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Abstract In this paper, we compute the probability generating functions
(PGF’s) of the customer delay for two batch-service queueing models with
batch arrivals. In the first model, the available server starts a new service
whenever the system is not empty (without waiting to fill the capacity),
while the server waits until he can serve at full capacity in the second
model. Moments can then be obtained from these PGF’s, through which
we study and compare both systems. We pay special attention to the influ-
ence of the distribution of the arrival batch sizes. The main observation is
that the difference between the two policies depends highly on this distri-
bution. Another conclusion is that the results are considerably different as
compared to Bernoulli (single) arrivals, which are frequently considered in
the literature. This demonstrates the necessity of modeling the arrivals as
batches.

Keywords: batch service, batch arrivals, immediate versus full-batch ser-
vice policy, customer delay
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——————————————————————

1 Introduction

Servers capable of processing several customers simultaneously are generally
referred to as batch servers. Examples include elevators in high buildings,
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transport vehicles, ship locks, . . . . Furthermore, in telecommunications, it
is often the case that information packets are grouped in larger entities
(batches) and these batches are transmitted instead of all packets individ-
ually. This is mainly done for efficiency reasons, since only one header per
aggregated batch has to be constructed instead of one header per single in-
formation unit. Optical burst switched (OBS) networks, for instance, apply
this method abundantly (Chen et al., 2004; Qiao and Yoo, 1999). At the
edges, IP packets with the same destination and Quality of Service (QoS)
requirements are aggregated into optical bursts which are injected into the
network.
The model that resembles batch service the most is a multiserver system, as
they share the feature that several customers can be served simultaneously
(we call the maximum number c the capacity). However, batch-service sys-
tems might be less performant: if a customer arrives when the batch server
is processing less than c customers, this customer cannot join the ongoing
service, whereas the customer would be served immediately by one of the
available servers in the multiserver system. In view of this, the batch server
has to make a decision, called the service policy, when he becomes available
and finds less than c customers in the queue. The server could, for instance,
start serving the already present customers immediately (Chang and Choi,
2005; Chaudhry and Templeton, 1983; Janssen and van Leeuwaarden, 2005;
Zhao and Campbell, 1996). Although the present customers benefit from
this approach, capacity is wasted: customers that arrive later cannot join
the ongoing service.
An alternative for this so-called immediate-batch service policy (IBSP) is
the full-batch service policy (FBSP) (Chang and Takine, 2005; Chaudhry
and Templeton, 1983). In this case, the available server only starts operating
if the system contains at least as many customers as his capacity, which, in
turn, has a negative effect on the delay of the customers waiting to form a
full batch. Hence, the choice whether to wait (FBSP) or not (IBSP) is im-
portant in order to optimize the performance of the batch-serving system,
for instance in terms of the (mean) customer delay.
In this paper, we consider two discrete-time batch-service models which
only differ in their service policy. In the first, the IBSP is adopted while the
FBSP is employed in the second. These models are described in section 2.
We then compute, for both models separately, the probability generating
function (PGF) of the customer delay: section 3 covers the IBSP while the
FBSP is dealt with in section 4. Several moments can be extracted from the
obtained PGF’s, which serve as performance measures in section 5 through
which the two systems are compared.
The analyses of the delays in sections 3 and 4 form the first major contri-
bution of this paper. Especially, the inclusion of batch arrivals (i.e. several
customers can arrive simultaneously) in the queueing model and delay anal-
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ysis is novel (it has not been done for discrete-time or continuous-time mod-
els, as far as we know). Delay analysis for single arrivals and batch service
has been covered in e.g. Chaudhry and Templeton (1983); Downton (1955);
Kim and Chaudhry (2006); Medhi (1975), but the batch-arrival nature of
the models in our paper, makes the delay analysis much more involved.
In our conference paper Claeys et al. (2008), we were the first to study
the customer delay in a preliminary batch-arrival, batch-service queueing
model. In that paper, we considered service times of one slot and the server
applies the FBSP. We here extend this to the more general case of geomet-
rically distributed service times and the analysis of both the IBSP and the
FBSP system. The approach, based on PGF’s, is promising because it leads
to semi-analytical expressions, whereas methods based on matrix-analytical
techniques would require more numerical calculations. The resulting ex-
pressions give us the tools to compare the two, practically important batch
server policies in a quite general setting (service times of more than one
slot, general number of arrivals per slot). Herein lies a second contribution
of this paper: we are able to study the influence of the distribution of the
number of customer arrivals in a slot on the performance of both systems.
This leads to the important observation that the results differ considerably
as compared to single (Bernoulli) arrivals and that the difference between
both policies is highly effected by the distribution of the number of arrivals
in a batch. Hence, we conclude that the inclusion of batch arrivals in the
queueing model is a necessity and this paper provides this analysis.

