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Abstract— In wireless communications, the channel can often
be modelled as a time-selective frequency-selective fading chan-
nel with line-of-sight (LOS) component. Although multicarrier
systems are developed to cope with the frequency selectivity of
the channel, they will suffer from interference caused by the
time-varying character of the channel, present in particular in
the LOS component, when the number of carriers increases. A
proper selection of the system parameters, such as the number of
carriers and the length of the cyclic prefix, can alleviate the effect
of the doubly-selective channel on the system performance. Inthis
paper, we investigate analytically the effect of the aforementioned
system parameters on the performance, and determine the
optimum values of the system parameters. Further, we study
the effect of deviations from the optimum parameters on the
system performance.

I. I NTRODUCTION

In multicarrier systems, the data stream to be transmitted is
split into a large number of parallel data streams at a lower rate
[1]-[2]. Each of the parallel data streams is transmitted ona
different carrier of the multicarrier system. With this operation,
the effective symbol duration will be increased with a factor
equal to the number of carriers, reducing the effect of the
frequency selectiveness of the channel. By inserting a cyclic
prefix [3]-[4], a further reduction of the interference caused by
frequency selectivity is obtained; moreover, all interference is
counteracted when the length of the cyclic prefix is larger
than the maximum delay spread of the channel. However, the
use of a cyclic prefix reduces the power efficiency and the
effective throughput, such that the prefix must be kept small
as compared to the duration of the multicarrier symbol, which
is proportional to the number of carriers. Hence, from the
frequency-selectivity point of view, the cyclic prefix mustbe
chosen larger than the maximum delay spread, and the number
of carriers must be selected as large as possible to keep the loss
in power efficiency and effective throughput within reasonable
margins.

However, the use of a large number of carriers results in
very long multicarrier symbols [5]. This makes the multicarrier
system more sensitive to the time-selectivity of the channel.
Therefore, from the time-selectivity point of view, the number
of carriers must be chosen sufficiently small. In a doubly-
selective channel therefore a compromise must be made be-
tween the alleviation of the effects of the time-selectivity and
the frequency-selectivity of the channel.

In the literature, the optimization of the system parameters
is almost never done jointly: in [3]-[4], the effect of the cyclic
prefix length on the performance is investigated in for a given
number of carriers, whereas in [5], the effect of the number
of carriers is studied for a sufficient cyclic prefix length.
Only in [6], the system parameters are jointly optimized for
fading channels without LOS component. This paper extends
the results obtained in [6] to channels with LOS component.
Further, in this paper, we investigate the effect of deviations

Fig. 1. The multicarrier transceiver.

from the optimum parameters on the system performance,
which has not been considered in [6].

II. SYSTEM DESCRIPTION

In figure 1, the conceptual block diagram of a multicarrier
system is shown. For the sake of notational simplicity, an
OFDM system is considered. However, the analysis can easily
be extended to other multicarrier systems, e.g. MC-CDMA,
MC-DS-CDMA... The data stream to be transmitted is serial-
to-parallel converted intoN lower rate data streams{ai,n},
where ai,n is the ith symbol of thenth data stream,n =
0, . . . , N − 1. The data symbolsai,n are transmitted on the
different carriers of the multicarrier system using an inverse
fast Fourier transform (IFFT). To cope with the presence of
a dispersive channel, a cyclic prefix of lengthν samples is
inserted, resulting in the time-domain samplessi(m):

si(m) =

√

Es

N + ν

N−1
∑

n=0

ai,nej2π nm

N m = −ν, . . . , N − 1

(1)
where the data symbols are assumed to be statistically in-
dependent and have unit average energy, i.e.E[ai,na∗

i′,n′ ] =
δi,i′δn,n′ , and the transmitted energy per symbol is equal to
Es.

