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Abstract

In this paper we improve on a result of Beutelspacher, De Vito & Lo Re, who
characterized in 1995 finite semiaffine spaces by means of transversals and a con-
dition on weak parallelism. Basically, we show that one can delete that condition
completely. Moreover, we extend the result to the infinite case, showing that every
plane of a planar space with at least two planes and such that all planes are semi-
affine, comes from a (Desarguesian) projective plane by deleting either a line and
all of its points, a line and all but one of its points, a point, or nothing.

1 Introduction

In [2], Beutelspacher, De Vito and Lo Re prove that linear spaces in which disjoint lines
are either “weakly parallel”, or admit, through any given point outside the two lines, at
most one transversal, and which satisfy a rather strong condition on these weakly parallel
lines, are planar spaces all of whose planes are semiaffine. They then use an unpublished
result of Teirlinck and the classification of semiaffine planes due to Dembowski & Kuiper
[3] to determine all finite such linear spaces. In the present paper we show that one can
delete the condition on the parallel lines, and moreover we bypass the classification of
finite semiaffine planes and proceed applying Teirlinck’s theorem when there are at least
two planes, so that also all infinite such linear spaces are classified.

More exactly, we show (but postpone the precise definitions to the next section):

First Main Result. Let S = (P,L) be a linear space such that through every point
outside two given disjoint lines either there is at most one transversal, or every line
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meeting one of the given disjoint lines meets the other. If every line contains at least
three points, then S is a planar space in which every plane is semiaffine.

Second Main Result Let S = (P,L) be a planar space with at least two planes, such
that every line contains at least four points and all planes of which are semiaffine. Then
every plane is obtained from a projective plane by deleting either nothing, a single point,
a line with all but one of its points, or a line with all its points.

Main Corollary Let S = (P,L) be a linear space all lines of which contain at least four
points. Then the following are equivalent.

(SAS1) Through every point x outside two given disjoint lines L1, L2 either there passes
at most one transversal, or every line through x meeting L1 ∪ L2 in at least one
point meets L1 ∪L2 in exactly two points. Also, the first possibility really occurs.

(SAS2) S is a planar space with at least two planes such that every plane is a semiaffine
plane.

(SAS3) S is an affino-projective semiaffine space (and hence arises from a unique pro-
jective space by deleting a set S of points in a hyperplane with the property that,
whenever a line meets S in at least two points, then it meets S in either all its
points, or all but one of its points).

This result motivates the definition of a semiaffine space as either a semiaffine plane,
or a planar space satisfying the condition in (SAS2). It then follows that (SAS1) is
a characterization of semiaffine spaces with line size at least three (if one deletes the
restriction that the first possibility in (SAS1) must really occur), and that (SAS3) provides
a classification of semiaffine spaces with line size at least four, and containing at least two
planes. We will give more details concerning (SAS3) below.

Note that our main results are tokens of general and classical geometric occurrences.
In particular, the First Main Result is a kind of counterpart for linear spaces of the
characterization of polar spaces by Beukenhout & Shult [1] by means of the so-called
one-or-all axiom. For linear spaces, a one-or-all axiom cannot involve only a point and
one line, but a natural way to state such an axiom is to use one point and two disjoint
lines. Here, the possibility of ‘zero’ must also be considered (if one adds this possibility
for linear spaces, then one obtains the definition of a so-called gamma space, a notion
which plays a central role in the theory of (Grassmannian) point-line geometries from
spherical buildings). Hence, the First Main Result characterizes semiaffine spaces by a
none-one-or-all axiom. Moreover, if one excludes the possibility of parallel lines, i.e., if one
assumes that in (SAS1) only the first possibility can occur, then the condition simplifies
to Pasch’s famous axiom. So, the First Main Result can also be seen as a generalization
of the Veblen & Young [5] characterization for projective space by including the affine
spaces and spaces that lie in between an affine and a projective space, and which we
called semiaffine spaces. Thirdly, the Second Main Result expresses the idea that, once
put in a higher dimensional object, objects of rank two tend to be tame. For instance,

the electronic journal of combinatorics 16 (2009), #R18 2



projective planes inside projective spaces of dimension at least three are automatically
Desarguesian. More generally, generalized polygons in irreducible spherical buildings of
rank at least three are Moufang. In our case, semiaffine planes of semiaffine spaces with
at least two planes arise automatically from Desarguesian projective planes by deleting
either nothing, a point, an affine line and all of its points, or a projective line and all of
its points. Note that there are free constructions of semiaffine planes that do not arise
from any projective plane in the above mentioned way, see [3].

