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Theoretical Derivation of the Stochastic
Behavior of a WCDMA Signal Measured

With a Spectrum Analyzer
Christof Olivier and Luc Martens, Member, IEEE

Abstract—Frequency-selective measurements with a spectrum
analyzer are the most obvious means to accurately measure the
power of a communication signal. In this paper, models for the
spectrum analyzer and for the wideband code division multiac-
cess (WCDMA) signal are described. Based on these models, the
analytic expressions for the probability density function (PDF) of
the displayed signal have been derived for the different detection
modes [sample, root mean square (rms) and positive-peak detec-
tion] of the spectrum analyzer. Based on these theoretical con-
siderations, the dependence of the mean and standard deviation
of the measured signal on the observation time of the detector
has been examined, which showed a good agreement with the
simulated results.

Index Terms—Code division multiaccess (CDMA), land
mobile radio, modeling, spectral analysis, stochastic processes,
uncertainty.

I. INTRODUCTION

FREQUENCY-SELECTIVE measurements with a spec-
trum analyzer are the most common means to characterize

the different communication signals present on a shared
medium. Indeed, since the different types of signal and the
different operators have each been assigned a distinct part of
the frequency spectrum, spectrum analysis is the most obvious
method to accurately measure the power of a communication
signal. The application that is envisaged in this paper is the
assessment of the exposure to electromagnetic fields around
antennas, although the developed results can easily be ap-
plied to other domains. In the case of exposure assessment,
the exposure levels of a broad range of signals have to be
determined and compared to the exposure guidelines [1]–[3].
Several measurement procedures have been proposed to check
the compliance with the exposure guidelines [4], [5] and are
now being standardized [6]–[10]. The typical measurement
setup in most of these procedures consists of an electric antenna
that transduces the electromagnetic fields to a signal that is
measured with a spectrum analyzer.

On the other hand, since each communication signal has its
own characteristics, the actual settings of a spectrum analyzer
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may have a large impact on the accuracy and even on the
correctness if the measured results are not interpreted properly.
It is thus of prime importance to understand how a certain
communication signal is measured by a spectrum analyzer and
how the different settings of the spectrum analyzer influence the
behavior of the measured signal.

In a previous paper [11], the authors have discussed the
measurement issues that arise when mobile communication
signals of the second generation (i.e., global system for mobile
communications) are measured with a spectrum analyzer. Now
that different operators have introduced the third-generation
technology to provide an answer to the increasing number of
subscribers and to the growing demand for bandwidth, the
authors have extended the research to the measurement of the
universal mobile telecommunications system (UMTS) signal.
Analogous to [11], the focus will be on the fundamental achiev-
able accuracy on the measurement of a UMTS signal, without
taking into account other relevant factors for the accuracy, like
thermal noise of the measurement equipment or the use of
power control. In this paper, analytical expressions for the prob-
ability distributions of the wideband code division multiaccess
(WCDMA)-based UMTS signal, measured with a spectrum an-
alyzer, will be developed. This approach allows to comprehend
the measured signal and to analyze what the influence is of the
different settings of the spectrum analyzer on the measurement
result and its accuracy. It also identifies the underlying reasons
for a certain behavior of the measured signal.

It should be noted, however, that for the application to
CDMA signals, frequency-selective measurements do not pro-
vide as much information as vector signal analyzers or real-
time spectrum analyzers, where the measured electromagnetic
signal can be resolved in the code domain. The method de-
scribed in this paper can be applied when this equipment is
not available to measure the total power present in a WCDMA
signal. On the other hand, the general applicability of spec-
trum analysis to every modulated signal and the lower cost
of spectrum analyzers remain important advantages when us-
ing frequency-selective measurements for exposure assessment.
This is also emphasized by the introduction of new mea-
surement equipment, where portable spectrum analyzers are
combined with isotropic-field probes to enable a quick analysis
of the exposure situation, together with a characterization of the
different sources.

In the first paragraph, the models that have been developed
for simulations and for the derivation of the analytical models,
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both for the spectrum analyzer as for the WCDMA signal, will
be discussed. In the next paragraph, the analytical expressions
for the stochastic description of the measured signal will be
derived for the different operation modes of the spectrum
analyzer. Finally, the dependence of the mean and standard
variation on the measuring period will be determined and
compared for the different detector modes.

II. SIMULATION MODEL

Since it would not be feasible to execute simulations with
signals in the radio-frequency domain due to the high sampling
rate that would be necessary, the models for the spectrum ana-
lyzer and for the UMTS signal are translated into the lowpass
representation, which enables the use of moderate sample times
to perform the simulations, and provides a convenient way to
describe the signal displayed on the spectrum analyzer.

A. Spectrum-Analyzer Model

The model that has been used for the spectrum analyzer is
the same as the model developed in [11]: The signal entering
the spectrum analyzer is first mixed with the local oscillator,
which provides the sweeping frequency. Next, it is sent through
an intermediate filter or a resolution filter with a half-power
bandwidth RBW, subsequently is passed to an envelope detec-
tor, and finally is fed into the detector, which–depending on the
detector mode of the spectrum analyzer–returns a sample value
of the signal, the maximum or minimum that has occurred since
the previous sample time, or the rms value of the signal over the
previous interval. The lowpass representation of the signal after
the envelope detector |s(t)| is mathematically given by

|s(t)| =
∣∣∣∣∣∣

1√
2πσt

+∞∫
−∞

r(t+ v)e−j2π
vsw
2 (t+v)2e

− v2

2σ2
t dv

∣∣∣∣∣∣ (1)

where r(t) is the lowpass representation of the signal entering
the spectrum analyzer; vsw is the sweep rate of the spectrum
analyzer and has been defined as the ratio of the frequency
span ∆fsp to the sweep time Tsw; and σt is the width of the
resolution filter in the time domain. σt is related to the width
σf , its dual in the frequency domain, and to the resolution
bandwidth (RBW) by

σt =
1

2πσf
=

√
ln 2

πRBW
. (2)

