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Abstract

The notion of a conjugate harmonic pair in the context of Hermitean Clifford analysis is
introduced as a pair of specific harmonic functions summing up to a Hermitean monogenic
function in an open region Ω of Cn. Under certain geometric conditions on Ω the conjugate
harmonic to a given specific harmonic is explicitly constructed and the potential or primitive
of a Hermitean monogenic function is determined.
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1 Introduction

When considering a region, i.e. an open connected set Ω of the complex plane, it is well–known,
by the Hauptsatz of the Cauchy theory (see e.g. [15]), that the following are equivalent:

(i) Ω is simply connected;
(ii) every holomorphic function in Ω has a holomorphic primitive F , such that ∂zF = f in Ω,

with ∂z = 1
2 (∂x − i∂y) the conjugate Cauchy–Riemann operator;

(iii) every harmonic function u in Ω has a conjugate harmonic v such that u+ iv is holomorphic
in Ω.

Note that if F = U + iV is a holomorphic primitive of the holomorphic function f in Ω, then
automatically 2U and 2iV are two conjugate harmonic primitives of f in Ω since

f = ∂zF = ∂xF = −i∂yF

= ∂xU + i∂xV = −i∂yU + ∂yV = (∂x − i∂y)U = (∂x − i∂y)(iV )
= ∂z(2U) = ∂z(2iV )

Also note that if u and v are conjugate harmonics in Ω and F = U + iV is a holomorphic primitive
of the holomorphic function f = u+ iv in Ω, then

u = ∂xU = ∂yV and v = ∂xV = −∂yU

Even when the region Ω is not simply connected, it is still possible to construct locally a harmonic
primitive F̃ of a given holomorphic function f in Ω. Indeed there holds the following result involving
the conjugate Pompeiu transform, the Pompeiu transform itself being an inverse of the Cauchy–
Riemann operator.
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Lemma 1. Let f be holomorphic in the region Ω. For each Ω0 ⊂ Ω such that Ω0 is compact and
contained in Ω, the function F̃ given by

F̃ (z) =
1

2πi

∫
Ω0

f(w)
w − z

dw ∧ dw

is a harmonic primitive of f in Ω0, satisfying there ∂zF̃ = f and ∆F̃ = 0.

As an example consider the holomorphic function
1
z

in the region Ω = C\{0} which has no holo-

morphic primitive in Ω, but which shows there the harmonic primitive F̃ = 2 ln |z| = ln (x2 + y2).

In [29] the notion of a conjugate harmonic pair was generalized to Euclidean space Rm+1 as
follows: a real vector field F ∗ = [U0, U1, . . . , Um] is called an (m+1)–tuple of conjugate harmonics
in a region Ω of Rm+1 if it satisfies in Ω the so–called Riesz system{

divF ∗ = 0
curlF ∗ = 0 (1.1)

or more explicitly {
∂X0U0 + ∂X1U1 + . . .+ ∂Xm

Um = 0
∂Xi

Uj − ∂Xj
Ui = 0, i 6= j, i, j = 0, . . . ,m (1.2)

If Ω ⊂ Rm+1 is moreover contractible to a point, then such an (m + 1)–tuple F ∗ of conjugate
harmonics may be realized as the gradient of a real–valued harmonic function φ in Ω: F ∗ = ~∇φ
or Uj = ∂Xj

φ, j = 0, . . . ,m.

In [5] an alternative notion of conjugate harmonics in Euclidean space was introduced within
the context of so–called Clifford analysis. Clifford analysis, in its most basic form, is a higher
dimensional generalization of holomorphic function theory in the complex plane, and a refinement
of harmonic analysis, see e.g. [5, 21, 17, 23, 22]. At the heart of this function theory lies the
notion of a monogenic function, i.e. a Clifford algebra–valued null solution of the Dirac operator
∂ =

∑m
α=1 eα ∂Xα

, where (e1, . . . , em) is an orthonormal basis of Rm underlying the construction
of the real Clifford algebra R0,m of signature (0,m). We refer to this setting as the Euclidean
case, since the fundamental group leaving the Dirac operator ∂ invariant is the orthogonal group
O(m; R), which is doubly covered by the Pin(m) group of the Clifford algebra. Similarly, the
Clifford algebra R0,m+1 is generated by the basis (e0, e1, . . . , em) and, by singling out the basis
vector e0, it can be split as

R0,m+1 = R0,m ⊕ e0 R0,m

Accordingly, a function f defined on Rm+1 with values in R0,m+1 can be split as f = u+e0 v where
u and v are R0,m–valued; sometimes u and v are referred to as the real and the imaginary parts of
the function f . By ∂ we now denote the Dirac operator in Rm+1, i.e. ∂ =

∑m
α=0 eα ∂Xα

= e0 ∂X0+∂.
If f = u + e0 v is monogenic in a region Ω of Rm+1, i.e. ∂f = 0 in Ω, then u and v are harmonic
functions in Ω satisfying the system {

∂X0v + ∂u = 0
∂v + ∂X0u = 0

which can be seen as a generalization of the classical Cauchy–Riemann system in the complex
plane. The pair (u, v) is then called a pair of conjugate harmonics in Ω. The question under
which geometric condition on Ω the monogenic function f is determined, up to an R0,m–valued
monogenic function, by its harmonic first component u, was solved in a constructive way in [5] as
follows.
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Definition 1. Let Ω ⊂ Rm+1 be open and let Ω̃ be its projection on Rm along the e0–direction.
Then Ω is called e0–normal if there exists an X∗

0 ∈ R such that for all X ∈ Ω̃, the intersection
Ω ∩ {te0 +X | t ∈ R} 6= ∅ is connected and contains the point X∗

0 e0 +X.

Theorem 1. Let Ω ⊂ Rm+1 be an e0–normal region and let u be an R0,m–valued harmonic function
in Ω. Then there exists an R0,m–valued harmonic potential H in Ω such that

(i) v = −∂H is an R0,m–valued conjugate harmonic in Ω to u = ∂X0H;
(ii) f = u+ e0v = ∂e0H is monogenic in Ω.

Remark 1. If, in particular, u is a real–valued harmonic function in Ω, then the harmonic po-
tential H is also real–valued, the conjugate harmonic v =

∑m
j=1 ejvj is Clifford vector–valued and

the vector field
F ∗ = [u,−v1,−v2, . . . ,−vm]

is an (m+ 1)–tuple of conjugate harmonics in the sense of Stein–Weiss, for which F ∗ = gradH.

Also the question of the monogenic primitive has been settled in the Clifford analysis framework.
Introducing the Cauchy–Riemann operator D = e0∂ = ∂X0 + e0∂ and its Clifford conjugate
D = −∂e0 = ∂X0 − e0∂, which factorize the Laplace operator: DD = DD = ∆m+1, we have the
following result.

Theorem 2. Let Ω ⊂ Rm+1 be an e0–normal region and let f be monogenic in Ω. Then the
function F given by

F (X0, X) =
1
2

∫ X0

X∗
0

f(t,X) dt+
1
2
e0 ∂g(X)

where the function g satisfies the equation ∆mg(X) = f(X∗
0 , X), is a monogenic primitive of f in

Ω, satisfying there DF = 0 and DF = f .

Note that, as is the case in the complex plane, a monogenic primitive F = U + e0V of the mono-
genic function f = u+ e0v in Ω provides automatically two conjugate harmonic primitives 2U and
2e0V in the same region, satisfying D(2U) = D(2e0V ) = f and also u = ∂X0(2U) = ∂(−2V ), v =
∂X0(2V ) = ∂(−2U).