2 Description of the models

Before describing the models, we first make the following notational con-
vention: we denote the mass function of a discrete random variable X by
x(n). Hence, x(n) , Pr [X = n] , n ≥ 0. X(z) , E

[

zX
]

=
∑∞

n=0 x(n)zn is
the corresponding PGF.
In this paper, we study two models, which only differ in their service policy.
The other properties are identical for both models:

– The time axis is divided into fixed-length slots.
– The amount of customers that arrive during slot k is denoted by Ak and

Ak can be larger than one (we call this batch arrivals). The numbers
of customer arrivals during consecutive slots constitute an independent
and identically distributed (IID) process, with common mass function
a(n) and PGF A(z).

– The queue is infinitely large.
– There is one batch server of capacity c (c is a constant), meaning that

the server can process up to c customers simultaneously.
– A service period is the period between the start and end of the service

of one batch of customers. The service can only start and end at slot
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boundaries, implying that an arriving customer has to wait for service at
least until the next slot mark. This part is not included in the customer
delay (also called waiting time): we denote the customer delay as the
number of slots between the end of the customer’s arrival slot and the
beginning of the slot whereat the service of the customer is effectively
started.

– The consecutive service times - a service time is the length of a service
period, expressed in a number of slots - are IID and have a geometric
distribution, with mass function s(n) = (1− α)αn−1(n ≥ 1), whereby α
(0 ≤ α < 1) represents the probability that an ongoing service during
a random slot is not finished at the end of that slot. The corresponding
PGF is equal to S(z) = (1 − α)z/(1 − αz), and the mean service time
E [S] equals 1/(1 − α) slots. Note that in some papers the service time
is included in the customer delay, while it is not here. However, one can
include the service time by multiplying the PGF of the delay by S(z).

– The queueing discipline is first-come-first-served (FCFS).

In case of IBSP, the server starts another service if the system is not empty
upon the server becoming available (without waiting to fill the capacity).
In case of FBSP, the server waits to start processing until the beginning of
the first slot at which at least c customers have accumulated in the system.
At this moment, the server starts the service of exactly c customers.
The stability condition for both models is that the load ρ , λ

c(1−α) < 1,

whereby λ represents the mean number of arrivals in a random slot.

3 IBSP

As mentioned above, this section deals with the PGF of the customer delay
(W̃ (z)) for the IBSP model. Let us concentrate on an arbitrary tagged
customer T arriving in say slot J . The number of other arrivals in slot J
and before customer T is denoted by B and Ũ is the system content (the
sum of the number of customers in the queue and those in the server) at
slot mark J . Note that in the case of single arrivals, B = 0, which would
simplify the analysis. Depending on the value of Ũ , we consider two cases:

– Ũ = 0: the server is idle during slot J . At slot mark J + 1, B customers
are ahead of customer T . The delay of T then consists of

⌊

B
c

⌋

service
periods, with b.c the floor function, i.e. bxc = max{n ∈ N | n ≤ x}.

– Ũ ≥ 1: the server is working during slot J . We observe two subcases:
– If the service period ends at the end of slot J (with probability 1−α),

the delay consists of
⌊

Q̃+B
c

⌋

service periods, with Q̃ the number of

customers in the queue (without the server) at slot mark J .
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– If the service period does not end at the end of slot J (with proba-

bility α), the delay consists of 1+
⌊

Q̃+B
c

⌋

service periods. We indeed

can consider the service period that continues during slot J + 1 as a
new service period, due to the memoryless character of the geometric
distribution of the service periods, but we have to keep in mind that
the server not necessarily serves c customers during slot J + 1. Note
that because of the geometric distribution of the service times, we
do not have to keep track of the remaining service time. This would
not be the case for a general distribution, which would complicate
the analysis considerably.