In our proof, we will use the results of [2]. In fact, we reduce the situation to the hypotheses
therein. Also, for our Second Main Result, we assume that lines have infinite size (the
finite case following directly from [3]), although our proof almost completely works under
the assumption of at least four points per line. We did not try to make it work completely
under this assumption (in view of [3]), but this might not at all be a difficult exercise.

2 Preliminaries

A linear space S = (P,L) consists of a set P of points and a family L of subsets of P, called
lines, such that each pair of distinct points x, y is contained in a unique line, sometimes
denoted by xy. The prominent examples of linear spaces are the projective spaces, which
arise from vector spaces by taking for point set the the set of one-dimensional subspaces
of a vector space V , and as lines the sets of one-dimensional subspaces contained in a
two-dimensional subspace. Let, for a given linear space (P,L), the set P∗ denote the set
of all pencils, where a pencil is the set of lines containing a given point. A projective plane
is a linear space (P,L) such that all lines have size at least three, and such that (L,P ∗)
is also a linear space. An affine plane is a linear space in which the parallel axiom for
lines holds: every point is contained in exactly one line disjoint from or equal to a given
line. A semiaffine plane is a linear space in which a slightly weaker form of the parallel
axiom holds: every point is contained in at most one line disjoint from or equal to a given
line. In [3], Dembowski & Kuiper show that every finite semiaffine plane is constructed
from a projective plane by deleting either nothing, a point, a line and all of its points, or
a line and all but one of its points. Moreover, they show that the finiteness hypothesis is
essential by constructing counterexamples in the infinite case.

Now let S = (P,L) be a linear space. A transversal of two disjoint lines L1, L2 is a line
meeting L1 ∪ L2 in two points. Consider the following none-one-or-all axiom:

(NOA) For every point x and every pair of disjoint lines L1, L2 not containing x, exactly
one of the following possibilities occurs:

(i) there is no transversal of L1, L2 containing x;

(ii) there is exactly one transversal of L1, L2 containing x;

(iii) every line through x meeting L1 or L2 is a transversal of L1, L2.
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Let L1, L2 be two disjoint lines of S. If, for some x, every line through x meeting L1 or
L2 is a transversal of L1, L2, then Beutelspacher, De Vito & Lo Re [2] say that L1 and
L2 are parallel, and the point x is called a witness for the parallelity of L1, L2. We shall
also adopt this terminology, which allows to rephrase Axiom (NOA) as if some point x is
contained in at least two transversals of some pair of disjoint lines L1, L2 not containing
x, then L1 and L2 are parallel and x is a witness for their parallelity.

A subspace S ′ = (P ′,L′) of S consists of a subset P ′ ⊆ P of the point set and a subset
L′ ⊆ L of the line set such that the union of L′ equals P ′, and such that S ′ is a linear
space. Given a family E of subspaces, we say that S = (P,L, E) is a planar space if every
triple of noncollinear points is contained in exactly one member of E . The elements of E
are then called planes. Concerning terminology, we say that the unique plane containing
three given noncollinear points is spanned by these points. Similarly, a plane can also be
spanned by a line and a point not on that line, or by two distinct intersecting lines.

The prototype of planar spaces are the affine and projective spaces of dimension at least
three. One can, of course, also consider spaces that somehow “lie between affine and
projective spaces”. More exactly, we consider the following family of planar spaces.

Let S be a projective space, viewed as a linear (or planar) space, and let H be a hyperplane
(i.e., a subspace intersecting every line nontrivially). If we remove all points and lines
(and planes) of H from S, then we obtain an affine linear (planar) space SH . Also, if S ′

is a projective subspace of S, then the intersection S ′

H with SH yields an affine subspace
of SH , which we call, by abuse of notation, also an affine subspace of S. The subspace S ′

will be called the projective completion of S ′

H . We can now consider a family F of affine
subspaces of S with the following properties.