Even when the region Ω is not e0–normal, it is still possible to construct locally a harmonic
primitive of a given monogenic function in Ω. Indeed, we have the following result involving
the conjugate Teodorescu transform, the Teodorescu transform itself being a right inverse of the
Cauchy–Riemann operator D.

Lemma 2. Let f be monogenic in the region Ω ⊂ Rm+1. For each bounded open Ω0 ⊂ Ω such
that Ω0 is compact and contained in Ω, the function F̃ given by

F̃ (X0, X) =
∫

Ω0

E(Y0 −X0, Y −X)f(Y0, Y ) dVY

with
E(X0, X) =

1
am+1

X0 + e0X

|X0 + e0X|m+1

and am+1 the area of the unit sphere in Rm+1, is a harmonic primitive of f in Ω0, satisfying there
∆m+1F̃ = 0 and DF̃ = f .

3



In the books [26, 16] and the series of papers [27, 18, 1, 2, 11, 19, 8] so–called Hermitean Clif-
ford analysis recently emerged as a refinement of Euclidean Clifford analysis, where the considered
functions now take their values in the complex Clifford algebra Cm or in complex spinor space.
Hermitean Clifford analysis is based on the introduction of an additional datum, a so–called com-
plex structure J , inducing an associated Dirac operator ∂J ; it then focusses on the simultaneous
null solutions of both operators ∂ and ∂J , called Hermitean monogenic functions. The correspond-
ing function theory is still in full development, see also [7, 12, 28, 4, 3, 20, 13, 10]. It is worth
mentioning that the traditional holomorphic functions of several complex variables are a special
case of Hermitean monogenic functions.

The aim of this paper is (i) to introduce the notion of a conjugate pair of harmonics summing up
to a Hermitean monogenic function, (ii) to construct in this Hermitean Clifford analysis context the
harmonic conjugate to a given harmonic function and (iii) to determine, under certain geometric
constraints on the domain considered, the potential or primitive of a Hermitean monogenic function.

2 Preliminaries on Clifford analysis

For a detailed description of the structure of Clifford algebras we refer to e.g. [25]. Here we only
recall the necessary basic notions. The real Clifford algebra R0,m is constructed over the vector
space R0,m endowed with a non–degenerate quadratic form of signature (0,m) and generated by
the orthonormal basis (e1, . . . , em). The non–commutative Clifford or geometric multiplication in
R0,m is governed by the rules

eαeβ + eβeα = −2δαβ , α, β = 1, . . . ,m (2.1)

As a basis for R0,m one takes for any set A = {j1, . . . , jh} ⊂ {1, . . . ,m} the element eA = ej1 . . . ejh
,

with 1 ≤ j1 < j2 < · · · < jh ≤ m, together with e∅ = 1, the identity element. Any Clifford num-
ber a in R0,m may thus be written as a =

∑
A eAaA, aA ∈ R, or still as a =

∑m
k=0[a]k, where

[a]k =
∑

|A|=k eAaA is the so–called k–vector part of a. Euclidean space R0,m is embedded in
R0,m by identifying (X1, . . . , Xm) with the Clifford vector X =

∑m
α=1 eαXα, for which it holds

that X2 = −|X|2. The vector–valued first order differential operator ∂ =
∑m

α=1 eα ∂Xα , called
Dirac operator, is the Fourier or Fischer dual of the Clifford variable X. It is this operator which
underlies the notion of monogenicity of a function, a notion which is the higher dimensional coun-
terpart of holomorphy in the complex plane. More explicitly, a function f defined and continuously
differentiable in an open region Ω of Rm and taking values in (a subspace of) the Clifford algebra
R0,m, is called (left) monogenic in Ω if ∂[f ] = 0 in Ω. As the Dirac operator factorizes the Laplace
operator: ∆m = −∂2, monogenicity can be regarded as a refinement of harmonicity. The Dirac
operator being rotationally invariant, or more precisely: invariant under the orthogonal group
O(m; R), which is doubly covered by the Pin(m) group of the Clifford algebra, this framework is
usually referred to as Euclidean Clifford analysis.

When allowing for complex constants, the generators (e1, . . . , em), still satisfying (2.1), produce
the complex Clifford algebra Cm = R0,m ⊕ iR0,m. Any complex Clifford number λ ∈ Cm may
thus be written as λ = a+ ib, a, b ∈ R0,m, leading to the definition of the Hermitean conjugation
λ† = (a + ib)† = a − ib, where the bar notation stands for the Clifford conjugation in R0,m,
i.e. the main anti–involution for which eα = −eα, α = 1, . . . ,m. This Hermitean conjugation
leads to a Hermitean inner product on Cm given by (λ, µ) = [λ†µ]0 and its associated norm
|λ| =

√
[λ†λ]0 = (

∑
A |λA|2)1/2. This is the framework for Hermitean Clifford analysis, which

emerges from Euclidean Clifford analysis by introducing an additional datum, a so–called complex
structure, i.e. an SO(m; R)–element J with J2 = −1 (see [1, 2]), forcing the dimension to be
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even: from now on we put m = 2n. Usually J is chosen to act upon the generators of C2n as
J [ej ] = −en+j and J [en+j ] = ej , j = 1, . . . , n. By means of the projection operators ± 1

2 (1 ± iJ)
associated to J , first the Witt basis elements (fj , f

†
j)

n
j=1 for C2n are obtained:

fj =
1
2
(1 + iJ)[ej ] =

1
2
(ej − i en+j), j = 1, . . . , n

f†j = −1
2
(1− iJ)[ej ] = −1

2
(ej + i en+j), j = 1, . . . , n

The Witt basis elements satisfy the respective Grassmann and duality identities

fjfk + fkfj = f†jf
†
k + f†kf†j = 0, fjf

†
k + f†kfj = δjk, j, k = 1, . . . , n

whence they are isotropic: (fj)2 = 0, (f†j)
2 = 0, j = 0, . . . , n. Next, a vector in R0,2n is now denoted

by (x1, . . . , xn, y1, . . . , yn) and identified with the Clifford vector X =
∑n

j=1(ej xj + en+j yj),
producing, by projection, the Hermitean Clifford variables z and z†:

z =
1
2
(1 + iJ)[X] =

n∑
j=1

fj zj , z† = −1
2
(1− iJ)[X] =

n∑
j=1

f†j z
c
j

where complex variables zj = xj +iyj have been introduced, with complex conjugates zc
j = xj−iyj ,

j = 1, . . . , n. Finally, the Euclidean Dirac operator ∂ gives rise, in the same way, to the Hermitean
Dirac operators ∂z and ∂†z :

∂†z =
1
4
(1 + iJ)[∂] =

n∑
j=1

fj ∂zc
j
, ∂z = −1

4
(1− iJ)[∂] =

n∑
j=1

f†j ∂zj

involving the Cauchy–Riemann operators ∂zj = 1
2 (∂xj + i∂yj ) and their complex conjugates ∂zj =

1
2 (∂xj − i∂yj ) in the zj–planes, j = 1, . . . , n. Observe that Hermitean vector variables and Dirac
operators are isotropic, i.e. z2 = (z†)2 = 0 and (∂z)2 = (∂†z)

2 = 0, whence the Laplace operator
allows for the decomposition and factorization

∆2n = 4(∂z∂
†
z + ∂†z∂z) = 4(∂z + ∂†z)

2 = −4(∂†z − ∂z)2

while dually
−(z − z†)2 = (z + z†)2 = z z† + z†z = |z|2 = |z†|2 = |X|2

A continuously differentiable function g in a region, i.e. an open connected set Ω of R2n with
values in (a subspace of) the complex Clifford algebra C2n then is called (left) Hermitean monogenic
(or h–monogenic) in Ω if and only if it satisfies in Ω the system ∂z g = 0 = ∂†z g, or, equivalently,
the system ∂ g = ∂J g, with ∂J = J [∂]. A major difference between Hermitean and Euclidean
Clifford analysis concerns the underlying group invariance. Where ∂ is invariant under the action
of SO(m), the system invariance of (∂z, ∂

†
z) breaks down to the unitary group U(n), see e.g. [1, 2].