To ensure that the resolution filter can reach the steady state, the
sweep rate has to be limited to

vsw <
RBW2

c
(3)

where c is a constant, depending on the type of the spectrum
analyzer. For an analog resolution filter, c is typically 2.5 [12].
Depending on the detector mode, the value displayed on the

screen of the spectrum analyzer at the end of the kth measure-
ment interval (or frequency bin) of length Ts is given by

sm(kTs)

=




|s(kTs)| , sample mode (4a)
maxt∈](k−1)Ts,kTs]|s(t)|, positive-peak mode (4b)
mint∈](k−1)Ts,kTs]|s(t)|, negative-peak mode (4c)√

1
Ts

∫ kTs

(k−1)Ts
|s(t)|2 dt, rms mode. (4d)

The noise floor of the spectrum analyzer can be taken into
account by adding a white Gaussian noise to the input signal
r(t). If the noise power has a power density of σ2n, the
probability density function (PDF) of the noise signal before
the envelope detector ns(t) will be a complex Gaussian
distribution with mean (0, 0) and standard deviations on the
real and imaginary part of

√
σ2n

√
πσf/2.

B. Model for the UMTS Signal

In UMTS, WCDMA is used as a multiaccess technique.
For a general description of the WCDMA signal that is being
used in UMTS, we refer to [13]. The actual parameters can
be found in the standards from the 3rd Generation Partnership
Project [14]–[17]. Since it is the purpose of this paper to provide
insight in the behavior of a WCDMA signal measured with a
spectrum analyzer, not all the features of the UMTS signal will
be implemented, and thus, the discussed model will incorporate
some important assumptions.

1) The chip stream is considered to be completely random,
although it originates from the spreading and scrambling
operation on a certain data stream. However, since the
chip sequences are pseudorandom, the approximation
of the chip stream as a completely random stream is
acceptable.

2) Although power control is a very important property
of the UMTS system, it is not included in this model.
However, the model will be extended with power control
during the future research.

The lowpass representation of the WCDMA signal is shown
in Fig. 1. For each channel j, a random chip stream at a rate
of 3.84 Mcps is generated, the in-phase and quadrature chips
are each multiplied with their respective channel gain (gj)
and summed together. The combined symbol is subsequently
sent through a pulse-shaping filter (with frequency transfer
function HPS(f)), whereupon the in-phase and quadrature-
phase branches are combined into the complex low-pass signal.
Subsequent chips are mutually independent, as are the chips
from different channels. The values of the chips are assumed to
be equally probable between {1,−1}. The pulse-shaping filter
HPS(f) is given by [18]

HPS(f)=




Tc, |f | < 1−α
2Tc

(5a)
0, |f | ≥ 1+α

2Tc
(5b)

Tc cos
(
π
2αTc

(
|f | − 1−α

2Tc

))
, otherwise (5c)
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Fig. 1. Lowpass model for the WCDMA signal.

which is a root-raised cosine filter with a roll-off factor
α = 0.22, and the chip period Tc = 0.26 µs. Its time response
will be denoted as hPS(t).

A convenient representation of the lowpass WCDMA-
signal is

r(t) =
∑
j

∑
n

ejφ
(j)
c,ngjhPS(t− nTc) (6)

where φ
(j)
c,n denotes the phase of the nth chip pair (c(j)I,n, c

(j)
Q,n)

of the jth channel, and gj denotes the gain of the jth channel,
as has been indicated in Fig. 1. Each chip pair is assumed to be
equally probable and mutually independent from the other chip
pairs, which yields to the probability distribution of the phases
of the chips

Pr
[
φ(j)c,n =

(2k + 1)π
4

]
=

1
4
, k = 0, 1, 2, 3 (7)

C. Measured WCDMA Signal

If the WCDMA signal, given by (6), is measured by a
spectrum analyzer, the signal after the envelope detector (1) can
be written as

|s(t)| =
∣∣∣∣∣∣
∑
j

gj
∑
n

ejφ
(j)
c,npn(t)

∣∣∣∣∣∣ (8)

where the stochastic part of the signal |s(t)| is separated from
the deterministic part, gj is the gain of the jth channel, and
pn(t) denotes the contribution of the nth chip to the signal. It
has been defined as

pn(t) = pn(nTc + t′)

=
1√
2πσt

+∞∫
−∞

hPS(v + t′)e
− v2

2σ2
t e−j2π

vsw
2 (v+t′+nTc)

2
dv.

(9)

Since the argument v + t′ = O(Tc) and because the sweep
rate is bounded by (3), the phase term 1/2 vsw(v + t′)2 in the
integral (9) can be neglected if Tc < σt. Then, the integral in
expression (9) can be rewritten as the inverse Fourier transform

of the pulse-shaping filter, multiplied with the resolution filter
at the frequency under consideration fo = vswnTc, yielding for
the pulse contribution function

pn(nTc + t′) ≈ 1√
2πσt

e−j2π
vsw
2 (nTc)

2

F−1 [HPS(f + vswnTc)HRB(f)] (t′) (10)

where HRB(f) is the representation of the resolution filter in
the frequency domain. If the used RBW is relatively small with
respect to the width of the pulse-shaping filter, and the fre-
quency under consideration is situated within the flat frequency
part of HPS(f) (|fo| < (1− α)/2Tc), this pulse contribution
function pn(t) can be approximated as

pn(t) ≈ Tc√
2πσt

e−j2π
vsw
2 (nTc)

2
e
− (t−nTc)2

2σ2
t (11)

which is, thus, a time-shifted and phase-rotated version of the
time-domain representation of the resolution filter.

III. STATISTICAL MODELING

To derive the PDFs of the displayed measured signal (4), a
brute-force technique is inappropriate: For the sample detector
and low RBWs (e.g., 400 kHz), 15 different chips already
contribute to the signal |s(t)| leading to 415 possible chip
sequences that all have to be evaluated. In the case of mul-
tiple channels, the number of relevant chips grows linearly
with the number of channels, and in the case of a positive-
peak detector or rms detector, the chips occurring during the
whole previous measurement interval should be known. The
theoretical derivation of the statistical behavior is obviously a
more appropriate method. In the following, we will develop the
analytical expressions for the PDFs of the measured signal for
the different detector modes.