The time-domain samples (1) are transmitted over a doubly-
selective fading channel. The channel is modelled as a tapped
delay line with channel coefficientsh(k; ℓ). We assume that
the channel consists of a line-of-sight (LOS) component
hLOS(k; ℓ) and a zero-mean multipath fading contribution
hMP (k; ℓ), i.e. h(k; ℓ) = hLOS(k; ℓ) + hMP (k; ℓ). The co-
efficients of the LOS component are given byhLOS(k; ℓ) =
αe−jφ(ℓ)δ(k), where the quasi-static amplitudeα is assumed
to be constant over a number of multicarrier symbols, andφ(ℓ)
is a time-varying phase that depends on the time-selectivity
of the channel. The channel coefficientshMP (k; ℓ) of the
multipath component are assumed to be zero-mean Gaussian
distributed according to the wide-sense stationary uncorrelated
scattering (WSSUS) model of Bello [7] with autocorrelation
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function RMP (k; ℓ)

E[hMP (k1; ℓ1)h
∗
MP (k2; ℓ2)] = δ(ℓ1 − ℓ2)RMP (k1 − k2; ℓ1).

(2)
Let us definePLOS and PMP as the energy contained in
the impulse response corresponding to the LOS and multipath
component, respectively:

PLOS = |α|2

PMP =

+∞
∑

k=−∞

RMP (k; 0). (3)

We define the ratioκ = PLOS/PMP as the ratio of the energy
contained in the impulse response of the LOS component to
the one of the multipath component. Without loss of generality,
we can assume thatPLOS + PMP = 1.1 The output of
the channel is disturbed by complex-valued additive white
Gaussian noisew(m), with zero mean and power spectral
densityN0.

Without loss of generality, we concentrate on the detection
of the data symbols transmitted during the multicarrier block
with time index i = 0. From theN + ν samples belonging
to the considered multicarrier block, the receiver removesthe
ν samples corresponding to the cyclic prefix. The remaining
N samples are then applied to a fast Fourier transform (FFT).
The nth output of the FFT can be written as, assuming that
all carriers are modulated,

zn =
√

Es

√

N

N + ν

+∞
∑

i=−∞

N−1
∑

n′=0

ai,n′γi(n, n′) + Wn (4)

where

γi(n, n′) =
1

N

N−1
∑

m=−ν

N−1
∑

k=0

h(k−m−i(N +ν); k)e−j2π kn−mn
′

N

(5)
and the noise contribution is given by

Wn =
1√
N

N−1
∑

k=0

w(k)e−j2π kn

N . (6)

In the presence of a fading channel, in generalγi(n, n′) 6= 0
for n′ 6= n and/or i 6= 0. Hence, the fading channel will
cause interference. The power at thenth FFT output can
be decomposed inP (n) = N

N+ν
Es(PU (n) + PICI(n) +

PISI(n)) + N0. The useful powerPU (n) corresponds to
the contribution of the useful symbola0,n. The intercarrier
interference (ICI) powerPICI(n) consists of the contributions
of the data symbols transmitted on the other carriers during
the considered multicarrier symbol (i = 0, n′ 6= n). The
intersymbol interference (ISI) powerPISI is the contribution
of the data symbols transmitted during other multicarrier
blocks (i 6= 0). The last contribution is the additive noise
powerN0. The powers of the useful component, the ICI and
ISI are given by

PU (n) = E[|γ0(n, n)|2] (7)

PICI(n) =

N−1
∑

n′=0,n′ 6=n

E[|γ0(n, n′)|2] (8)

1Under this assumption, it follows thatPLOS =
κ

1+κ
andPMP =

1

1+κ
.

PISI(n) =

+∞
∑

i=−∞,i6=0

N−1
∑

n′=0

E[|γi(n, n′)|2]. (9)

It can easily be verified that the useful power (7) and interfer-
ence powers (8) and (9) are independent of the carrier index
n. Hence, in the following, we drop the carrier index.

As a performance measure, we use the signal to interference
and noise ratio (SINR) at the output of the FFT, defined as
the ratio of the useful power to the sum of the powers of the
interference and noise.