For this reason U(n) plays a fundamental role in the development of the Hermitean function theory.

3 Conjugate pairs in the Hermitean framework

We consider functions g(z1, . . . , zn, z1, . . . , zn), defined in a region Ω of R2n ' Cn and taking values
in spinor space Sn realized as Sn =

∧†(f†1, . . . , f
†
n)I, I being the self–adjoint idempotent given
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by I = f1f
†
1 . . . fnf†n. In retrospect the notion of conjugate harmonic pair in Euclidean Clifford

analysis was made possible by the splitting of the value space R0,m+1 into two equivalent parts:
R0,m+1 = R0,m ⊕ e0 R0,m, mimicing the splitting of the complex plane as C = R ⊕ iR. So it is
clear that also in the Hermitean Clifford setting we will need a splitting of the value space into two
equivalent parts. To that end we single out the Witt basis vectors fn and f†n, and we decompose
spinor space as

Sn =
∧†

(f†1, . . . , f
†
n−1) I ⊕ f†n

∧†
(f†1, . . . , f

†
n−1) I

Accordingly the functions under consideration are rewritten as g = g0 + f†n g
1, where both g0 and

g1 take their values in
∧†(f†1, . . . , f

†
n−1) I. In the same order of ideas the Hermitean variables and

the Hermitean Dirac operators are decomposed as

z = z̃ + fn zn, z̃ =
n−1∑
j=1

fj zj

z† = z̃† + f†n zn, z̃† =
n−1∑
j=1

f†j zj

∂z = ∂̃z + f†n ∂zn
, ∂̃z =

n−1∑
j=1

f†j ∂zj

∂†z = ∂̃†z + fn ∂zn
, ∂̃†z =

n−1∑
j=1

fj ∂zj

Definition 2. If g : Ω −→ Sn is Hermitean monogenic in Ω, and we write g as g0 + f†n g
1, then

the ordered pair (g0, g1) is called a Hermitean conjugate pair in Ω.

The properties of the conjugate pair (g0, g1) will follow from the Hermitean monogenicity of the
function g. From ∂zg = 0 in Ω we obtain ∂̃zg

0 + f†n ∂zng
0 + ∂̃zf

†
n g

1 = 0, or

∂̃zg
0 = 0 (3.1)

∂zn
g0 − ∂̃zg

1 = 0 (3.2)

seen the different value spaces of both expressions. In a similar way it follows from ∂†zg = 0 in Ω
that

∂̃†zg
0 + ∂zn

g1 = 0 (3.3)

∂̃†zg
1 = 0 (3.4)

We can make the following observations.

(a) As g is Hermitean monogenic and hence monogenic in Ω, it is harmonic, and so are the
components g0 and g1, since the Laplace operator is a scalar operator.

(b) The function g0 always belongs to Ker ∂̃z, but it cannot be Hermitean monogenic w.r.t. ∂̃z

and ∂̃†z unless g1 does not depend on the variable zn.

(c) The function g1 always belongs to Ker ∂̃†z , but it cannot be Hermitean monogenic w.r.t. ∂̃z

and ∂̃†z unless g0 does not depend on the variable zn.
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(d) Combining the relations (3.2) and (3.3) we obtain

∂̃z∂̃
†
zg

0 + ∂zn
∂zn

g0 =
[
∂̃z∂̃

†
z + (fn∂zn

)(f†n∂zn
)
]
g0 = 0 (3.5)

and also

∂̃†z ∂̃zg
1 + ∂zn

∂zn
g1 =

[
∂̃†z ∂̃z + (fn∂zn

)(f†n∂zn
)
]
g1 = 0 (3.6)

(e) Combining (3.1) and (3.5) we obtain

1
4
∆g0 =

(
∂†z∂z + ∂z∂

†
z

)
g0 =

(
∂̃z∂̃

†
z + f†n∂zn

∂̃†z + ∂̃†z ∂̃z + ∂̃†zf
†
n∂zn

+ fnf†n∂zn
∂zn

)
g0

=
(
∂̃z∂̃

†
z + fnf†n∂zn

∂zn

)
g0 = 0 (3.7)

confirming the harmonicity of g0. Similarly, (3.4) and (3.6) imply the harmonicity of g1.
(f) The system (3.2)–(3.3) can be seen as the CR–system in the Hermitean Clifford analysis

context, and so the following problem arises quite naturally.

Problem
Given in the open region Ω ⊂ Cn the harmonic function g0 with values in

∧†(f†1, . . . , f
†
n−1) I, and

which moreover belongs to Ker ∂̃z, find the harmonic function g1 also with values in
∧†(f†1, . . . , f

†
n−1) I

and moreover belonging to Ker ∂̃†z , such that (g0, g1) is a Hermitean conjugate pair, i.e. such that
the function g = g0 + f†ng

1 is Hermitean monogenic in Ω.

This problem clearly has no unique solution, since a Hermitean monogenic function with values
in f†n

∧†(f†1, . . . , f
†
n−1) I can always be added to the second term. We will now solve this problem

in a constructive way at least locally.

Take the function g0 ∈ Ker ∂̃z ∩ Ker∆, i.e. g0 satisfies conditions (3.1), (3.7), and also (3.5).
Moreover, consider a bounded open region Ω0 ⊂ Cn such that its closure Ω0 is contained in Ω
and, in addition, Ω0 = Ωn × Ω̃ for some open regions Ωn in the complex zn–plane and Ω̃ in Cn−1.
For the moment, Ω̃ is not further specified, but it is clear that for each z̃∗ ∈ Ω̃, the corresponding
variables zn for which (z̃∗, zn) ∈ Ω0, belong to the same region Ωn. Then we want to solve equation
(3.3) for g1 on Ω0. In fact this is a problem in the complex zn–plane, for which we can use the
following lemma.

Lemma 3 (see [24, 1.1.3]). Let G ⊂ C be a bounded open region, let f ∈ C∞(G) be a bounded
complex-valued function and let TGf be its Pompeiu transform, given by

TGf(z) = − 1
2πi

∫
G

f(w)
w − z

dw̄ ∧ dw, z ∈ G

Then F := TGf belongs to C∞(G) and solves the equation ∂zF = f .

Using Lemma 3, it is easy to see that the equation (3.3) has a solution G1(zn, zn, z̃, z̃
†) ∈ C∞(Ω0)

and all solutions of (3.3) are given by

g1 = G1 + h1(zn, z̃, z̃
†) (3.8)
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where the following conditions are imposed on the function h1, since the function g1, defined by
(3.8), should satisfy (3.2) and (3.4):

∂zng
0 = ∂̃zG

1 + ∂̃zh
1 (3.9)

∂̃†zG
1 + ∂̃†zh

1 = 0 (3.10)

Note that in condition (3.9) the variable zn does not occur since

∂zn
∂zn

g0 − ∂zn
∂̃zG

1 = ∂zn
∂zn

g0 + ∂̃z∂̃
†
zg

0 = 0

due to (3.5). In order for equation (3.9) to have a C∞(Ω0) solution h1(zn, z̃, z̃
†), a certain geo-

metric condition on Ω̃ will have to be imposed. This issue will be explicitly addressed in Section
4. It turns out that it is sufficient to assume that Ω̃ is strictly pseudoconvex (see Lemma 3). The
particular form of Ω0 ensures that for each z∗n ∈ Ωn fixed, the corresponding variables z̃ for which
(z̃, zn) ∈ Ω0 belong to the same region Ω̃. Also note that, seen the values taken by the function

G1, there holds ∂̃†zG1 = 0, which reduces equation (3.10) to ∂̃†zh1 = 0.