The combination of these cases produces

W̃ (z) = Ũ(0)E
[

z
∑bB/cc

i=1 Si

]

+ (1 − α)E

[

z
∑b(Q̃+B)/cc

i=1 Si

]

−(1 − α)E

[

z
∑b(Q̃+B)/cc

i=1 Si

{

Ũ = 0
}

]

+ αE

[

z
∑1+b(Q̃+B)/cc

i=1 Si

]

−αE

[

z
∑1+b(Q̃+B)/cc

i=1 Si

{

Ũ = 0
}

]

,

with E [zx{condition}] , E [zx|condition] Pr [condition] and Si the length of

the ith service period after slot J . Taking into account the IID nature of
the service times and that Ũ = 0 ⇒ Q̃ = 0, yields:

W̃ (z) = Ũ(0)α [1 − S(z)]

∞
∑

i=0

c−1
∑

j=0

b(ic + j)S(z)i

+ [1 − α + αS(z)]
∞
∑

i=0

c−1
∑

j=0

h(ic + j)S(z)i ,

with H , Q̃ + B. The IID customer arrivals further imply that B is inde-
pendent of Q̃, so that H(z) = B(z)Q̃(z).

In the next step, we relate W̃ (z) with B(z), Q̃(z) and Ũ(0). We therefore
make use of the following relation between the Kronecker delta function δ(.)

(δ(.) is 1 when its argument is zero and 0 otherwise) and the c complex cth

roots of unity (εm , eı2πm/c, 0 ≤ m ≤ c − 1, with ı the imaginary unit):

δ(j − r) =
1

c

c−1
∑

m=0

εic+j−r
m , ∀i ∈ N .

We also introduce the function u(z), defined as u(z) , |S(z)|1/ceıArg
(

S(z)
)

/c,
with |z| the absolute value of z and Arg(z) the principal value of the ar-
gument of z (i.e. it is a mapping in the interval ] − π, π]). We then obtain
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subsequently:

W̃ (z)

= Ũ(0)α [1 − S(z)]

∞
∑

i=0

c−1
∑

j=0

c−1
∑

r=0

b(ic + j)u(z)ic+j−rδ(j − r)

+ [1 − α + αS(z)]

∞
∑

i=0

c−1
∑

j=0

c−1
∑

r=0

h(ic + j)u(z)ic+j−rδ(j − r)

= Ũ(0)α [1 − S(z)]
∞
∑

i=0

c−1
∑

j=0

c−1
∑

r=0

b(ic + j)u(z)ic+j−r
c−1
∑

m=0

1

c
εic+j−r
m

+ [1 − α + αS(z)]

∞
∑

i=0

c−1
∑

j=0

c−1
∑

r=0

h(ic + j)u(z)ic+j−r
c−1
∑

m=0

1

c
εic+j−r
m

=
Ũ(0)α

c
[1 − S(z)]

c−1
∑

m=0

B(u(z)εm)
[u(z)εm]−c − 1

[u(z)εm]−1 − 1

+
[1 − α + αS(z)]

c

c−1
∑

m=0

B(u(z)εm)Q̃(u(z)εm)
[u(z)εm]−c − 1

[u(z)εm]−1 − 1

=
1 − u(z)c

cu(z)c

c−1
∑

m=0

B (u(z)εm)
u(z)εm

1 − u(z)εm

{

Ũ(0)α [1 − S(z)] + [1 − α + αS(z)] Q̃(u(z)εm)
}

. (1)

Equation (1) thus gives us the required relation between W̃ (z), B(z), Q̃(z)
and Ũ(0). B(z) can be found by taking into account that the probability of
having k arrivals during slot J is proportional to both a(k) and the number
k itself, because T can be any of the k arrivals in a slot during which k
arrivals occur (see e.g. Bruneel (1983)), and that the position of T in a slot
of k arrivals is uniformly distributed between 1 and k, leading to

b(n) =

∞
∑

k=n+1

1

k

a(k)k

λ
, n ≥ 1; B(z) =

A(z) − 1

λ(z − 1)
.