A. Sampled Measured Signal

In the case of the sample detector, the measured signal
sm(kTs) = |s(kTs)| will not depend on the history of the signal
before kTs, so the statistical description of the sample measure-
ment is equivalent to this of |s(t)|. Let the random variables
Sr(t) and Si(t) denote, respectively, the real and imaginary part
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of s(t). To calculate the probability distribution function of the
signal |s(t)|, the joint PDF of the real and imaginary part should
be known. This joint PDF can be found by making a detour
along the joint characteristic function

ΨS(u, v)
= E [exp (uRe [S(t)] + vIm [S(t)])]

= E


exp


uRe


∑
j

gj
∑
n

ejφ
(j)
c,npn(t)




+ vIm


∑
j

gj
∑
n

ejφ
(j)
c,npn(t)






 (12)

=
∏
j

∏
n

cos
(
ugj

pn,r(t)√
2

− vgj
pn,i(t)√

2

)

× cos
(
ugj

pn,i(t)√
2

+ vgj
pn,r(t)√

2

)
(13)

where pn,r(t) and pn,i(t) denote the real and imaginary part of
pn(t), respectively. To obtain (13), the characteristic function of
a sum of independent random variables has been written as the
product of the characteristic functions of the individual random
variables, which can easily be determined from the probabilities
of the chips given by (7).

Using the exponential expansion for a cosine [19]

cos(x) ≈ exp
(
−1
2
x2 − 1

12
x4 − 1

45
x6 − · · ·

)
(14)

which is valid for x < π/2, the characteristic function ΨS(u, v)
can be approximated by

Ψ(4)
S (u, v) ≈ exp


−1

2

∑
j

g2j
∑
n

1
2
(
p2n,r + p2n,i

)

× exp

(
− 1
12

∑
j

g4j
∑
n

[
1
4
(
p4n,r + p4n,i

)
(u4 + v4)

+ pn,rpn,i
(
p2n,i − p2n,r

)
uv(u2 − v2)

+
1
4
p2n,rp

2
n,iu

2v2

])
(15)

where the dependence of pn(t) on time has been omitted for
legibility; the superscript (4) indicates that the terms in u and v
will only be retained up to the fourth order. It can be observed
that if the terms of the fourth order are also disregarded,

ΨS(u, v) reduces to the joint characteristic function of two
Gaussian variables. If there are multiple channels transmitted,
the terms of the fourth order will be relatively less significant.

As it was mentioned above, the approximation is only valid
if the argument of the cosine is smaller than π/2. This means
that the characteristic function will only be accurate close to the
origin (u, v) = (0, 0). As it is demonstrated in the Appendix,
for large RBWs, the subsequent pulse contribution functions
show a large decay in magnitude [see (70)–(73)], and not all the
“moment energy” of the characteristic function is concentrated
around the origin. The presence of “moment energy” away from
the origin results in local oscillations in the PDF and in the
cumulative distribution function (CDF), which is equivalent to
a more discrete behavior of the signal. If the measured signal
level is comparable to the noise floor of the signal level, this
discrete behavior will be less pronounced.

The PDF of the sampled signal after the envelope detector
can be found by changing from rectangular to polar coordinates,
both in the probability ((x, y) �→ (r, θ)) as in the moment
domain ((u, v) �→ (q, φ)). The joint PDF of the magnitude
r and the phase θ can be found by applying the inverse
two-dimensional (2-D) Fourier transform on the characteristic
function

fRΘ(r, θ)

=
1
2π

∞∫
0

2π∫
0

ΨRΘ(q, φ)e−q cos(φ)r cos(θ)e−q sin(φ)r sin(θ)q dφ dq

(16)

The marginal distribution of |S(t)| can then be found by
integrating over the phase

fR(r) =
1
2π

2π∫
0

1
2π

∞∫
0

rqΨRΘ(q, φ)

2π∫
0

e−qr cos(φ−θ)dθ dq dφ

(17)

=
r

2π

∞∫
0

qJ0(rq)

2π∫
0

ΨRΘ(q, φ)dφdq (18)

where J0(·) is the Bessel function of the first kind of zeroth
order. Equation (18) can also be interpreted as r/(2π)2 times
the Hankel transform of the joint characteristic function in the
polar domain, integrated over the angle. Transforming (15) to
polar coordinates yields (19), shown at the bottom of the page.

Ψ(4)
RΘ(q, φ) = exp


−q2

2

∑
j

g2j
∑
n

|pn|2
2




× exp


− q4

12

∑
j

g4j
∑
n

(
3
16

|pn|4 + 1
16

(p4n,r − 6p2n,rp
2
n,i + p4n,r) cos(4φ) +

1
4
pn,rpn,i(p2n,r − p2n,i) sin(4φ)

) (19)
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The integration of the characteristic function in the polar
domain ΨRΘ(q, φ) over the phase angle φ results in

b(4)(q)

=

2π∫
0

Ψ(4)
RΘ(q, φ)dφ

= 2π exp


−∑

j

∑
n

(
g2j |pn|2

4
q2 +

g4j |pn|4
64

q4

) I0

(
γ(4)(q)

)

(20)

with I0(·), the modified Bessel function of the first kind of
zeroth order, and γ(4)(q)

γ(4)(q) =
q4

48


∑

j

g4j




(∑

n

(
p2n,r − p2n,i

)
pn,rpn,i

)2

+

(
1
4

∑
n

p4n,r + p4n,i − 6p2n,rp
2
n,i

)2



1
2

. (21)

The PDF of the sampled signal after the envelope detector |s(t)|
is thus given by r/(2π)2 times the Hankel transform of b(4)(q).

If terms of order q4 would have been neglected, the function
γ(2)(q) would reduce to 0, and consequently, the function
b(2)(q) would be approximated by a Gaussian form. Since
the Hankel transform of a Gaussian function is given by the
Rayleigh distribution, the second-order approximation of the
marginal distribution fR(r) is

f
(2)
R (r) =

2r∑
j g

2
j

∑
n |pn(t)|2

exp

(
− r2∑

j g
2
j

∑
n |pn(t)|2

)
.