We thus have proven the following theorem.

Theorem 3. Let Ω be a region in Cn. Let the function

g0 : Ω→
∧†

(f†1, . . . , f
†
n−1) I

be harmonic and belonging to Ker ∂̃z, i.e. ∂̃zg
0 = 0 and ∂̃z∂̃

†
zg0 + ∂zn

∂zn
g0 = 0. Then there exists

locally in Ω a harmonic function g1 with values in
∧†(f†1, . . . , f

†
n−1) I and moreover belonging to

Ker ∂̃†z, such that (g0, g1) is a Hermitean conjugate pair.
More explicitly, let Ω0 = Ωn × Ω̃ for some bounded region Ωn in the complex zn–plane and some
bounded strictly pseudoconvex open set Ω̃ in Cn−1 such that Ω0 ⊂ Ω. Then there are solutions G1

and h1 in C∞(Ω0) of the following system of equations

∂zn
G1 = −∂̃†zg0, ∂zn

h1 = 0, ∂̃zh
1 = ∂zn

g0 − ∂̃zG
1, ∂̃†zh

1 = 0.

Moreover, the function g1 := G1 + h1 enjoys the following properties in Ω0:

(i) ∂̃†zg1 = 0, ∂̃zg
1 = ∂zn

g0, ∂zn
g1 = −∂̃†zg0;

(ii) g1 is harmonic;

(iii) g0 + f†ng
1 is Hermitean monogenic.

Let us illustrate this construction of a Hermitean conjugate pair by the following example. Given
is the function g0 = z2z

2
3f†1I in R6 ' C3. We verify that g0 takes its values in

∧
(f†1, f

†
2)I and

satisfies ∂̃zg
0 = 0, ∂̃z∂̃

†
zg0 + ∂z3∂z3g

0 = 0. As also ∂̃†zg0 = 0, we put g1 = h(z3, z̃, z̃
†) taking values

in
∧

(f†1, f
†
2)I. This function h is subject to the conditions ∂̃†zh = 0 and ∂̃zh = 2z2z3f

†
1I. If we put

h(z3, z̃, z̃
†) = h0I + h1f

†
1I + h2f

†
2I + h12f

†
1f
†
2I

we are lead to the systems ∂z1h0 = 2z2z3
∂z2h0 = 0
∂z1h2 − ∂z2h1 = 0

and

 ∂z1h1 + ∂z2h2 = 0
∂z1h12 = 0
∂z2h12 = 0

8



from which it follows that h0 = (2z1z2z3 + k(z1, z2, z3)) I. The function g1 takes the form

g1 = 2z1z2z3I + k(z1, z2, z3)I + (h1f
†
1I + h2f

†
2I) + h12f

†
1f
†
2I

with h1 and h2 satisfying {
∂z1h2 − ∂z2h1 = 0
∂z1h1 + ∂z2h2 = 0

and h12 satisfying ∂z1h12 = ∂z2h12 = 0. It is then indeed seen that the function

g = g0 + f†3g
1 = z2z

2
3f†1I + 2z1z2z3f

†
3I + f†3k(z1, z2, z3)I + (h1f

†
3f
†
1I + h2f

†
3f
†
2I) + h12f

†
3f
†
1f
†
2I

is Hermitean monogenic in C3.

A similar theorem may be formulated starting with the function g1 ∈ Ker ∂̃†z ∩Ker∆.

Theorem 4. Let Ω be an open region in Cn of the form Ω = Ωn× Ω̃, where Ωn is an open simply
connected region in the complex zn–plane, and Ω̃ is an open pseudoconvex domain in Cn−1. Let

the function g1 : Ω →
∧†(f†1, . . . , f

†
n−1) I be harmonic and belong to Ker ∂̃†z, i.e. ∂̃†zg1 = 0 and

∂̃†z ∂̃zg
1 + ∂zn

∂zn
g1 = 0. Let G0 be a solution of ∂zn

g0 = ∂̃zg
1 and put

g0 = G0 + h0(zn, z̃, z̃
†)

where h0 ∈ Ker ∂̃z satisfies

∂̃†zh
0 = −∂zn

g1 − ∂̃†zG0

Then the function g0 enjoys the following properties in Ω:

(i) ∂̃zg
0 = 0, ∂̃†zg0 = −∂zng

1, ∂zng
0 = ∂̃zg

1;

(ii) g0 is harmonic;

(iii) g0 + f†ng
1 is Hermitean monogenic.

Also here we may give an illustrative example in R6 ' C3, now starting from the function

g1 = 1
2z3z

2
2I, which takes values in

∧
(f†1, f

†
2)I and belongs to Ker ∂̃†z ∩ Ker∆. The equation to be

solved reads ∂z3g
0 = z3z2f

†
2I, with solution G0 = z3z3z2f

†
2I, from which we obtain that

g0 = z3z3z2f
†
2 I + h0(z3, z1, z1, z2, z2)

This function h0 is subject to the conditions ∂̃zh
0 = 0 and ∂̃†zh0 = − 1

2z
2
2I. The function

h0 = −1
8
z2
2z1f

†
1I −

3
8
z2z

2
2f†2I −

1
4
z2z1z1f

†
2I

satisfies the above equations, whence the function g0 takes the form

g0 = z3z3z2f
†
2 I −

1
8
z2
2z1f

†
1I −

3
8
z2z

2
2f†2I −

1
4
z2z1z1f

†
2I

The resulting function g0 + f†3g
1 may then indeed be verified to be Hermitean monogenic in C3.
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4 Complex differential forms

In the previous section we have seen that the construction of a Hermitean conjugate pair in an
open connected region Ω ⊂ Cn requires solving the equation ∂̃zh = f , where f is in Ker ∂̃z∩Ker ∆.
This problem has the nature of a ”Poincaré lemma” for the operator ∂̃z and the aim of this section
is precisely to treat this Poincaré lemma for the Hermitean Dirac operators acting on functions
with values in spinor space. To that end we will fully exploit the identification of the Hermitean
Clifford analysis setting with the one of complex differential forms, as described in detail in [14].
More precisely we will translate our Poincaré lemma to the well–known ∂–problem for complex
differential forms.

In an open connected region Ω of Cn ' R2n we consider the space
∧p,q(Ω) of complex differential

forms of bidegree (p, q):
ωp,q =

∑
|J|=p

∑
|K|=q

ωJ,K(z, z†) dzJ ∧ dzK

where ωJ,K(z1, . . . , zn, z1, . . . , zn) are scalar–valued smooth functions in Ω and

dzJ = dzj1 ∧ . . . ∧ dzjp , j1 < j2 < . . . < jp

dzK = dzk1 ∧ . . . ∧ dzkq , k1 < k2 < . . . < kq

The traditional complex derivatives in this setting are ∂, ∂, ∂∗ and ∂
∗
, given by

∂ =
n∑

i=1

∂zi dzi∧ :
∧p,q

−→
∧p+1,q

∂ =
n∑

i=1

∂zi dzi∧ :
∧p,q

−→
∧p,q+1

∂∗ =
n∑

i=1

∂zi dzi• =
n∑

i=1

∂zi (−2∂zic) :
∧p,q

−→
∧p−1,q

∂
∗

=
n∑

i=1

∂zi
dzi• =

n∑
i=1

∂zi
(−2∂zi

c) :
∧p,q

−→
∧p,q−1

where dzi• and dzi• are alternative notations for the contraction operators, inspired by the dot–
product of the Clifford algebra. The complex derivatives satisfy the following Kähler identities.