(AP1) SH ∈ F.

(AP2) The point sets of any two members of F are disjoint.

(AP3) If S1,S2 ∈ F, then, for some i ∈ {1, 2}, the point set of Si is contained in the
point set of the projective completion of S3−i.

If we take the union of the point sets of F, and endow it with all lines (and planes) induced
from S, then we denote the resulting linear (planar) space by SF. Condition (AP3) clearly
ensures that SF is a semiaffine space, and therefore we call it an affino-projective semiaffine
space. This construction provides all examples described between parentheses in (SAS3)
above, and conversely. This can be easily checked.

We now briefly review some known results. We start with the main point of this paper.

Fact 1 (Beutelspacher, De Vito, Lo Re [2]) Let S = (P,L) be a linear space such
that through every point outside two given disjoint but nonparallel lines there is at most one
transversal. Then S is a semiaffine space, granted that every point on every transversal
of two parallel lines (but not contained in these lines) is a witness for their parallelity.
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Note that the conditions in the previous fact immediately imply that S satisfies Condi-
tion (NOA). But if (NOA) is satisfied, then, in order to obtain the conditions of Fact 1,
one has to require that, (*) if for a point x and two disjoint lines L1, L1 not containing
x, there are at least two transversals of L1, L2 through x, this is also true for every other
choice of x on any transversal of L1, L2 (as long as x /∈ L1 ∪ L2). Our main aim is to
entirely delete this condition (*), i.e., we will derive (*) from (NOA).

Fact 2 (Teirlinck [4]) Let S = (P,L, E) be a planar space all planes of which are affino-
projective semiaffine, and such that every line has at least four points. Then S is an
affino-projective semiaffine space.

Fact 3 (Dembowski & Kuiper [3]) Every finite semiaffine plane is affino-projective.

Corollary 4 (Beutelspacher, De Vito, Lo Re [2]) Let S = (P,L) be a finite linear
space such that each line contains at least four points and such that through every point
outside two given disjoint but nonparallel lines there is at most one transversal. Then S
is an affino-projective semiaffine space, granted that every point on every transversal of
two parallel lines (but not contained in these lines) is a witness for their parallelity.

The aim of the present paper is to considerably weaken the conditions of Fact 1 by
virtually deleting the last condition (i.e., we rephrase as done above and delete Condition
(*)), and to remove the finiteness condition in Corollary 4. The latter will be done by
proving directly that every plane of a semiaffine space containing at least two planes is
affino-projective, granted there are infinitely many points per line. Of course, the case
where S is a semiaffine plane cannot be included since there are counterexamples, see [3].
Hence we have the following theorem.

Theorem 5 A linear space in which every line carries at least four points and which
satisfies Condition (NOA) is either a line, a semiaffine plane, or an affino-projective
semi-affine space.

It is clear that Theorem 5 follows from our First and Second Main Results.

Note that Fact 1 is also true for linear spaces with arbitrary line size, in particular when
there are lines of size two. However, this cannot be true for our First Main Result as the
following counterexample shows. Let S consist of a point ∞ and two disjoint families of
points P ′ and P ′′. The lines are all pairs of points where one point belongs to P ′ and
the other to P ′′, together with the sets P ′ ∪ {∞} and P ′′ ∪ {∞}. Then S satisfies the
conditions of our First Main Result (except for the line sizes of course), but not of Fact 1.
Moreover, it is not a semiaffine plane. So we do need the condition on the size of the lines
in our First Main Result.
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3 Proofs

3.1 First Main Result

By Fact 1, it suffices to show that, for two parallel lines L1 and L2, and any transversal
M , every point x on M \ (L1 ∪L2) is a witness for the parallelity of L1 and L2. We prove
a few lemmas.

Throughout, we assume that L1 and L2 are two given parallel lines, with witness p.

Lemma 6 Every line parallel to L1 with witness p is also parallel to L2 with witness p.

