4 Å outside the molecular van der Waals surface is preferred in order to have

an accurate description of the field. These values are selected throughout history as the set of

values that invokes a good and consistent CoMFA outcome. As there has been a limited number of

preceding studies on the optimal parameters for quantum chemical fields [39, 40], it was necessary

to set-up a study for the optimal spacing for these conceptual DFT quantum chemical fields. For

this set of molecules, a grid spacing of 0.6 Å in a box extending to 1 Å outside the molecular

van der Waals surface can be advocated. The current parameters are chosen as a balance between

computational expense and consistent outcomes.

Each of the fields - except the Fukui function and the softness field - need to be allocated a

cut-off value, as specified before. An optimal cut-off value can be found by scanning the performance

of the models, slightly varying the cut-off value from a minimum to a maximum value. The optimal

cut-off values are mentioned in table 2.
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Table 2: 3D QSAR model cut-off values.

Model Field |Cut-off value|
1 ρ(r) 1.07 bohr−3

2 σ(r) 0.03 bohr−3

3 f+(r) No Cut-off
4 f−(r) No Cut-off

5 s+(r) No Cut-off
6 s−(r) No Cut-off

7 Electrostatic potential 36.9 kcal
mol

8 Steric potential 30.1 kcal
mol

4.3. Results

The default molecular interaction and the quantum chemical molecular fields are subjected to

a cross-validated 3D QSAR analysis. The models are obtained in a PLS model building with a

leave-10-out cross-validation. The results are summarized in table 3. The quality of a QSAR model

is characterized by its complexity, i.e., the number of latent variables (LV) necessary to describe the

dataset and by the quality of prediction, the predictive correlation coefficient q2 obtained by the

leave-10-out procedure (q2L10O). A value higher than 0.50 indicates a model with predictive capacities.

Table 3: 3D QSAR model characteristics.

Model Field LV q2L10O

1 ρ(r) 4 0.68

2 σ(r) 2 0.69

3 f+(r) 4 0.68
4 f−(r) 2 0.75

5 s+(r) 4 0.67
6 s−(r) 2 0.76

7 Electrostatic potential 4 0.66

8 Steric potential 3 0.65

Model 6 using the softness s− field as independent variable is, based on the internal predictive

power, statistically the most significant within the set of quantum chemical fields. The model can

be set up successfully using only two latent variables. In order to make a fair comparison between

the classical and the quantum chemical approach for the problem, a full statistical analysis has been

performed for model 6 as well as for the two default CoMFA fields (model 7 & model 8). The results

are summarized in table 4. The number of latent variables and the predictive power are repeated

from the previous table, the goodness-of-fit is given by R2. The internal predictivity test indicates

10
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the predictivity of the model, but the only true test on the predictive power of a model can be

obtained through the application of the final model on the external test set and is quantified by the

value of q2ext and the root mean square error (rmse) on the predicted values.

Table 4: Statistical parameters for selected models

Model LV R2 q2L10O q2ext rmse

6 2 0.81 0.76 0.77 0.22
7 4 0.80 0.66 0.88 0.16
8 3 0.84 0.65 0.89 0.14

4.4. Discussion

4.4.1. Behavior of the Quantum chemical fields

As 3D QSAR results are primarily judged based on the predictivity, the quantum chemical fields

will primarily be compared with each other based on the q2L10O value. The fields presented in the

first part of table 3 can all be classified as predictive. Especially the f− and s− fields yield promising

results. The electron density gives a model with a lower predictivity. The shape function gives a

slightly more predictive model than the electron density at a lower number of latent variables, but

the improvement in quality is rather small. This is not surprising as the molecules in the training

set are of similar size and thus of comparable electron number. Therefore, the extra information

included in the shape function disappears.

The fact that the Fukui f− and the softness s− fields give predictive models at only 2 latent variables

can be a hint towards the mechanisms of action. Both fields indicate an electrophilic attack from

the receptor towards the ligands.

4.4.2. Comparison of 2D QSAR and 3D QSAR

Another well investigated kind of QSAR analysis is 2D QSAR. In contrast to 3D QSAR, 2D

QSAR does not make use of local field descriptors. As a consequence, far less number of descriptors

are fed into the analysis, which simplifies the statistics to multiple linear regression.

It is clear that 2D QSAR - by its very nature - is much more straightforward than 3D QSAR. More

user intervention is necessary in each step in 3D QSAR. As the current set of molecules has been

investigated in a 2D QSAR analysis[41], a comparison can be made between 2D QSAR and 3D

QSAR. The results for the 2D QSAR analysis are summarized in table 5, together with the 3D

QSAR analysis results. Despite the fact that the 2D QSAR analysis was performed without an
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Table 5: Comparison between 2D QSAR and 3D QSAR models. The 2D QSAR model is based on 45
molecules, no test set is selected. The 3D QSAR models are based on 39 molecules, with a test set of 5
molecules.

2D QSAR 3D QSAR

Model 6 7 8

Number of molecules 45 39 39 39
Goodness-of-fit 0.91 0.81 0.80 0.84
Number of descriptors 5 2 4 3
Internal predictivity 0.89 0.76 0.66 0.65
External predicitivity / 0.77 0.88 0.89

external test set, the internal predictivity and the goodness-of-fit indicate the superiority of the 2D

QSAR model. Based on the results presented, one would favor 2D QSAR model for the current

problem.

The mechanistic interpretation of the 2D QSAR model indicates electrostatic interactions at some

points [41]. And at this point, the 3D QSAR models are favored on the 2D QSAR models as with

these models one can pinpoint the exact locations where the electrostatic interactions with the

environment are favored.