Property 1. For the complex derivatives acting on complex differential forms one has

(i) ∂2 = ∂
2

= ∂∗2 = ∂
∗2

= 0;
(ii) ∂∂

∗
+ ∂

∗
∂ = 0 = ∂∗∂ + ∂∂∗;

(iii) ∂∂ + ∂∂ = 0 = ∂∗∂
∗

+ ∂
∗
∂∗;

(iv) ∂∂∗ + ∂∗∂ = − 1
2∆ = ∂∂

∗
+ ∂

∗
∂.

In several complex variables theory the following theorem is of course well–known; it solves the
famous ∂–problem.

Theorem 5. If Ω ⊂ Cn is pseudoconvex and ϕ is a C∞–smooth (p, q + 1)–form on Ω, satisfying
∂ϕ = 0, then there exists a C∞–smooth (p, q)–form ψ on Ω, such that ∂ψ = ϕ.

As in the one complex variable case (see Lemma 3), we can the solutions of the ∂–problem
may be represented by an integral formula. Indeed, we have the following result, involving the
Koppelman-Leray integral transform RΩ.

10



Lemma 4 (see [24, 3.2.3 and 2.1.6]). Let Ω ⊂ Cn be a strictly pseudoconvex open set and let ϕ
be a bounded C∞–smooth (0, q + 1)–form on Ω, satisfying ∂ϕ = 0. Then ψ := RΩϕ is a bounded
C∞–smooth solution of ∂ψ = ϕ on Ω.

Similarly one can solve the ∂–problem, using the corresponding Koppelman-Leray integral trans-
form R̃Ω.

Theorem 4’. If Ω ⊂ Cn is pseudoconvex and ϕ is a C∞–smooth (p+ 1, q)–form on Ω, satisfying
∂ϕ = 0, then there exists a C∞–smooth (p, q)–form ψ on Ω, such that ∂ψ = ϕ.

Lemma 2’. Let Ω ⊂ Cn be a strictly pseudoconvex open set and let ϕ be a bounded C∞–smooth
(p + 1, 0)–form on Ω, satisfying ∂ϕ = 0. Then ψ := R̃Ωϕ is a bounded C∞–smooth solution of
∂ψ = ϕ on Ω.

Both theorems may be refined by taking into account the adjoint complex derivatives ∂∗ and ∂
∗
.

We will prove the second one.

Theorem 5. If Ω ⊂ Cn is pseudoconvex and ϕ is a C∞–smooth (p, q + 1)–form on Ω, satisfying
∂ϕ = 0, then there exists a C∞–smooth (p, q)–form ψ on Ω, such that

(i) ∂ψ = ϕ;
(ii) ∂

∗
ψ = 0,

or in other words: Ker(p,q+1)∂ = ∂(Ker(p,q)∂
∗
).

Theorem 5’. If Ω ⊂ Cn is pseudoconvex and ϕ is a C∞–smooth (p+ 1, q)–form on Ω, satisfying
∂ϕ = 0, then there exists a C∞–smooth (p, q)–form ψ on Ω, such that

(i) ∂ψ = ϕ;
(ii) ∂∗ψ = 0,

or in other words: Ker(p+1,q)∂ = ∂(Ker(p,q)∂∗).

Proof
From Theorem 4’ we already know that, given ∂ϕ(p+1,q) = 0, there exists a form α(p,q) such that
in Ω there holds ∂α(p,q) = ϕ(p+1,q). It is also known that (− 1

2∆) = ∂∂∗ + ∂∗∂ :
∧p,q −→

∧p,q is
surjective, so there ought to exist a form β(p,q) such that

(−1
2
∆)β(p,q) = ∂∂∗β(p,q) + ∂∗∂β(p,q) = −α(p,q)

Put ψ(p,q) = α(p,q) + ∂∂∗β(p,q). Then, as ∂2 = ∂∗2 = 0, we obtain

(i) ∂ψ(p,q) = ∂α(p,q) = ϕ(p+1,q);
(ii) ∂∗ψ(p,q) = ∂∗α(p,q) + ∂∗∂∂∗β(p,q) = ∂∗α(p,q) + ∂∗(− 1

2∆)β(p,q) = ∂∗α(p,q) − ∂∗α(p,q) = 0 �

Using the Hodge ”star”–operator ∗ :
∧p,q −→

∧n−p,n−q for which (∗)2 = (−1)(p+q)2 and

∂
∗

= ∗∂∗, ∂ = ∗∂∗∗, ∂∗ = ∗∂∗, ∂ = ∗∂∗∗

the following dual theorems are easily obtained.

Theorem 6. If Ω ⊂ Cn is pseudoconvex and ϕ is a C∞–smooth (p, q − 1)–form on Ω satisfying
∂
∗
ϕ = 0, then there exists a C∞–smooth (p, q)–form ψ on Ω such that

11



(i) ∂
∗
ψ = ϕ;

(ii) ∂ψ = 0,

or in other words: Ker(p,q−1)∂
∗

= ∂
∗
(Ker(p,q)∂).

Theorem 6’. If Ω ⊂ Cn is pseudoconvex and ϕ is a C∞–smooth (p − 1, q)–form on Ω satisfying
∂∗ϕ = 0, then there exists a C∞–smooth (p, q)–form ψ on Ω such that

(i) ∂∗ψ = ϕ;
(ii) ∂ψ = 0,

or in other words: Ker(p−1,q)∂∗ = ∂∗(Ker(p,q)∂).

Of course, we can again represent the solutions provided by the Theorems 5, 5’, 6 and 6’ by the
corresponding integral formulas. For example, we have the following result.

Lemma 3. Let Ω ⊂ Cn be a strictly pseudoconvex open set and let ϕ be a bounded C∞–smooth
(p+ 1, 0)–form on Ω, satisfying ∂ϕ = 0. Put

ψ := R̃Ωϕ+ 2∂∂∗UΩR̃Ωϕ.

Here R̃Ω is the integral transform from Lemma 2’ and UΩ is the Newtonian potential, that is,

UΩα(X) =
∫

Ω

Γ(X − Y )α(Y )dY , X ∈ R2n

with Γ the fundamental solution of the Laplace operator ∆.
Then ψ is a C∞–smooth (p, 0)–form on Ω, such that ∂ψ = ϕ and ∂∗ψ = 0.

Proof
We can follow the proof of Theorem 5’ and use Lemma 2’ and the well-known fact that, for each
bounded C∞–smooth function α on a bounded set Ω ⊂ R2n, the function β := UΩα is a C∞–smooth
solution of the Poisson equation ∆β = α on Ω. �

In the sequel we will use Theorems 5’ and 6’ for (r, 0)–forms.