SINR =
N

N+ν
EsPU

N
N+ν

Es(PICI + PISI) + N0

(10)

In the presence of a fading channel, the SINR is degraded as
compared to the SINR in the case of an AWGN channel and in
the absence of a cyclic prefix, which equalsSINRAWGN =
Es/N0. The degradation (in dB) of the SINR, caused by the
fading channel and the presence of a cyclic prefix, is given by

Deg = −10 log

(

N

N + ν
PU

)

+ 10 log

(

1 +
Es

N0

N

N + ν
(PICI + PISI)

)

. (11)

To simplify the expressions (7)–(9), we define similarly as
in [6] the following two-dimensional weight function

w(q; r) =
1

N







































N − |r| 0 ≤ q ≤ ν
0 ≤ |r| ≤ N

N − q + ν − |r| ν ≤ q ≤ N + ν
0 ≤ |r| ≤ N − q + ν

N + q − |r| −N ≤ q ≤ 0
0 ≤ |r| ≤ N + q

0 otherwise.
(12)

Using (12), we find after tedious manipulations of (7)–(9), the
following simple expressions:

PU = |α|2|Φ(0)|2 +
1

N

+∞
∑

k=−∞

+∞
∑

ℓ=−∞

w(k; ℓ)RMP (k; ℓ) (13)

PICI = |α|2 +

+∞
∑

k=−∞

w(k; 0)RMP (k; 0) − PU (14)

PISI =

+∞
∑

k=−∞

(1 − w(k; 0))RMP (k; 0) (15)

whereΦ(0) is the discrete Fourier transform of lengthN of
the LOS phaseφ(ℓ) at frequency 0. For example, assuming
that the phase rotation of the LOS component is caused by a
Doppler shiftfD, i.e. φ(ℓ) = φ(0) − 2πfDℓT , with 1/(NT )
the carrier spacing,|Φ(0)|2 reduces to

|Φ(0)|2 =

∣

∣

∣

∣

sin(πNfDT )

N sin(πfDT )

∣

∣

∣

∣

2

. (16)

Note that, because of the assumption thatPLOS + PMP = 1,
the sum of the powers of the useful component, the ICI and
ISI equals one:PU + PICI + PISI = 1. In the absence of a
LOS component (i.e.α = 0), the equations (13)–(15) reduce
to the expressions in [6].



As can be observed in (13)–(15), the useful power and
the ICI power depend on both the LOS component and the
multipath component, whereas the ISI power only depends
on the multipath component. This can easily be explained,
as the channelhLOS(k; ℓ) consists of a single tap and hence
will not cause interference between successive multicarrier
blocks. Let us consider quantitatively the effect of the system
parametersN and ν on the performance of the system. We
separately consider the effect of the system parameters on the
powers originating from the LOS component and the multipath
component.

• LOS contribution : The useful power originating from
the LOS component, i.e.PU,LOS = |α|2|Φ(0)|2 will
reduce for increasingN , as |Φ(0)|2 is in general a
decreasing function ofN . This can be seen in (16) for
the case of a Doppler shift. AshLOS(k; ℓ) consists of
a single tap, there is no ISI, i.e.PISI,LOS = 0, such
that the interference consists only of ICI. The ICI power
corresponding to the LOS component, i.e.PICI,LOS =
|α|2(1 − |Φ(0)|2) will increase for increasingN . On
the other hand, the powers of the useful component and
the ICI corresponding to the LOS component do not
depend on the cyclic prefix lengthν. However, increasing
the cyclic prefix length will reduce the power efficiency
through the factor N

N+ν
, as onlyN of theN +ν samples

are used for further processing. Hence, from the LOS
component point of view, the cyclic prefix must be as
small as possible, and because of the time-selectivity of
the LOS component, the lengthN of the multicarrier
symbol must be limited, as increasingN will reduce the
performance.