Proof Suppose, by way of contradiction, that a line L′ intersects L2 in a point a, and
that L′ is parallel with L1 with witness p. Let a′ be the intersection of L1 and ap. Pick
b on L′, with b 6= a. Pick b′ on L1, with b′ 6= a′ and b′ /∈ pb. Note that pb meets L1.
Consider the line bb′.

• Assume bb′ meets L2. Then the two lines bb′ and bp through b meet both of L1 and
L2, hence, by (NOA), b is a witness for the parallelity of L1 and L2. Consequently
ba, which equals L′, must meet L1, too, a contradiction to our assumption.

• Now assume that bb′ is disjoint from L2, and hence is parallel with it with witness
p (since pb meets L2 because it meets L1, and pb′ meets L2 since it meets L1, and
L1 and L2 are parallel with witness p). This implies that pa meets bb′, say in the
point c.

Pick d on L′, d /∈ {a, b}. Pick e on L2, e 6= a, and e /∈ pd (for instance, to fix the
ideas, we can choose e on the line pb). If de met L1, then, since pd meets L1 and
hence L2, we see that d would be a witness for the parallelity of L1 and L2, implying
da = L′ meets L1, a contradiction. Hence de is disjoint from L1. But both of pd and
pe meet L1; hence p is a witness for the parallelity of L1 and de. It follows that pa
meets de. Now, if de and bb′ were disjoint, then they would be parallel with witness
a, as L′ and ap both meet both of de and bb′. This would imply that also L2 meets
bb′, a contradiction. So ed and bb′ meet in a point f .

Since ed and L1 are parallel with witness p, the line fp meets L1 and hence also L′.
So both lines fp and fb meet both of L′ and L1, hence the latter are parallel with
witness f , implying fd meets L1, the final contradiction.

Hence L′ meets L1 and the lemma is proved. �

We can already conclude the following.

Corollary 7 Every point not on L1 ∪ L2 on a transversal of L1 and L2 that contains p,
is a witness for the parallelity of L1 and L2.
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Proof If x is such a point, then by the previous lemma, every line through x meeting
L1 meets L2 and vice versa. �

We now prove that every transversal of L1 and L2 contains a witness for the parallelity
of L1 and L2.

Lemma 8 Every transversal M of L1 and L2 contains a witness for the parallelity of L1

and L2.

Proof Set xi := Li ∩ M , i = 1, 2, and set yi = px3−i ∩ Li, i = 1, 2. Let z1 be a point
on L1, z1 /∈ {x1, y1}. If pz1 meets M , then the result follows from Corollary 7. So we
may assume that pz1 and M are disjoint, in which case they are parallel with witness
y2 (noting that pz1 meets L2). Consequently y2z1 meets M in some point w. But now
clearly w is a witness for the parallelity of L1 and L2 and belongs to M . �

Combining Corollary 7 with Lemma 8, the First Main Result follows from Fact 1.

3.2 Second Main Result

Now we assume that S is a semiaffine planar space, and we may assume that each line
has infinitely many points. We forget about the definition of parallelity previously given,
and call now two lines L, M parallel, in symbols L ‖ M , if they are coplanar and disjoint
or equal. Our first aim is to prove that parallelism is an equivalence relation.

Lemma 9 Parallelism in a semiaffine space S is an equivalence relation.

Proof Suppose L1 ‖ L ‖ L2. We clearly may assume that L1 6= L2 6= L 6= L1. Let πi

be the plane containing L and Li, i = 1, 2. Note that L1 and L2 are disjoint as otherwise
π1 = π2 and so L1 = L2 by the axioms of semiaffine planes. Pick points xi ∈ Li, i = 1, 2,
and let x be an arbitrary point on L. It is easy to see that there exists a line M meeting
xx1 ∪xx2 ∪x1x2 in three distinct points y, y1, y2, with y ∈ x1x2, yi ∈ xxi, i = 1, 2. Choose
a point x′ ∈ L, x′ 6= x. In πi, the line x′yi meets Li in some point x′

i, i = 1, 2 (otherwise
there are two lines through x′ in πi parallel to Li). Consider the plane π generated by
x′, y1, y2.