In [14] it was shown in detail how the world of complex differential forms in an open connected
region Ω of Cn and the world of Clifford algebra valed multivector functions in Ω may be identified
in a natural way. The fundamental identifications read:

f†j∧ ←→ − 1
2dzj∧ f†j• ←→ − 1

2dzj• = ∂zj
c

fj∧ ←→ 1
2dzj∧ fj• ←→ 1

2dzj• = −∂zj
c

and
∂†z∧ ←→ 1

2∂ ∂†z• ←→ 1
2∂

∗

∂z∧ ←→ − 1
2∂ ∂z• ←→ − 1

2∂
∗

Now consider a smooth function F : Ω ⊂ Cn −→ S(r)
n =

∧(r)(f†1, . . . , f
†
n)I of the form

F = ϕ(z, z†) f†i1 ∧ . . . ∧ f†ir
I = ϕ(z, z†)ω(r)I

where ϕ(z, z†) is scalar–valued, and associate to it, respecting the above identification rules, the
complex (r, 0)–form

F̃ = ϕ(z, z†) (−1
2
dzi1) ∧ . . . ∧ (−1

2
dzir

) = ϕ(z, z†)ω̃(r)
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where we have put

ω̃(r) = (−1
2
)rdzi1 ∧ . . . ∧ dzir

We want to see how the action of the Hermitean Dirac operators ∂z and ∂†z on F translate into
actions on the corresponding complex differential form F̃ . To that end we calculate

∂zF =
n∑

j=1

∂zj
ϕ f†j(f

†
i1
∧ . . . ∧ f†ir

)I =
n∑

j=1

∂zj
ϕf†jf

†
i1
. . . f†ir

I =
n∑

j=1

∂zj
ϕω

(r+1)
j I

with

ω
(r+1)
j =

{
0 j ∈ {i1, . . . , ir}
f†j ∧ f†i1 ∧ . . . ∧ f†ir

j /∈ {i1, . . . , ir}
and

∂†zF =
n∑

j=1

∂zj
ϕ fj(f

†
i1
∧ . . . ∧ f†ir

)I =
n∑

j=1

∂zj
ϕfjf

†
i1
. . . f†ir

I =
n∑

j=1

∂zj
ϕω

(r−1)
j I

with

ω
(r−1)
j =

{
0 j /∈ {i1, . . . , ir}
(−1)k−1f†i1 ∧ . . . ∧ [f†ik

] ∧ . . . ∧ f†ir
j = ik, k ∈ {1, . . . , r}

The complex differential forms associated to ∂zF and ∂†zF then are given by

∂̃zF =
n∑

j=1

∂zj
ϕ ω̃

(r+1)
j

with

ω̃
(r+1)
j =

{
0 j ∈ {i1, . . . , ir}
(− 1

2 )r+1 dzj ∧ dzi1 ∧ . . . ∧ dzir
j /∈ {i1, . . . , ir}

and

∂̃†zF =
n∑

j=1

∂zj
ϕ ω̃

(r−1)
j

with

ω̃
(r−1)
j =

{
0 j /∈ {i1, . . . , ir}
(−1)k−1(− 1

2 )r−1 dzi1 ∧ . . . ∧ [dzik
] ∧ . . . ∧ dzir

j = ik, k ∈ {1, . . . , r}

On the other hand we compute the action of ∂ and ∂∗ on the form F̃ , obtaining

∂F̃ =
n∑

j=1

∂zj
ϕ(z, z†) dzj ∧ ω̃(r) =

n∑
j=1

∂zj
ϕ(z, z†) (−2) ω̃(r+1)

j

and

∂∗F̃ =
n∑

j=1

∂zjϕ(z, z†) (−2∂zjc) ω̃(r)

=
n∑

j=1

∂zj
ϕ(z, z†) (−2) (−1

2
)r(−1)k−1dzi1 ∧ . . . ∧ [dzik

] ∧ . . . ∧ dzir
δj,ik

=
n∑

j=1

∂zj
ϕ(z, z†) ω̃(r−1)

j

13



and we finally find that

∂̃zF = (−2)∂F̃

∂̃†zF = ∂∗F̃

As now F = 0 iff F̃ = 0 we readily obtain the theorems corresponding to Theorems 5’ and 6’, for
multi–vector functions F : Ω ⊂ Cn −→ S(r)

n .

Theorem 7. If Ω ⊂ Cn is pseudoconvex and F : Ω −→ S(r)
n is a C∞–smooth function satisfying

∂zF = 0, then there exists a C∞–smooth function G : Ω −→ S(r−1)
n such that

(i) ∂zG = F ;
(ii) ∂†zG = 0.

Theorem 7’. If Ω ⊂ Cn is pseudoconvex and F : Ω −→ S(r)
n is a C∞–smooth function satisfying

∂†zF = 0, then there exists a C∞–smooth function G : Ω −→ S(r+1)
n such that

(i) ∂†zG = F ;
(ii) ∂zG = 0.

The Theorems 5–7’ may be seen as Poincaré lemmata for the operators involved. In view of the
relations

∂ + ∂ = d, ∂∗ + ∂
∗

= d∗, ∂ = 2(∂†z − ∂z)

these results are in accordance with the traditional Poincaré lemmata for the differential operators
d, d∗ and the Dirac operator ∂ (see also [5, 6]).

Remark 2. In case the given spinor–valued multi–vector function F is a polynomial, we are able
to construct explicitly the polynomials G and G′ where existence is guaranteed by the Theorems 7
and 7’. This is the topic of the next section.

As a corollary, by consecutively applying Theorems 7 and 7’, we obtain for a given C∞ smooth
multi–vector function F (r)

0 : Ω ⊂ Cn −→ S(r)
n , which is either in Ker ∂z or in Ker ∂†z , a sequence of

”primitives”.

Corollary 1. If Ω is pseudoconvex and the C∞–smooth multi–vector function F
(r)
0 : Ω ⊂ Cn −→

S(r)
n satisfies ∂zF

(r)
0 = 0 in Ω, then there exists a sequence of multi–vector functions(

F
(r−1)
2k−1 , F

(r)
2k

)∞
k=1

such that

(i) ∂zF
(r−1)
2k−1 = F

(r)
2k−2, k = 1, 2, . . .;

(ii) ∂†zF
(r−1)
2k−1 = 0;

(iii) ∂zF
(r)
2k = 0;

(iv) ∂†zF
(r)
2k = F

(r−1)
2k−1 ;

(v) (∂z∂
†
z)

kF
(r)
2k = F

(r)
0 ;

(vi) ∂z(∂†z∂z)k−1F
(r−1)
2k−1 = F

(r)
0 .
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Corollary 2. If Ω is pseudoconvex and the C∞–smooth multi–vector function G
(r)
0 : Ω ⊂ Cn −→

S(r)
n satisfies ∂†zG

(r)
0 = 0 in Ω, then there exists a sequence of multi–vector functions(

G
(r+1)
2k−1 , G

(r)
2k

)∞
k=1

such that

(i) ∂†zG
(r+1)
2k−1 = G

(r)
2k−2, k = 1, 2, . . .;

(ii) ∂zG
(r+1)
2k−1 = 0;

(iii) ∂†zG
(r)
2k = 0;

(iv) ∂zG
(r)
2k = G

(r+1)
2k−1 ;

(v) (∂†z∂z)kG
(r)
2k = G

(r)
0 ;

(vi) ∂†z(∂z∂
†
z)

k−1G
(r+1)
2k−1 = G

(r)
0 .