• Multipath contribution : For given N , increasing the
length of the cyclic prefix will reduce the interference
powerPICI + PISI , as the distortion of theN samples
that are processed by the receiver reduces. At the same
time, the useful power moves closer to 1. However,
because of the factor N

N+ν
the power efficiency will

reduce. For givenν, increasingN will reduce the relative
importance of the fixed amount of distorted samples
(caused by the frequency selectivity of the channel) at the
edges of the block ofN samples that is further processed.
Further, increasingN will increase the power efficiency
as the factor N

N+ν
moves closer to one. However, increas-

ing N will result in longer multicarrier symbols, such
that the system will suffer from interference caused by
the time selectivity of the channel.

Taking into account these considerations, it is clear that an
optimum set of system parameters(Nopt, νopt) can be found.
Further, for a given shape of the LOS and multipath channel
impulse responses, the ratioκ of the powers of the LOS
contribution to the multipath contribution will have an effect
on the optimal parameters. For increasingκ, i.e. for channels
with stronger LOS component, the optimum parameters will
move to Nopt = 1 and νopt = 0, which are the optimum
system parameters when there is no multipath component.

III. L IMITING CASES

As observed in (13), the useful power (and thus also the
ICI power in (14)) corresponding to the multipath component
consists of a double sum, which requires a high computa-
tional complexity, especially whenN is large. To reduce
the computational complexity, we have shown in [6] for
multipath Rayleigh fading channels that the useful power and
interference powers can be well approximated by consider-
ing two limiting cases, i.e. the time-flat and frequency-flat

fading Rayleigh fading channels derived from the considered
Rayleigh fading channel, and take the sum of the powers of the
limiting cases to obtain the total useful power and interference
powers.

The same reasoning can be followed for the channel consid-
ered in this paper. As we observe in (13)–(15), the powers of
the useful component, the ICI and ISI consist of the sum of the
powers originating from the LOS component and the multipath
component. Further, taking into account the results from [6],
the powers corresponding to the multipath component can
be further split into the sum of the powers corresponding
to the limiting cases of a time-flat channel with autocorre-
lation functionRMP,TF (k; ℓ) = RMP (k; 0) and a frequency-
flat channel with autocorrelation functionRMP,FF (k; ℓ) =
R̃MP,FF (ℓ)δ(k), where R̃MP,FF (ℓ) =

∑+∞
k=−∞ RMP (k; ℓ).

Hence, we approximate the powers in (13)–(15) using the
following decomposition:PX = PX,LOS + PX,MP,TF +
PX,MP,FF , with X = U, ICI and ISI; the definition of
PX,LOS can be found in the previous section. The useful pow-
ers corresponding to the two limiting cases of the multipath
component are given by [6]:

PU,MP,TF =
+∞
∑

k=−∞

w2(k; 0)RMP (k; 0) (17)

PU,MP,FF =
1

N

N
∑

ℓ=−N

(

1 − |ℓ|
N

)

R̃MP,FF (ℓ) (18)

and the derivation of the corresponding interference powers
follow straightforward from (13)–(15) and the definition of
RMP,TF (k; ℓ) andRMP,FF (k; ℓ). In the next section, we will
show the validity of the used approximations by means of
numerical evaluation.

IV. N UMERICAL RESULTS

For the numerical evaluation of the obtained analytical
expressions, we consider a channel bandwidthB = 1 MHz
and a center frequency offc = 1 GHz. Hence, the duration
of a sample equalsT = 1µs. For the LOS component of the
channel, we assume that the channel has a fixed amplitude
α and a phase rotationφ(ℓ) caused by a Doppler shiftfD,
i.e. φ(ℓ) = φ(0) − 2πfDℓT . Assuming that the receiver is
moving at a speed ofv = 135 km/hr, the Doppler shift is
given by fD = (v/c)fc = 125 Hz, wherec is the velocity
of light. For the multipath component of the channel, we
use the typical urban (TU) [7]-[8] impulse response with a
delay spread of5µs. The coherence time of the multipath
component is obtained using the rule of thumbT0 = 0.5/fD

[9], wherefD is the Doppler frequency of the LOS component,
resulting in the coherence timeT0 = 4 ms. We assume that
the autocorrelation function for the multipath component has
an exponentially decaying multipath intensity profile and a
Gaussian time correlation profile

RMP (k; ℓ) = C exp

(

− k

τ0

)

exp

(

− ℓ2

2σ2
0

)

k ≥ 0,−∞ ≤ ℓ ≤ +∞ (19)

Defining the delay spread as the time at which the multipath
intensity profile falls 10 dB below the level of the strongest
component, the parameterτ0 is found to be about five samples.
Further, we fix the coherence timeT0 to twice the duration
of the spreading of the Gaussian time correlation profile, i.e.