Thus based on the simplicity and the statistical parameters, one would favor the 2D QSAR model

building, but the 3D QSAR models still have their own benefit as they give a 3-dimensional

interpretation of the results.

4.4.3. Comparison of the Default CoMFA and the Quantum chemical models

As new fields are introduced in 3D QSAR, their performance has to be compared with the

performance of the classical fields in CoMFA, in order to investigate whether these fields are worth

the effort to calculate for future applications. Therefore the most promising quantum chemical 3D

QSAR model, the model based on the s− (model 6), will be highlighted and confronted with the

models based on the default CoMFA fields (model 7 & model 8) and tested on some essential QSAR

conditions, published as preliminary guidelines from the European Commission in reference [42].

Table 4 summarizes the statistical results for the three models.

Robustness : A clear correlation between the chosen descriptors and the target property, as can be

seen by the goodness-of-fit, R2, is apparent. The three models have a similar behavior concerning the

goodness-of-fit, so no distinction can be made between the fields based on this one statistical criterion.
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Predictivity : The main goal of any QSAR is the prediction of the activity of new compounds, so

the internal predictivity is an important criterion. In table 4 it is clear that the internal predictive

capacity of the model with the quantum chemical field, softness s−, is higher than for both default

considered CoMFA fields. The application of the models on the external test set of compounds

establishes the real predictive power of the model. However, the external test set may not be

involved in the model building at any point. Thus the results on the external test set may not

be used in any decision-making about the superiority of one field over the others, but only as an

external confirmation of the predictive power of a model. Based on these external results, the three

fields all give rise to predictive models.

Explanatory power : Knowledge about the explanatory power enables the user to suggest a

possible mode of action for the active compounds and to propose ameliorations on possible future

ligands. A graphical analysis of the coefficient fields is given in figures 2-4. These give a rough

location from which structure activity relationship statements can be inferred, discriminating areas

where fields are important from those that have no significance. Positive values for the steric field

(orange) in figure 2 indicate areas where an increase in steric hindrance would produce higher activity,

and areas showing negative values (green mesh) are those where steric bulk would decrease the

activity of the ligands. Positive values for the electrostatic field (red mesh) in figure 3 indicate

those areas where a highly positive electrostatic potential would produce higher activity, promoting

electropositive ligands at these sites. Areas showing negative values (blue) are those where a highly

negative electrostatic potential would increase the activity, thus promoting electronegative ligands

at these sites. The coefficients for the softness field are given in figure 4. While the electrostatic

potential indicates those regions that an electrophile or an nucleophile is likely to approach, it is

also important to know how readily available the electrons in those regions are. The map of the

softness function indicates the susceptibility to electrophilic or nucleophilic attack. Positive values

(green) for the softness s− map indicate those areas where an electron-rich center would increase

the activity. Negative values (yellow mesh) for the softness map indicate those areas where an

electron-rich center would decrease the activity. It is thus clear that the three fields considered all

can be interpreted readily for the problem at hand.
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Figure 2: Stdev*coeff map showing areas of favorable and unfavorable steric field contributions to the
activity.

Figure 3: Stdev*coeff map showing areas of electrostatic field contributions to the activity.

Figure 4: Stdev*coeff map showing areas of softness field contributions to the activity.
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Table 6: Summary of conditions for QSAR model building, applied on model 6, 7 & 8

Model 6 Model 7 Model 8

Robustness + + +
Predictive power

Internal ++ + +
External + ++ ++
Explanatory power + + +

Simplicity

Computer time - + +
Uniqueness + - -

Simplicity and Uniqueness : The fact that both CoMFA fields are much easier to calculate than

the quantum chemical fields in 3D QSAR, favors them clearly. The screening of the molecular set of

39 molecules takes 1 minute for both classical fields on one computer and 5 minutes for the softness

field on a cluster of 20 computers. However, the main drawback of the default considered CoMFA

field is their lack in uniqueness, due to the variable parameters that constitute their expression, as

e.g. the plethora of possibilities in calculating the condensed charges.

Gathering these four criteria together, it is clear that none of the 3D fields can be favored above

the other fields. The three models behave well for the conditions mentioned, as is summarized

in table 6. Thus, although the default 3D QSAR fields are useful in obtaining predictive 3D

QSAR models for the current problem, the quantum chemical approach is worth the effort, due to

the extra information obtained and the uniqueness in obtaining and using the quantum chemical field.

The 3D QSAR results can be ameliorated by combining several 3D molecular fields into one

model. As the main purpose of the current article was to indicate the usefulness of individual

quantum chemical fields in 3D QSAR, we do not pursue this further but rather refer the reader to

Van Damme et al. [43] for an example where different fields are combined.

5. Conclusion

In this study the behavior of the default CoMFA fields is confronted with the conceptual DFT

fields in 3D QSAR analysis. Properties like electron densities or Fukui functions for electrophilic

and nucleophilic attack can be used as physically meaningful descriptors. The example indicates

that the newly introduced fields are worth the effort to be used in 3D QSAR problems as they can

15



ACCEPTED MANUSCRIPT 

have a similar behavior compared to the default 3D QSAR field and they deliver new interpretable

information, not included in the default 3D QSAR fields. Especially in those cases where the default

considered CoMFA fields do not carry the necessary information for a predictive 3D QSAR model,

it is our advise that conceptual DFT quantum chemical fields should be considered.
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