(22)

This could be expected since, for moderate RBWs, a large
number of chips contribute to the signal after the resolution
filter. Hence, the real and imaginary parts of the signal could
in a first approach be described as two mutual independent
Gaussian distributions and, thus, the signal after the envelope
detector, which is fed into the sample detector, is described by
the Rayleigh distribution. Substituting (11) into the parameter
of the Rayleigh distribution (22), applying the Poisson sum
formula on

∑
n exp(−(t− nTc)2/(2σ2t )) and assuming that

σt � Tc, the parameter of the Rayleigh distribution can be
approximated as

1
2

∑
j

g2j
∑
n

|pn(t)|2 ≈
√
πσfTc
2

∑
j

g2j (23)

which is, as it could be expected, proportional to the RBW of
the signal and to the summed power of the different channels.

In Fig. 2, the PDF of the measured sample distribution of the
WCDMA signal used in UMTS (5-MHz wide), measured with
a 400-kHz wide resolution filter, is shown, calculated both with

Fig. 2. PDF of the sampled measured sample for a WCDMA signal measured
with a resolution filter of 400 kHz in the flat part of the pulse-shaping filter.
The PDF obtained with brute-force simulations (solid line) is compared to the
second-order (dotted line) and fourth-order approximations (dashed). The ratio
between the approximations and the brute-force simulation is indicated in gray.

brute-force techniques and with the approximations (22) and
(18). As it can be seen, the second-order distribution does not
follow exactly the PDF predicted by the brute-force simulation.
For larger levels r, the Rayleigh distribution overestimates
the exact PDF, while the approximation of the fourth order
remains valid.

If the noise is taken into account, the characteristic func-
tion (19) should be multiplied with an additional factor
exp(−q2(σ2n

√
πσf/4)). The parameter of the Rayleigh distri-

bution (23) will then be changed to

√
πσf
2


Tc
∑
j

g2j + σ2n


 (24)

so that the contribution of the noise floor may be neglected if
the spectral power density of the WCDMA signal is sufficiently
stronger than the spectral power density of the noise.

B. RMS Measured Signal

To calculate the PDF of the signal measured with the rms
detector, first, the statistical description of the mean-square
(MS) signal sms(kTs) will be derived. Using notation (8) for
the signal before the detector, the MS signal becomes

sms(kTs)

=
1
Ts

∑
j

∑
j′

gjgj′
∑
n

∑
n′

e
φ

(j)
c,n−φ(j′)

c,n′

kTs∫
(k−1)Ts

pn(t)p∗n′(t)dt.

(25)

By using expression (9) for the pulse contribution functions
pn(t), and changing the integration sequence, the integral in
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the expression above can be rewritten as

kTs∫
(k−1)Ts

pn(t)p∗n′(t)dt

=
1

2πσ2t
exp
(−πvsw(n2 − n′2)T 2

c

) ∞∫
−∞

[
hPS(u′)hPS(v′)

× e−πvsw(u
′nTc−v′n′Tc)

√
πσtexp

(
− (u′−v′+(n−n′)Tc)2

2σ2t

)

× werf (u′+ v′+ (n+ n′)Tc − 2(k − 1)Ts)

]
du′dv′ (26)

where werf(·) is a window function determining which pulse
functions pn(t) contribute to the MS signal. It has been
defined as

werf(u) =
1
2

(
erf
(

u

2σt

)
− erf

(
u− 2Ts
2σt

))
(27)

and can be approximated by a rectangular window over the
interval [0, 2Ts], provided that the inverse of the RBW is small
compared to the measuring period Ts. This window function
provides the condition on the chips that contribute to the MS
signal of the kth measuring interval

(k − 1)Ts <
n+ n′

2
Tc < kTs. (28)

Analogous to the approximation of the pulse contribution func-
tion (10), the integral of the pulse contribution functions can be
estimated by

kTs∫
(k−1)Ts

pn(t)p∗n′(t)dt

≈ 1
2
√
πσt

e−2πvsw(n
2−n′2)T 2

c

×F−1
[
HPS

(
f +

vsw
2

nTc

)
exp
(
−f2

σ2f

)

×HPS

(
f − vsw

2
n′Tc
)]

((n− n′)Tc) . (29)

If the frequencies ±{ nn′ }Tc(vsw/2) are located in the flat
frequency part of the pulse-shaping filter, the pulse-shaping
filter HPS can be replaced by Tc. The measured MS value is
then given by

sms(kTs) =
T 2
c

Ts

1
2
√
πσt

∑
j

∑
j′

gjgj′
∑
n

∑
n′

eφc,n−φc,n′

× e−πvsw(n
2−n′2)T 2

c exp
(
− (n− n′)2T 2

c

4σ2t

)
. (30)

By introducing a new set of indexes (m = n+ n′,m′ =
n− n′) (see also Fig. 3) and grouping the indexes of identical

Fig. 3. Transition from the sum indexes (n, n′) to the new indexes (m, m′).

chips and channels, (30) can be rewritten as

sms(kTs)

=
T 2
c

Ts

1
2
√
πσt



∑
j

g2jNs + 2
∑
j

g2j
∑
m′>0

exp
(
−m′2T 2

c

4σ2t

)

×
∑
m

cos
(
πvswmm′T 2

c + φ(j)c,n − φ
(j)
c,n′

)

+ 2
∑
j

∑
j′ �=j

gjgj′
∑
m′≥0

exp
(
−m′2T 2

c

4σ2t

)

×
∑
m

cos
(
πvswmm′T 2

c + φ(j)c,n − φ
(j′)
c,n′

)


(31)

where m should satisfy the condition 2(k − 1)Ts < mTc <
2kTs and increases with 2 (as indicated in Fig. 3), whereas m′

runs over all integers; Ns is the number of contributing chips
and can be approximated by Ts/Tc. If the expected value of the
MS value (30) is taken, the expected value reduces to the first
term of (31), where the same channel is considered (j = j′)
and m′ = 0

E [sms(kTs)] =
∑
j

g2j
T 2
c

Ts

Ns
2
√
πσt

≈
∑
j

g2j
Tc

2
√
πσt

(32)

As it could be expected, the expected MS value is independent
of the measuring period Ts and proportional to the RBW as to
the sum of squared gains.