Corollaries 1 and 2 can be summarized by the following schemes:

F
(r)
0

∂z←− F
(r−1)
1

∂†z←− F
(r)
2

∂z←− F
(r−1)
3 etc.

| | | |
∂z↓ ∂†z↓ ∂z↓ ∂†z↓

0 0 0 0

and

G
(r)
0

∂†z←− G
(r+1)
1

∂z←− G
(r)
2

∂†z←− G
(r+1)
3 etc.

| | | |
∂†z↓ ∂z↓ ∂†z↓ ∂z↓

0 0 0 0

Corollary 3. If Ω ⊂ Cn is pseudoconvex and M
(r)
0 : Ω −→ S(r)

n is Hermitean monogenic in Ω,
then for each k = 1, 2, 3, . . . there exists a k–harmonic function H

(r)
k ∈ Ker∆k such that(

∂z∂
†
z

)k

H
(r)
k = M

(r)
0

and (
∂†z∂z

)k

H
(r)
k = −M (r)

0

Proof
We know from Corollary 1 and 2 the existence of F (r)

2k and G(r)
2k such that(

∂z∂
†
z

)k

F
(r)
2k = M

(r)
0 , ∂zF

(r)
2k = 0

and (
∂†z∂z

)k

(−G(r)
2k ) = −M (r)

0 , ∂†zG
(r)
2k = 0

Put H(r)
k = F

(r)
2k −G

(r)
2k , then it follows that
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(i)
(
∂z∂

†
z

)k

H
(r)
k =

(
∂z∂

†
z

)k

F
(r)
2k = M

(r)
0 ;

(ii)
(
∂†z∂z

)k

H
(r)
k =

(
∂†z∂z

)k

(−G(r)
2k = −M (r)

0 ;

(iii) ∆kH
(r)
k =

(
∂z∂

†
z + ∂†z∂z

)k

H
(r)
k =

(
(∂z∂

†
z)

k + (∂†z∂z)k
)
H

(r)
k = 0.

�

5 The Poincaré lemmata for ∂z and ∂†z: the polynomial case

In the foregoing section we have proven the solvability of the Poincaré lemma equations in the
Hermitean Dirac operators ∂z and ∂†z . In the case of polynomial data, where the geometric con-
straints are trivially fulfilled, we are able to construct explicitly the polynomial solution to these
problems.

Let P(r)
a,b be the space of homogeneous S(r)

n –valued polynomials of bidegree (a, b), i.e. homogeneous
of degree a in the variables (z1, . . . , zn) and homogeneous of degree b in the variables (z1, . . . , zn).
We now prove in a constructive way the following polynomial version of Theorem 7.

Theorem 8. If the polynomial P (r)
a,b ∈ P

(r)
a,b satisfies ∂zP

(r)
a,b = 0, then there exists Q(r−1)

a+1,b ∈ P
(r−1)
a+1,b

such that

(i) ∂zQ
(r−1)
a+1,b = P

(r)
a,b ;

(ii) ∂†zQ
(r−1)
a+1,b = 0.

The polynomial Q(r−1)
a+1,b is determined up to a Hermitean monogenic homogeneous polynomial in

P(r−1)
a+1,b .

Proof
Invoking the Fischer decomposition for homogeneous polynomials in Ker ∂z (see [9]), the homoge-
neous polynomial P (r)

a,b ∈ Ker ∂z may be decomposed as follows:

P
(r)
a,b = M

(r)
a,b + z†M

(r−1)
a,b−1 + |z|2z†M (r−1)

a−1,b−2 + |z|4z†M (r−1)
a−2,b−3 + . . .

+
(
z†z +

a+ r − 1
a+ r

zz†
)
M

(r)
a−1,b−1 + |z|2

(
z†z +

a+ r − 2
a+ r

zz†
)
M

(r)
a−2,b−2 + . . .

where the M (s)
α,β are Hermitean monogenic homogeneous polynomials in P(s)

α,β . Now take Q(r−1)
a+1,b ∈

Ker ∂†z arbitrarily, then, in view of the Fischer decomposition for homogeneous polynomials in
Ker ∂†z (see also [9]), this polynomial may be decomposed as follows:

Q
(r−1)
a+1,b = N

(r−1)
a+1,b + zN

(r)
a,b + |z|2zN (r)

a−1,b−1 + |z|4zN (r)
a−2,b−2 + . . .

+
(
zz† +

b+ n− r
b+ n− r + 1

z†z

)
N

(r−1)
a,b−1 + |z|2

(
zz† +

b+ n− r − 1
b+ n− r + 1

z†z

)
N

(r−1)
a−1,b−2 + . . .

where the N (s)
α,β are Hermitean monogenic homogeneous polynomials in P(s)

α,β . We will show that

it is possible to find all the polynomials N (s)
α,β in such a way that ∂zQ

(r−1)
a+1,b = P

(r)
a,b . This is done by

directly computing ∂zQ
(r−1)
a+1,b and idetifying the corresponding terms with those in P (r)

a,b . As

∂z

(
|z|2jzN

(r)
a−j,b−j

)
= |z|2(j−1)

(
(a+ r)z†z + (a− j + r)zz†

)
N

(r)
a−j,b−j

16



it follows that
N

(r)
a−j,b−j =

1
a+ r

M
(r)
a−j,b−j

As

∂z

(
|z|2j

(
zz† +

b+ n− r − j
b+ n− r + 1

z†z

)
N

(r−1)
a−j,b−j−1

)
=

(j + 1)(a+ b+ n− j)
b+ n− r + 1

|z|2jz†N
(r−1)
a−j,b−j−1

it follows that
N

(r−1)
a−j,b−j−1 =

b+ n− r + 1
(j + 1)(a+ b+ n− j)

M
(r−1)
a−j,b−j−2

As ∂zN
(r−1)
a+1,b = 0 trivially, the first term in the decomposition of the required conditions is com-

pletely determined up to an arbitrary Hermitean monogenic polynomial in P(r−1)
a+1,b . �

In a similar way we can constructively prove the polynomial version of Theorem 7’.

Theorem 8’. If the polynomial P (r)
a,b ∈ P

(r)
a,b satisfies ∂†zP

(r)
a,b = 0, then there exists Q(r+1)

a,b+1 ∈ P
(r+1)
a,b+1

such that

(i) ∂†zQ
(r+1)
a,b+1 = P

(r)
a,b ;

(ii) ∂zQ
(r+1)
a,b+1 = 0.

The polynomial Q(r+1)
a,b+1 is determined up to a Hermitean monogenic homogeneous polynomial in

P(r+1)
a,b+1 .

6 The harmonic primitive or potential of a Hermitean mono-
genic function

As was pointed out in the introduction, the concept of a conjugate pair leads to a notion of potential
or harmonic primitive of a holomorphic, repectively monogenic function. Also in the Hermitean
monogenic setting it is possible to introduce this concept.