Suppose first that for some i ∈ {1, 2}, the line yx′

i meets the line x′x′

3−i, say in the point
z. Then the plane α generated by y and Li contains x3−i and z, and so it meets the plane
π3−i in the line K := x3−iz (clearly, x3−i 6= z). If K met L, then the intersection point
would belong to α. Since also Li belongs to α, this would imply that α coincides with πi,
contradicting y /∈ πi. Hence K and L are disjoint in π3−i, implying that K = L3−i. So α
contains the disjoint lines L1 and L2; consequently L1 ‖ L2.

Now suppose that x′

1
y is disjoint from x′x′

2
and x′

2
y is disjoint from x′x′

1
. We can find

y0 ∈ y1y2, y1 6= y0 6= y2 and x0 ∈ x1x2, x1 6= x0 6= x2, such that x0y0 contains x. Then
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x′

iy meets x′y0, say in the point zi, i = 1, 2. The same argument as in the foregoing
paragraph now shows that zi 6= x0 and x0zi is parallel to L in the plane π0 spanned by L
and x0, i = 1, 2; this already implies x0z1 = x0z2 =: L0. Furthermore, as in the previous
paragraph, L1 ‖ L0 ‖ L2 and L0, Li are contained in the plane α0 spanned by y and L0,
for i = 1, 2. Hence α0 contains both L1 and L2 and the lemma is proved. �

The next lemma shows that each parallel class of lines is either trivial or large, in the
sense that, if the class is not trivial, each plane through every member of the parallel class
contains a lot of other members.

Lemma 10 Let L be a line of S, and let π1, π2 be two distinct planes through L. If some
line in π1 is parallel to L, but distinct from L, then there is at most one point x in π2 not
belonging to a line parallel to L.

Proof Suppose there are two points x, y in π2 with the property that no line in π2

through x or y is parallel to L. Then the line xy is certainly not parallel to L and meets
L in some point z. Choose a second point z′ 6= z on L. Let L1 6= L in π1 be parallel to L
and choose two points z1, z

′

1
on L1, with z1 6= z′

1
, in such a way that zz1 and z′z′

1
meet in

a point t. Choose a point u on xy, u /∈ {x, y, z}, such that the line T := tu is not parallel
to either xz1 or yz1 (here we actually need at least six points on the line xy; in the finite
case with at least four points per line, another argument should be included). It follows
that xz1 meets T in some point px and yz1 meets T in some point py.

Consider the plane α spanned by T and z′, which also contains z′
1
. One of the lines pxz

′

1
,

pyz
′

1
is not parallel to uz′ in α; say pxz

′

1
meets uz′ in a point x′. Now the plane αx spanned

by px and L1 contains two points (namely, x and x′) of π2, and hence it contains the line
xx′ of π2. Clearly xx′ is parallel to L1, hence also to L, a contradiction. �

It now follows that there are two types of lines in S: one type of lines, which we call
projective, consists of those lines that have no parallel line; the other type, called affine,
consists of lines that have parallel lines in every plane to which they belong.

Using this lemma, we can now use exactly the same proof as for Lemma 10 to show the
following slightly stronger result.

Lemma 11 Let L be an affine line in some plane π2. If there exists a point x in π2 not
contained in a line of π2 parallel to L, then x belongs to every projective line contained in
π2.

Proof Suppose x ∈ π2 is not contained in a line of π2 parallel to L, and suppose x
does not belong to a given projective line L′ of π2. Then, in the proof of Lemma 10, we
can disregard y and we can choose z outside L′, we can choose z′ in L ∩ L′, and we can
choose u on L′ (and u ∈ {x, z}, as required). Then, with the above notation, the line pxz

′

1

always meets z′u in some point x′ and xx′ is parallel to L, a contradiction. �

We now handle the case where a plane contains two intersecting affine lines.
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Lemma 12 Let π be a plane of S and suppose that π contains two intersecting affine
lines L1, L2. Then either π is an affine plane, or π is an affino-projective semiaffine
plane arising from an affine plane by adding just one point at infinity.

Proof Let π, L1, L2 be as described. Since we assume that S has at least two planes,
there must be a point outside π, and hence there exists a line K not belonging to π but
intersecting π in L1 ∩ L2 =: x. By Lemma 10, there is at most one point xi on K such
that the plane αi spanned by Li and K contains no line through that point parallel to Li,
i = 1, 2. Since lines have at least four points (in fact, we assume infinitely many), we find
a point x′ on K and distinct lines L′

1
, L′

2
parallel to L1, L2, respectively, and containing x′.