Now it only remains to determine Ũ(0) and Q̃(z) in (1). First, due to the
IID nature of the customer arrivals, Q̃ and Ũ are equally distributed as
the queue, respectively system, content at a random slot mark. Secondly,
in Claeys et al. (2007), we have studied the system content Ũ at a random
slot mark in a more general model with general service times and a lower
limit l on the system content before starting a service (l = 1 corresponds
with IBSP). For the particular model of this paper it leads to the following
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expression:

Ũ(z) =

S(A(z))

zc − S(A(z))

[

u0(z
c − 1) +

S(A(z)) − 1

E [S] (A(z) − 1)

c−1
∑

n=1

un(zc − zn)

]

, (2)

whereby the remaining unknowns un, 0 ≤ n ≤ c − 1, are calculated by
solving the following set of linear equations:

{

u0(z
c
i − 1) + S(A(zi))−1

E[S](A(zi))−1)

∑c−1
n=1 un(zc

i − zn
i ) = 0 , 1 ≤ i ≤ c − 1,

u0c +
∑c−1

n=1 un(c − n) = c − E [S]λ.

Ũ(0) is then found by substituting z by 0 in (2): Ũ(0) = u0. Furthermore,
this queueing model satisfies the conditions in Kim et al. (2002), so that
Q̃(z) = Ũ(z)/S(A(z)). Mark that we comment on an alternative calculation
of Ũ(z) in appendix A.

4 FBSP

In this section, we compute the PGF of the customer delay (W (z)) for
FBSP. We again consider an arbitrary tagged customer T arriving during
slot J . As opposed to multiserver queues and IBSP, the delay that customer
T experiences in this case consists of two components; the first (we denote
its length by W1) is the time required to serve batches of ‘older’ customers.
The second part (with length W2) is the time needed, starting from the end
of the first waiting time, to completely fill the batch containing the tagged
customer. Several quantities influence W1 and W2:

– the number of customers M in the system in front of T at the beginning
of slot J + 1,

– the number of customers F in the system behind T at slot mark J + 1,
– the number of customers G in front of the tagged customer at the end

of the first waiting time,
– the number of customers H behind the tagged customer at the end of

the first waiting time, and
– the system content P , G + 1 + H at the end of the first waiting time.

Let us consider the example depicted in Fig. 1 to clarify W1, W2, M , F ,
G, H , P and the relations between them. Assume that c = 10, M = 34
and F = 2. Hence, the first waiting time equals 3 service times (due to
the memoryless character of the geometric distribution, we can consider the
potential service period that continues at the end of slot J as a service
period starting at slot J + 1). After this first waiting time, G equals 4 and
H is the sum of F and the number of arrivals during the first waiting time.
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Hence, the system content at this moment, P , equals G+ 1+H . If P ≥ 10,
the server processes the batch with the tagged customer immediately and
W2 is equal to zero. Otherwise (which is the case in this example), W2 equals
the time until the beginning of the first slot whereby the system content is
at least 10.

Fig. 1. Illustration of W1, W2, M , F , G, H, P and the relations between them

As a first step in the analysis, we compute the joint PGF of M and F . Define
B (X) as the number of customer arrivals during slot J and before (after)
the tagged customer (note again that for single arrivals B = 0 and X = 0).
Then it is obvious that F = X and that M = Y + B, with Y the number
of customers ahead of T at the beginning of slot J + 1 that were already
in the system at the beginning of slot J . The following relation between Y
and the system content at the beginning of slot J (U) holds:

Y =











U − c
if U ≥ c and the ongoing service
period ends at the end of slot J

U else .

Due to the IID arrivals, U is equally distributed as the system content at the
beginning of a random slot in the steady state. Furthermore, the foregoing
relation equals the slot-by-slot evolution of the system content (see appendix
A) except without AJ , the number of arrivals in slot J . Consequently, Y (z)
equals U(z)/A(z). Since Y is independent of B and X , we obtain:

D(z, x) , E
[

zMxF
]

=
U(z)

A(z)
E

[

zBxX
]

.

As in section 3, E
[

zBxX
]

can be obtained by taking into account that an
arbitrary customer is more likely to arrive in a slot with more customer
arrivals (Bruneel, 1983): Pr [B = n, X = m] = a(n + m + 1)/λ, leading to

D(z, x) =
U(z)

A(z)

A(z) − A(x)

λ(z − x)
. (3)

We denote the corresponding mass function by d(n, m) , Pr[M = n, F =
m]. As mentioned before, the G customers in front of T at the end of the



Delay analysis of two batch-service queueing models with batch arrivals 9

first waiting time are served in the same batch as the tagged customer. We
have

W1 =

⌊

M

c

⌋

service times , G = M mod c , H = F +

W1
∑

j=1

AJ+j ,

with ‘mod’ the modulo operator. As a next step, we compute the joint PGF
of W1, G and H :

W (z, x, y) , E
[

zW1xGyH
]

=
∞
∑

n=0

c−1
∑

l=0

∞
∑

k=0

d(nc + l, k)S(zA(y))nxlyk .