Fig. 2. Interference power as function of FFT length,κ = 0 dB, ν = 10.

σ0 = 2000 samples. The constantsα andC are normalization
constants.

In figure 2, we show the total interference powerPICI +
PISI , obtained with (14) and (15), together with the in-
terference power of the limiting cases and the sum of the
interference powers of the limiting cases as function ofN ,
for κ = 0 dB and ν = 10. As expected, the interference
power corresponding to the LOS component increases with
increasingN . For NfDT ≪ 1, i.e. when the Doppler shift is
sufficiently smaller than the carrier spacing, the approximation
| sin(πNfDT )
N sin(πfDT ) |2 ≈ 1 − 1

3 (πNfDT )2 can be used, such that
the interference power for the LOS component, given by
|α|2(1 − |Φ(0)|2), increases quadratically withN . In [6],
it was shown that for a multipath fading channel the total
interference power for the time-flat channel with autocorrela-
tion function RMP,TF (k; ℓ) = RMP (k; 0) is proportional to
1/N . Further, in the case of the frequency-flat limiting case
of the multipath channel, when the autocorrelation function
RMP,FF (k; ℓ) = R̃MP,FF (ℓ)δ(k) can be approximated2 by
R̃MP,FF (ℓ) ≈ R̃MP,FF (0)(1 − βℓ2) for ℓ ≪ T0, it can
easily be shown that the total interference power increases
with N2. This can be observed in figure 2. Figure 2 also
shows the total interference power of the multipath component
(indicated in the figure as MP, doubly selective), obtained
with the contributions ofRMP (k; ℓ) in (14) and (15). This
interference power is well approximated by the sum of the
interference powers (indicated in the figure as MP, TF+FF)
corresponding to the time-flat and frequency-flat limiting cases
[6]. Further, we show in figure 2 the sum of the interference
powers of the LOS component and the limiting cases of the
multipath component (indicated as LOS + MP,FF + MP,TF),
and the total interference power obtained with (14) and (15).
As we observe, the sum of the interference powers of the
limiting cases well approximate the total interference power of
the actual doubly selective channel with LOS component. For
small values ofN , the interference power of the actual channel
converges to the interference power of the time-flat limit of
the multipath component, whereas for largeN , it converges to
the sum of the interference powers of the LOS component and
the frequency-flat limit of the multipath component (indicated
as LOS + MP,FF).

In figure 3, the interference power of the actual channel,
the limiting cases and the sum of the interference powers of

2In most practical channels, this approximation is valid.

Fig. 3. Interference power as function of cyclic prefix length, κ = 0 dB,
N = 256.

Fig. 4. Influence ofN andκ on interference power,ν = 10.

the limiting cases are shown as function ofν, for κ = 0
dB and N = 256. Similarly as in figure 2, the sum of the
interference powers of the limiting cases well approximate
the interference power of the actual channel. As expected, the
interference powers of the frequency-flat limit of the multipath
component and the LOS component are independent of the
length of the cyclic prefix. The interference power of the
time-flat limit of the multipath component is a decreasing
function of ν as the effect of the channel dispersion reduces
for increasingν; the slope of the decreasing function will
depend on the shape of the multipath intensity profile. For
smallν, the interference power of the actual channel converges
to the interference power of the time-flat limit of the multipath
component, whereas for largeν, the interference power of the
actual channel no longer decreases but converges to the sum
of the interference powers of the LOS component and the
frequency-flat limit of the multipath component; the resulting
interference is caused by the time-selectivity of the channel
and cannot be combatted by a further increase of the cyclic
prefix length.