Denote the plane spanned by L′

1
, L′

2
by π′. Since clearly the lines L′

1
and L′

2
do not have

any point in common with π (as K does not belong to π and every triple of noncollinear
points is contained in a unique plane), the planes π and π′ meet in at most one point (if
they met in a line, then this line would meet at least one of L′

1
or L′

2
, contradicting our

observation just made). Hence there are two possibilities.

• Suppose π ∩ π′ = ∅. Let yi be an arbitrary point on Li, i = 1, 2, with yi 6= x. Let
k be a point on K, with x 6= k 6= x′. In the plane αi, the line kyi is not parallel
to L′

i, hence it meets it in a point y′

i, i = 1, 2. The lines y1y2 and y′

1
y′

2
belong to

the same plane and are disjoint; so they are parallel. Hence y1y2 is an affine line.
Given z1 on L1, with z1 6= x, we can find a point z′

1
on L′

1
, with z′

1
6= x′, such

that y1z
′

1
∩ K 6= ∅ 6= z1z

′

1
∩ K. Performing twice the construction above with k

substituted with y1z
′

1
∩K and z1z

′

1
∩K, respectively (and the second time the roles

of π and π′ interchanged), we see that there is a line in π containing z1 and parallel
to y1y2. Replacing L1 by a parallel line, we see that there is also a line parallel to
y1y2 containing x. Similarly, we also see that all lines in π must be affine. It now
follows easily that through every point of π there is a line parallel to any given line.
Hence π is an affine plane.

• Suppose now π ∩ π′ = {p}, with p ∈ P. Similarly as above, one shows that all lines
of π not containing p are affine lines, and that for every point q 6= p, and every line
L of π, with p /∈ L, there exists a line L′ ⊆ π, with q ∈ L′ ‖ L.

Suppose now, by way of contradiction, that there was an affine line M in π containing
p. Then there would be a line M ∗ parallel to M inside π not containing p. With the
notation of the previous paragraphs, this would imply that M ∗ is parallel to some
line M ′ in π′. By the transitivity of parallelism (see Lemma 9), this yields M ‖ M ′.
But no plane contains both M and M ′ as the plane generated by M ′ and p ∈ M
does not contain M , a contradiction.

Hence all lines in π through p are projective. Removing p from π, we clearly obtain
an affine plane.

The lemma is proved. �
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From now on, we consider only planes π having no intersecting affine lines, i.e., planes
admitting only one parallel class of lines. Of course, if there is no affine line, then the
plane is a projective plane, and we are done. Hence we may assume that there is at least
one affine line L. Since all lines of π meeting L are projective, Lemma 11 implies that π
is the union of all lines of π parallel to L. Adding a point at infinity corresponding with
that parallel class of lines in the usual way, we see that π arises from a projective plane
by deleting one point and no lines.

Hence we have proved:

Theorem 13 In a semiaffine planar space with at least two planes, every plane is an
affino-projective semiaffine plane.

Our Second Main Result now follows from Teirlinck’s result Fact 2. However, a direct
proof is also possible, and we sketch one here (but leave the details to the reader). We
add to S a point at infinity for each parallel class of lines, and add that point to each
line of that parallel class. We add lines at infinity, containing points at infinity and
possibly ordinary points, corresponding to the lines at infinity of the semiaffine planes of
S which arise from affine planes where at most one point at infinity is added. Hence we
have completed every semiaffine plane to a projective plane. It is now trivial to check
Pasch’s axiom if all lines considered are contained in the completion of a semiaffine plane
(belonging to E). So we are reduced to check Pasch’s axiom in the case where the elements
are not contained in any member of E , but are all “at infinity” of some planes. This case
reduces readily to the “three-dimensional” case, i.e., to a subspace of S generated by two
planes intersecting in a line. Using the structure of affino-projective semiaffine planes, the
rest of the proof is a tedious but elementary exercise. So one obtains a projective space
in which S is naturally embedded, and now the Second Main result is clear.
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