Assume that the open region Ω ⊂ Cn and the function g0 fulfill the requirements of Theorem 3.
Let, by Lemma 1, the function F 1 be a solution of the equation ∂zn

F 1 = −g0. This solution F 1

can always been chosen in Ker ∂̃z. Indeed, if ∂̃z F
1 6= 0, then ∂̃z F

1 ∈ Ker ∂̃z, and moreover it is
independent of the variable zn since ∂zn ∂̃z F

1 = −∂̃zg
0 = 0. By Corollary 2 there exists a function

F 2(zn, z̃, z̃
†) ∈ Ker ∂̃z such that ∂̃z ∂̃

†
z F 2 = ∂̃z F

1. The function F 1 − ∂̃†z F 2 clearly belongs to Ker

∂̃z and it is the desired solution: ∂zn
(F 1 − ∂̃†z F 2) = −g0 − ∂zn

∂̃†z F 2 = −g0 since the variable zn

does not occur in F 2. Now put G1 = ∂̃†z F 1. Then G1 is a solution of the equation ∂zn
g1 = −∂̃†z g0

and the function ∂zn
g0− ∂̃zG

1 is independent of the variable zn. Again by Corollary 2 we know the

existence of the function W (zn, z̃, z̃
†) ∈ Ker ∂̃z such that ∂̃z∂̃

†
zW = ∂zng

0 − ∂̃zG
1. Put h1 = ∂̃†zW ,

then h1 ∈ Ker ∂̃†z and ∂̃zh
1 = ∂zn

g0− ∂̃zG
1, i.e. h1 satisfies the conditions of Theorem 3. It follows

that the conjugate component of g0 is given by

g1 = G1 + h1 = ∂̃†z (F 1 +W ) = ∂̃†z H
1 (6.1)

where we have put
H1 = F 1 +W (6.2)

Note that the functions W and H1 have the same value space as the function g0.
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Proposition 1. The function H1, defined by (6.2), enjoys the following properties:

(a) ∂̃z∂̃
†
zH1 = ∂̃zg

1 = ∂zng
0;

(b) ∂̃zH
1 = 0;

(c) ∂zn
H1 = −g0;

(d) ∆H1 = 0.

Proof
(a) Take into account (6.1) and property (i) of Theorem 3.
(b) Follows from F 1 ∈ Ker ∂̃z and W ∈ Ker ∂̃z.
(c) Follows from ∂zn

F 1 = −g0 and ∂zn
W = 0 since the function W does not contain this variable.

(d) We have that

1
4
∆H1 =

(
∂z∂

†
z + ∂†z∂z

)
H1 =

[
(∂̃z + f†n∂zn

)(∂̃†z + fn∂zn
) + (∂̃†z + fn∂zn

)(∂̃z + f†n∂zn
)
]
H1

=
(
∂̃z∂̃

†
z + ∂̃zfn∂zn + (f†nfn + fnf†n)∂zn∂zn

)
H1 = ∂zng

0 − ∂̃zfng
0 − ∂zng

0 = 0

�

By introducing the function H1, the Hermitean monogenic function g = g0 + f†ng
1 corresponding

to the conjugate pair (g0, g1) now takes the form

g = −∂zn
H1 + f†n ∂̃

†
zH

1 = −fn∂zn
f†nH

1 − ∂̃†zf†nH1 = −(fn∂zn
+ ∂̃†z)(f†nH

1) = −∂†z [f†nH1]

which is very similar to the holomorphic and the monogenic cases, mentioned in the introduction.
Whence we may call the function H1 a harmonic potential or harmonic primitive of the first kind
for the Hermitean monogenic function g. So we have proven the following theorem.

Theorem 9. Let Ω be open in Cn such that for each (z̃∗, z̃
†
∗) fixed, the region Ω(ez∗,ez†∗)

= {(z, z†) ∈
Ω | (z̃, z̃†) = (z̃∗, z̃

†
∗) fixed} is simply connected, and that for each (z∗n, z

∗
n) fixed, the region Ω(z∗n,z∗n) =

{(z, z†) ∈ Ω | (zn, zn) = (z∗n, z
∗
n) fixed} is pseudo–convex. Let the function g0 : Ω→

∧†(f†1, . . . , f
†
n−1) I

be harmonic and belong to Ker ∂̃z, i.e. ∂̃zg
0 = 0 and ∂̃z∂̃

†
zg0 + ∂zn

∂zn
g0 = 0.

Then there exists a function H1 : Ω −→
∧†(f†1, . . . , f

†
n−1) I, called potential or primitive of the first

kind, such that

(i) H1 is harmonic in Ω and H1 ∈ Ker ∂̃z;

(ii) g1 = ∂̃†zH1 is conjugate to g0 in Ω;
(iii) g0 + f†ng

1 = −∂†z(f†nH1) is Hermitean monogenic in Ω.

This harmonic potential H1 is given by

H1 = F 1 +W (zn, z̃, z̃
†)

where F 1 ∈ Ker∂̃z is a solution of ∂zn
F 1 = −g0 and where W ∈ Ker ∂̃z is a solution of ∂̃z∂̃

†
zW =

∂zn
g0 − ∂̃z∂̃

†
zF 1.

In a similar way we can prove
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Theorem 9’. Let Ω be open in Cn such that for each (z̃∗, z̃
†
∗) fixed, the region Ω(ez∗,ez†∗)

= {(z, z†) ∈
Ω | (z̃, z̃†) = (z̃∗, z̃

†
∗) fixed} is simply connected, and that for each (z∗n, z

∗
n) fixed, the region Ω(z∗n,z∗n) =

{(z, z†) ∈ Ω | (zn, zn) = (z∗n, z
∗
n) fixed} is pseudo–convex. Let the function g1 : Ω→

∧†(f†1, . . . , f
†
n−1) I

be harmonic and belong to Ker ∂̃†z, i.e. ∂̃†zg1 = 0 and ∂̃†z ∂̃zg
1 + ∂zn

∂zn
g1 = 0.

Then there exists a function H0 : Ω −→
∧†(f†1, . . . , f

†
n−1) I, called potential or primitive of the

second kind, such that

(i) H0 is harmonic in Ω and H0 ∈ Ker ∂̃†z;
(ii) g0 = ∂̃zH

0 is conjugate to g1 in Ω;
(iii) g0 + f†ng

1 = ∂zH
0 is Hermitean monogenic in Ω.

This harmonic potential H0 is given by

H0 = F 0 + V (zn, z̃, z̃
†)

where F 0 ∈ Ker ∂̃†z is a solution of ∂znF
0 = g1 and where V ∈ Ker ∂̃†z is a solution of ∂̃†z ∂̃zV =

∂zn
g1 − ∂̃†z ∂̃zF

0.

Finally we illustrate these theorems by the example of Section 3. Starting with the conjugate pair
(g0, g1) = (z2z

2
3f†1I, 2z1z2z3I), the function F 1 = −z2z

2
3z3f

†
1I satisfies ∂̃zF

1 = 0 and ∂z3F
1 = −g0.

Apparently G1 = 0 and the function W = 2z1z1z2z3f
†
1I satisfies the equation ∂̃z∂̃

†
zW = ∂z3g

0 =
2z2z3f

†
1I, the right–hand side not containing the variable z3. A harmonic potential H1 of the first

kind is then given by
H1 = (−z2z

2
3z3 + 2z1z1z2z3)f

†
1I

and it is easily verified that it satisfies the following properties:

(a) ∂̃z∂̃
†
zH1 = ∂̃z(2z1z2z3I) = 2z2z3f

†
1I = ∂̃zg

1 = ∂z3g
0;

(b) ∂̃zH
1 = 0;

(c) ∂z3H
1 = −z2z

2
3f†1I = −g0;

(d) ∆H1 = 0;

(e) −∂†z [f
†
3H

1] = z2z
2
3f†1I + 2z1z2z3f

†
3I = g0 + f†3g

1 = g;

(f) H1 has the same value space as g0.

As ∂z3g
1 = 0 we may choose V = 0, giving rise to the harmonic potential of the second kind

H0 = z1z2z
2
3I, for which it holds that

(a) ∂̃†z ∂̃zH
0 = ∂̃†z(z2z

2
3f†1I) = 0 = ∂̃†zg0 = −∂z3g

1;

(b) ∂̃†zH0 = 0;

(c) ∂z3H
0 = 2z1z2z3I = g1;

(d) ∆H0 = 0;

(e) ∂zH
0 = z2z

2
3f†1I + 2z1z2z3f

†
3I = g0 + f†3g

1 = g;

(f) H0 has the same value space as g1.
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