To obtain the PDF of the MS value, again the detour along the
characteristic function is made. First, the characteristic function
ΨΣm

(u) of the summation over m can be calculated. Since the
phase differences between chips are mutually dependent, the
characteristic function is the product of cosines

Ψ(4)
Σm

(u)

=
∏
m

cos
(
1
2
(
cos
(
πvswmm′T 2

c

)
+ sin

(
πvswmm′T 2

c

))
u

)

× cos
(
1
2
(
cos
(
πvswmm′T 2

c

)− sin
(
πvswmm′T 2

c

))
u

)
(33)
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≈ exp
(
−Ns

u2

4

)
exp

(
−Ns

u4

64
+
∑
m

u4

192
cos
(
πvswmm′T 2

c

))

(34)

where, again, (14) has been applied. Although, strictly
speaking, it is not correct to consider the different sums over
m as independent random variables, their mutual correlation
will be very small for small index differences m′ and a large
number of contributing chips. Moreover, because of the term
exp(−m′2T 2

c /4σ
2
t ), the contribution of more distant chip

pairs will be lower, especially for larger RBWs. This means
that the assumption that the different summations over m are
mutually independent is acceptable. In accordance to these
considerations, the characteristic function of the summation
over m′ can be written as a product

ΨΣm′ (u) ≈
∏
m′

ΨΣm
(Am′u) (35)

where Am′ is exp(−m′2T 2
c /4σ

2
t ). Analogously, the character-

istic function of the MS signal can be derived by multiplying
all characteristic functions ΨΣm′ (u) for the different channels.
Again, the same objections are valid regarding to the indepen-
dence of the variables. The fourth-order approximation of the
characteristic function of the MS signal can thus be written as

Ψ(4)
ms(u) = exp


α
∑
j

g2jNsu




× exp


−α2


∑
j

g4j
∑
m′>0

A2
m′

+
∑
j

∑
j′ �=j

g2j g
2
j′
∑
m′≥0

A2
m′


Nsu2




× exp


−α4


∑
j

g8j
∑
m′>0

A4
m′

+
∑
j

∑
j′ �=j

g4j g
4
j′
∑
m′≥0

A4
m′


Nsu44




×exp


α4


∑

j

g8j
∑
m′>0

A4
m′
∑
m

cos
(
πvswmm′T 2

c

)

+
∑
j

∑
j′ �=j

g4j g
4
j′
∑
m′≥0

A4
m′

×
∑
m

cos
(
πvswmm′T 2

c

)Nsu412


(36)

where α is T 2
c /(2

√
πσtTs). If, as a first approximation, only

the terms of second order are retained, the probability dis-

tribution of the measured MS signal can be approximated by a
Gaussian random variable with mean

µms =
√
πσfTc

∑
j

g2j (37)

and standard variation

σ2ms ≈ 2α2


∑
j

g4j
∑
m′>0

A2
m′+
∑
j

∑
j′ �=j

g2jg
2
j′
∑
m′≥0

A2
m′


Ns (38)

≈
√
2πσfT 2

c

2Ts


∑

j

g2j




2

=
µ2ms√
2πTsσf

. (39)

To obtain the last expression, the sums of Am′ are calculated
with the Poisson sum formula and it is assumed that σf � 1/Tc.
The expected MS value is proportional to the RBW and the
summed power of the channels and is independent of the
measurement period. The standard deviation on the MS value
decreases with

√
Ts and is proportional to the summed power

of the channels. If the standard deviation on the MS value is
considered relative to the mean value, it appears from (39) that
the standard deviation is inversely proportional to the square
root of the product of the measurement period and the RBW.

If again the contribution of the noise is taken into considera-
tion, the MS value measured by the spectrum analyzer will be
given by

sms,noise (kTs) = sms(kTs) +
1
Ts

kTs∫
(k−1)Ts

|ns(t)|2 dt (40)

since the contribution from the signal and the contribution of the
white noise can be considered as uncorrelated. Accordingly, the
mean and the standard deviation on the MS signal are given by

µms,noise = µms + µnoise =
√
πσf


Tc
∑
j

g2j + σ2n


 (41)

and

σ2ms,noise ≈ σ2ms + σ2noise =
µ2ms + µ2noise√

2πσfTs
(42)

where for the standard deviation on the noise, it has been
assumed that the measurement interval of the bin Ts is much
longer than the answer of the resolution filter σt. Hence, if noise
is present, it will be impossible to distinguish the contribution
of the white noise to the measured signal from the WCDMA
signal.

Once the PDF of the MS measurement is known, the PDF of
the rms value is easily derived

frms(r) =
dFms(r2)

dr
= 2rfms(r2) (43)

f (2)rms(r) =

√
2
π

r

σms
exp
(
− (r2 − µms)2

2σ2ms

)
(44)

with Fms(r2) as the CDF of the MS signal distribution.
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C. Positive-Peak Signal

To calculate the PDF of the positive-peak signal, an
analogous method to the one described in [20] will be
followed. As it was demonstrated by Rice [21], the expected
number of maxima N̄max]t0,t1](m) that a stochastic process
R(t) attains within the interval ]t0, t1] and that are above a
certain level m is given by

N̄max]t0,t1](m) =

t1∫
t0

+∞∫
m

pmax(t, r) dr dt (45)

where pmax(t0, r0)dt dr is the probability that a stochastic
process R(t) reached a local maximum in the region
]t0, t0 + dt]× ]r0, r0 + dr]. pmax(t0, r0) can be calculated as

pmax(t0, r0) = −
0∫

−∞
r̈fRṘR̈(r0, 0, r̈)dr̈ (46)

where fRṘR̈(r, ṙ, r̈) is the joint PDF of the stochastic process
R(t), and Ṙ(t) is its first-order, and R̈(t) its second-order
derivative to time. As a consequence, the probability that an
arbitrary peak ρ of the signal R(t) in the interval ]t0, t1] lies
above the level m is given by

Pr[ρ > m] =
N̄max]t0,t1](m)

N̄max]t0,t1](0)
(47)

which is the ratio of the expected number of maxima during
the time interval ]t0, t1], that are larger than m, to the expected
total number of maxima within the same interval. Since the
positive-peak detector operates on the signal after the envelope
detector, the positive-peak signal is restrained on the lower
side by 0, and thus, N̄max]t0,t1](0) denotes the expected total
number of maxima.