Figures 4 and 5 show the effect ofκ, indicating the relative
amount of power contained in the LOS component and the
multipath component, on the interference power. As can be
observed in figure 4, the minimum of the interference power
moves to lower values ofN when κ increases. This can be
explained as follows. Whenκ increases, the LOS component
becomes the dominating component. As in this case the
interference is caused by the time-selectivity of the LOS



Fig. 5. Influence ofν andκ on interference power,N = 256.

Fig. 6. OptimalN and ν and range forN and ν for which degradation
≤ 0.1dB larger than minimum degradation,Es/N0 = 10 dB.

component, the interference will increase whenN increases,
resulting in a reduction of the optimum value ofN . The effect
of κ on the dependency of the interference power onν is
shown in figure 5. As for largeκ, the channel consists of
mainly LOS, and the relative importance of the frequency se-
lectivity decreases, the interference power becomes essentially
independent ofν, whereas for small values ofκ, when the
multipath component is dominating, the interference power
strongly depends on the value ofν.

These effects can also be observed in figure 6, where the
optimum value ofN and ν that minimize the degradation
(11) are shown as function ofκ. Similarly as in figure 4 we
observe thatNopt decreases for increasingκ. At the same time,
νopt decreases for increasingκ; as the interference power for
large κ becomes essentially independent ofν, this reduction
of νopt will be caused by the power efficiency factorN

N+ν
.

Further, in figure 6, the range over whichN (ν) given νopt

(Nopt) may vary such that the degradation is smaller than the
minimum degradation plus 0.1 dB, is shown (dashed curves).
The range over whichN or ν may vary is large for smallκ
and reduces whenκ increases. This is explained as follows.
It is obvious that, asνopt → 0 when κ increases and asν
cannot be negative, the lower range forν decreases whenκ
increases. Further for largeκ, the interference power is small
(see figures 4 and 5) whenN ≤ Nopt. In this case, the
degradation is mainly caused by the power efficiency factor

N
N+ν

in the first term of (11). AsNopt and νopt are rather
small, the factor N

N+ν
strongly varies as function ofN and

ν, such that the degradation will strongly increase whenN

decreases orν increases, hence the lower range forN and the
upper range forν become smaller whenκ increases. On the
other hand, whenN > Nopt, the interference power increases
significantly (see figure 4). Hence, the beneficial effect of the
increase ofN in the factor N

N+ν
will be counteracted by the

increase of the interference power, such that the upper range
for N only changes minimally. As a result of this, the selection
of the parametersN andν is less critical when there is a large
multipath component as compared to the case of a large LOS
component.

V. CONCLUSIONS

In this paper, we have investigated the effect of the system
parameters, i.e. the cyclic prefix length and the number of
carriers, on the performance of an multicarrier system in a
doubly selective fading channel with LOS component. We
have derived analytical expressions for the degradation. Fur-
ther, we have found simple but accurate approximations for
the power of the useful component and the interference, by
decomposing the doubly selective fading channel with LOS
component into three limiting cases, i.e. a time-flat and a
frequency-flat Rayleigh fading channel and a channel with
only LOS, and taking the sum of the powers of the three
limiting cases as approximation for the powers of the actual
channel. Using these analytical expressions, the optimal sys-
tem parameters(Nopt, νopt) that minimize the degradation, are
obtained. Further, the range over which the system parameters
N and ν may vary when a small degradation (0.1 dB) as
compared to the minimum degradation is allowed has been
determined. Moreover, the influence of the channel parameter
κ, i.e. the ratio of the powers contained in the LOS component
and the multipath component of the channel on the optimum
parameters and deviations from the optimum parameters has
been studied. The results can be summarized as follows. When
κ increases, i.e. when the LOS component is the dominating
component, the values ofNopt andνopt decrease. Further, as
the range over which the system parameters may vary when
a small degradation is allowed as compared to the minimum
degradation decreases, the selection of the system parameters
N andν becomes more critical whenκ increases.
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