To derive the PDF of the positive-peak signal, the peak
process (or the interarrival times between two successive max-
ima) should be known, which is difficult to analyze. However,
if the assumption is made that successive maxima are mutually
independent, analogous to [20], the problem can be easily
solved. Let M]t0,t1] be the maximum measured signal over the
interval ]t0, t1], then M]t0,t1] is equal to the maximum of all the
peaks ρi that have occurred during the interval

M]t0,t1] = max
1≤i≤N̄max]t0,t1]

(0)
ρi. (48)

If the period is sufficiently long, due to the law of large
numbers, the number of maxima in the period will be equal,
with probability 1, to its expected value N̄max]t0,t1](0). Since it

has been assumed that the peaks are mutually independent, the
cumulative distribution of M]t0,t1] is given by

FM]t0,t1](m) = Pr
[
ρi≤m ∀i : 1≤ i≤N̄max]t0,t1](0)

]
(49)

= Pr [ρ ≤ m]N̄max]t0,t1]
(0)

(50)

=

(
1− N̄max]t0,t1](m)

N̄max]t0,t1](0)

)N̄max]t0,t1]
(0)

. (51)

The joint PDF of the signal, leaving the envelope detector and
its first- and second-order derivatives to time, can be found in
an analogous way to the calculation of the PDF of the sampled
signal. The joint characteristic function in the Cartesian coordi-
nates of the real and imaginary signals sr and si, and their first
and second derivatives ṡr

i
, s̈r

i
, respectively, is given by

ΨSṠS̈(u, u̇, ü, v, v̇, v̈) =
∏
j

∏
n

cos (gjαn(t)) cos (gjβn(t))

(52)

with

αn(t) =
1√
2
(upn,r(t) + u̇ṗn,r(t) + üp̈n,r(t)

+ vpn,i(t) + v̇ṗn,i(t) + v̈p̈n,i(t)) (53)

βn(t) =
1√
2
(upn,i(t) + u̇ṗn,i(t) + üp̈n,i(t)

− vpn,r(t)− v̇ṗn,r(t)− v̈p̈n,r(t)) (54)

where, again, the dotted functions denote the first-order time
derivatives, and the double-dotted functions denote the second-
order time derivatives. Once more, the second-order approx-
imation of this product series is an exponential function,
yielding

Ψ(2)

SṠS̈
(u, u̇, ü, v, v̇, v̈)≈ exp


−1

2

∑
j

g2j
∑
n

(
α2
n(t)+ β2n(t)

)
(55)

≈ exp
(
−1
2
UTΓU

)
(56)

where the second-order approximation was rewritten as
the characteristic function of a six-dimensional multivariate
Gaussian distribution with covariance matrix Γ. U is given by
[u u̇ ü v v̇ v̈]. The corresponding PDF then becomes

f
(2)

SṠS̈
(sr, ṡr, s̈r, si, ṡi, s̈i) =

1
(2π)3|Γ| exp

(
−1
2
STΓ−1S

)
(57)

with S = [sr ṡr s̈r si ṡi s̈i].
If the frequency under consideration fo = vswnTc falls

within the flat-frequency part of the pulse-shaping fil-
ter, the pulse contribution functions, and analogously their
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time-derivatives, can be approximated by (11). The covariance
matrix can then be written as

Γ ≈
[
Γr 0
0 Γi

]
. (58)

The submatrices Γr and Γi are equal. They can be elaborated
by using the Poisson sum formulas, and only retaining the
terms independent of time (which can be done if σf � 1/Tc),
yielding

Γr = Γi =
Tc

2
√
πσt

∑
j

g2j




1
2 0 − 1

4σ2
t

0 1
4σ2

t
0

− 1
4σ2

t
0 3

8σ4
t


 . (59)

It should be noted that if σt is chosen as the new time basis,
and the signal levels are normalized to the root of the expected

MS value
√

Tc
∑
j g

2
j /(2

√
πσt) [see (37)], a dimensionless

distribution is obtained, independent of the chip rate or the
RBW. From now on, these scaled variables will be indicated
with a hat. The joint PDF of the signal after the envelope
detector can be found by a transformation to polar coordinates.
To calculate the function p̂max(t̂, r̂), the marginal distribution
f
R̂
˙̂
R
¨̂
R
(r̂, 0, ¨̂r) has to be known as

f
(2)

R̂Ṙ
¨̂
R
(r̂, 0, ¨̂r)

=

∞∫
−∞

∞∫
−∞

2π∫
0

r̂3f
Ŝ
˙̂
S
¨̂
S
(ŝr, ˙̂sr, ¨̂sr, ŝi, ˙̂si, ¨̂si) dφ̂ d

˙̂
φd

¨̂
φ
∣∣∣
˙̂r=0

(60)

≈ 4
π

3
2
exp
(
−
(
3
2
r̂2+2r̂¨̂r+¨̂r

2
))

r̂
3
2

√
¨̂rK 1

4

(
¨̂r
2
)

(61)

where K1/4(·) is the modified Bessel function of the second
kind of order 1/4. This normalized marginal distribution is
independent of the RBW and the chip rate. Since the marginal
distribution does not depend on time, the expected number of
maxima with a level above the normalized value m̂ can be
written as

N̄max]t̂0,t̂1]
(m̂)

≈ − (t̂1 − t̂0)

+∞∫
m̂

r̂
3
2 exp

(
−3
2
r̂2
)

×
0∫

−∞

¨̂r
4
π

3
2
exp
(
−(2r̂¨̂r + ¨̂r

2
)
)√

¨̂rK 1
4

(
¨̂r
2
)
d¨̂r dr̂ (62)

≈ (t̂1 − t̂0)ν̄(m̂) (63)

with ν̄(m̂) denoting the expected rate of maxima above a
normalized level m̂ in a fixed time interval σt. The cumulative
distribution of the maximum can then be written as

F
(2)

M̂]t̂0,t̂1]
(m̂) =

(
1− ν̄(m̂)

ν̄(0)

)ν̄(0)(t̂1−t̂0)
(64)

where only the exponent depends on time.

For long observation periods, the levels of the observed
maxima will be located at the tails of the probability distribution
fR̂(r̂). This means that an accurate description of the tail dis-
tribution is essential to calculate the PDF of the positive-peak
signal. This is achieved by also enclosing the fourth-order terms
in the joint characteristic function for the real and imaginary
parts of the signal (but not for their time derivatives). The
inclusion of fourth-order terms involves the multiplication of
the second-order approximation (56) with the function G(û, v̂),
which is given by

G(û, v̂) = exp

(
1
12

∑
j

g4j
∑
n

1
4
(
ûp̂n,r(t̂ ) + v̂p̂n,i(t̂ )

)4

+
(
ûp̂n,i(t̂ ) + v̂p̂n,r(t̂ )

)4)
. (65)

The multiplication of the characteristic function with G(û, v̂)
implies in the probability domain the convolution of the joint
PDF with the inverse Fourier transform of G(û, v̂). After
transforming to the polar-coordinate system, the fourth-order
approximation of p̂max(r̂) is given by

p̂(4)max(r̂) = r̂

∞∫
0

ŝJ0(r̂ŝ)g̃(ŝ)

∞∫
0

p̂(2)max(q̂)J0(ŝq̂) dŝ dq̂ (66)

with b̃(ŝ)

b̃(ŝ) = exp

(
− 1
16

∑
n

1
4
|p̂n|4ŝ4

)
I0

(
γ(4)(ŝ)

)
(67)

and γ(4)(ŝ) is analogous to (21), but where the pulse-shaping
functions are scaled to

√
µms, and dually, the magnitude ŝ is

multiplied with
√
µms.

In Fig. 4, the function ν̄(m̂) is given for both the second-
and fourth-order approximations (compared to simulations of
the signal using the model described in Fig. 1). If longer
observation periods Ts are considered, the behavior of (64)
will be determined by the values of ν̄(m̂) for large m̂, and
thus the second-order approximation of the behavior will no
longer be valid. On the other hand, if multiple channels are
transmitted, the second-order approximation will be relatively
better compared to the single-channel case. Once the average
mean rate of maxima ν̄(m̂) is known, the CDF can easily be
derived from (64).

Considering the internal noise of the spectrum analyzer, the
second-order approximation of the cumulative distribution for
the positive-peak detector will still be given by (64), where
the levels, however, have to be normalized to

√
µms,noise =√√

πσf(Tc
∑
j g

2
j + σ2n), while the procedure to obtain the

fourth-order approximation remains the same. This implies
that the correction term for the fourth-order approximation
will be relatively less important, and thus, the second-order
approximation will be more accurate.
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Fig. 4. Normalized expected rate of maxima ν̄(m̂). Comparison between the
mean number of maxima above the normalized level m̂ obtained by simulations
(•) and the mean number of maxima predicted by the second-order (dashed
line) and the fourth-order models (solid line). The tail behavior of ν̄(m̂) is
shown in more detail in the inset. Simulations were executed during the interval
50–100 ms. The chosen sweep time was 500 ms, the frequency span was
6 MHz, and the RBW was 100 kHz.

IV. DISCUSSION

Now that the stochastic description of the WCDMA signal
measured by a spectrum analyzer has been determined for
the different detector modes, the behavior of the measured
signals can be compared. As a summary, the dependence on
the measurement period Ts of the mean and standard deviation
of the measured signal level, respectively, are given in Figs. 5
and 6, respectively, for the different detector modes of the
spectrum analyzer. The resolution filter was chosen as 100 kHz.
The levels have been normalized to the square root of the MS

level
√

Tc
∑
j g

2
j /(2

√
πσt) and should be corrected with this

level to obtain the correct power of the signal. The mean value
of the sample detector is somewhat lower than the root of the
MS level, and the standard deviation for the sample detector
is the largest. The mean of the rms detector deviates slightly
from 1 but approaches 1 for larger measurement periods Ts;
the standard deviation of the rms detector decreases for larger
measurement periods Ts and is smaller than the standard devi-
ation of both the sample as the positive-peak detector. For the
positive-peak detector, the mean increases with larger measure-
ment periods, but the standard deviation decreases. It should be
noted that, although the standard deviation of the peak detector
is for small measurement periods of the same order as the
standard deviation of the sample detector, the relative width
of the PDF of the positive-peak detector will be much smaller
due to its higher mean level. For longer simulation periods, the
relative standard deviation becomes even smaller.

The predicted mean values agree very well with the simu-
lated means for all detectors. The agreement between simulated
and predicted standard deviations is rather good. For the rms
detector, there is some divergence for short time periods, while
for the positive-peak detector, the difference increases for

Fig. 5. Comparison between the expected values of the distribution of the
measured UMTS signal for the different detector modes of a spectrum analyzer
as a function of the length of the measurement period Ts. The levels have been
normalized to the square root of the expected MS level. The chosen sweep
time was 500 ms, the frequency span was 6 MHz, and the RBW was 100 kHz.
For the rms detector, only the second-order approximation is given, and for the
sample and positive-peak detector, the values obtained with both the second-
and fourth-order approximation are shown. Simulation results are also indicated
as a reference.

Fig. 6. Comparison between the standard deviation of the distribution of the
measured UMTS signal for the different detector modes of a spectrum analyzer.
The levels have been normalized to the square root of the expected MS level as
a function of the length of the measurement period Ts. The chosen sweep time
was 500 ms, the frequency span was 6 MHz, and the RBW was 100 kHz. For
the rms detector, only the second-order approximation is given, and for the
sample and positive-peak detector, the values obtained with both the second-
and fourth-order approximation are shown. Simulation results are also indicated
as a reference.

larger measurement periods. The second-order approximation
performs well for the sample and rms detector, while for the
positive-peak detector, the inclusion of the fourth order is
necessary to predict the mean value of the measured level.
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From Fig. 5, it appears that the mean rms level of the
signal can be estimated from the mean level measured with
the positive-peak detector through division of the measured
positive-peak level with the value of µ̂, given in Fig. 5, for the
positive-peak detector, at the appropriate measurement period
Ts. This may be useful if there is no rms detector present in
the spectrum analyzer. Another application is the estimation of
the maximum rms level that has occurred for a WCDMA signal
where the power levels are changing rapidly compared to the
measuring period. In this case, the maximum power level could
be estimated from the level measured with the positive-peak
detector (using the time period of the power variation as “mea-
suring period”), while the value returned by the rms detector
would underestimate the maximum power level. It can be noted
that the uncertainty on the measurement value is higher for the
rms level estimated from the positive-peak detector compared
to the level measured by the rms detector. If the measured signal
level of the WCDMA signal is of the same order of magnitude
of the noise floor of the spectrum analyzer, the curve of µ̂ for the
positive-peak detector will tend more towards the second-order
approximation. Hence, the derivation of the rms level, from the
positive-peak value with the fourth-order curve, will imply an
overestimation of the real rms level. It should also be noted that
in the presence of noise, the measured signal will behave as
a noise-free signal with a power level equal to the sum of the
signal and the noise power. If the spectral density of the internal
noise would be known, it is possible to estimate the power
density present in the WCDMA signal by subtracting the noise
power density, provided that the WCDMA signal is sufficiently
stronger than the noise floor of the spectrum analyzer.

V. CONCLUSION

In this paper, the authors have determined, for the different
detector modes, the behavior of the WCDMA signal measured
by a spectrum analyzer. Analytical expressions for the PDFs
or CDFs have been derived and have provided insight in both
the characteristics of the signal and the operation of a spectrum
analyzer. From these analytical expressions, the dependence on
the measuring period of the mean measured level and of its
standard deviation has been calculated. From the comparison, it
appears that the rms detector is preferred to estimate the power
of the WCDMA signal since it delivers the smallest standard
deviation. It has also been shown that the rms level can be
estimated from a positive-peak measurement if one takes into
account the measuring period, although a higher uncertainty on
the result is associated with this method. This is useful in the
case where no rms detector is present in the spectrum analyzer
or if one wants to measure the maximum power of a WCDMA
signal with rapidly changing power levels. If the noise floor has
the same order of magnitude as the measured signal level, the
behavior of the measured sample and rms level will behave as
if the power density of the WCDMA signal is increased with
the noise power density. In the case where multiple equivalent
WCDMA channels are active, or when the noise floor cannot be
neglected compared to the WCDMA signal level, the behavior
of the measured positive-peak level will resemble more the
measurement of the white noise.

APPENDIX

As it was previously mentioned, (14) is only valid for ar-
guments of the cosine function that are smaller than π/2. In
this Appendix, the threshold is estimated above which (15)
is no longer valid and where a continuous description of the
stochastic behavior is no longer appropriate and, thus, only
indicates the main course of the PDF.

To get an idea about the threshold between continuous and
discrete behaviors, we will study the distribution of the real
part of s(t), i.e., before the envelope detector. Since the discrete
behavior occurs due to the existence of a “side lobe” in the char-
acteristic function, it is interesting to describe the characteristic
function around the first next extremum of the cosine function
with the largest argument, i.e., u = ±π

√
2/|gn0(n0Tc)|. Here,

the limit situation is considered where all pulse contribution
functions are purely real or imaginary. The characteristic func-
tion can then be written as

ΨSr(u)=
K0∏

k0=−K0

cos
(|pn0+k0 |√

2
u

) ∏
k1 �∈[−K0,K0]

cos
(|pn0+k1 |√

2
u

)

(68)

≈−exp

(
−1
2

(
π ∓ |pn0 |√

2
u

)2
−
K0∑
k0=1

(
π∓ |pn0+k0 |√

2
u

)2

−
∞∑

k1=K0+1

|pn0+k0 |2
2

u2

)
(69)

where K0 is the largest index of which the approximation
around 0 (14) is not valid at u = ±π

√
2/|gn0(n0Tc)|. This

index can be determined as follows:

|gn0+k0 |√
2

√
2π

|gn0 |
≥ π

2
(70)

exp
(
−k20T

2
c

2σ2t

)
≥ 1

2
(71)

k0 ≤
√
2 ln 2

σt
Tc

(72)

where (11) has been applied. The largest index is thus given
by K0 = �√2 ln 2σt/Tc�, which can be approximated by the
continuous variable K0 ≈

√
2 ln 2σt/Tc − 1/2. The second

extremum of the characteristic function will be given by

|ΨSr(umax)|

= exp


−π2

2


(2K0+1)−

(∑K0
k=−K0

|pn0+k|
)2

∑+∞
k=−∞ |pn0+k|2




 . (73)

The truncated sum can be approximated by applying the Pois-
son sum formula as

K0∑
k=−K0

|gn0+k| ≈
√
2π

σt
Tc

erf
(√

ln 2
)

(74)
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which yields for the characteristic function

|ΨSr(umax)| ≈ exp
(
−π2

σt
Tc

(√
2 ln 2−√

π
(
erf(

√
ln 2)
)2))

.

(75)

If it is assumed that the maximum level of the side lobe should
be below 0.05, the threshold for the RBW can be determined as

RBW >

π

(√
2 ln 2−√

π ln 2
(
erf
(√

ln 2
)2))

| ln 0.05|
1
Tc

(76)

>
0.395

| ln 0.05|
1
Tc

≈ 500 kHz. (77)
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