In order to relate W (z, x, y) with D(z, x), we define the function u(z, y) as

u(z, y) , |S(zA(y))|1/ceıArg(S(zA(y)))/c .

We relate W (z, x, y) with D(z, x) along the same lines as we found (1),
leading to:

W (z, x, y) =
1

c

c−1
∑

m=0

D(u(z, y)εm, y)
u(z, y)c − xc

u(z, y)εm − x

u(z, y)εm

u(z, y)c
. (4)

As mentioned in the above example, the system content at the end of the
first waiting time, P , determines whether W2 is zero or not. Since P =
G + 1 + H , the joint PGF of W1 and P equals

E
[

zW1xP
]

= xW (z, x, x) . (5)

Now, we focus on W2, starting from the following property:

Pr[W2 > m|P = p] = Pr[p + Ã1 + · · · + Ãm < c] m ≥ 0 , (6)

with Ãj the number of arrivals during the jth slot after the first waiting
time. Multiplying both sides of (6) by tm and summing over all m yields

E
[

tW2 |P = p
]

− 1

t − 1
=

∞
∑

m=0

tm
c−1
∑

n=0

Pr
[

p + Ã1 + · · · + Ãm = n
]

=

∞
∑

m=0

tm
c−1
∑

n=0

1

n!

∂n

∂xn
xpA(x)m

∣

∣

∣

∣

x=0

=

c−1
∑

n=0

1

n!

∂n

∂xn

xp

1 − tA(x)

∣

∣

∣

∣

x=0

. (7)

Mark that the second step follows from the probability generating property
of PGF’s and the fact that xpA(x)m is the PGF of p + Ã1 + · · · + Ãm
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(due to the IID arrival process). Furthermore, the last step requires that
|tA(x)| < 1 about x = 0. Note that if A(z) = 1 − λ + λz - i.e. the single
arrival case -, the previous analysis for E

[

tW2 |P = p
]

is not necessary, as W2

given P = p is then the sum of (c−p)+ geometrically distributed interarrival
times. Expression (7), together with the notion that W1 only influences W2

through P , enables us to compute the joint PGF of W1 and W2:

E
[

zW1tW2
]

=

∞
∑

p=1

Pr [P = p] E
[

zW1tW2 |P = p
]

=

∞
∑

p=1

Pr [P = p] E
[

zW1 |P = p
]

{

1 + (t − 1)

c−1
∑

n=0

1

n!

∂n

∂xn

xp

1 − tA(x)

∣

∣

∣

∣

x=0

}

= E
[

zW1
]

+ (t − 1)

c−1
∑

n=0

1

n!

∂n

∂xn

E
[

zW1xP
]

1 − tA(x)

∣

∣

∣

∣

∣

x=0

. (8)

The PGF of the total time that customers remain in the queue before they
are served can finally be obtained by putting t = z in (8):

W (z) = E
[

zW1
]

+ (z − 1)

c−1
∑

n=0

1

n!

∂n

∂xn

E
[

zW1xP
]

1 − zA(x)

∣

∣

∣

∣

∣

x=0

. (9)

E
[

zW1
]

can be deduced by substituting x by 1 in (5):

E
[

zW1
]

=
1

c

c−1
∑

m=0

D(u(z, 1)εm, 1)
u(z, 1)c − 1

u(z, 1)εm − 1

u(z, 1)εm

u(z, 1)c
. (10)

Substitution of (10), (3), (4) and (5) in (9) yields an expression for the PGF
of the delay as a function of U(z), which can be found through the earlier
mentioned, more general result in Claeys et al. (2007) (FBSP corresponds
with l = c):

U(z) =
(zc − 1)S(A(z))

∑c−1
n=0 u(n)zn

zc − S(A(z))
.

Alternatively, U(z) can be obtained for this particular model as explained
in appendix A. Further, the set of equations to determine the u(n)’s are
given in equation (11) in appendix A.

5 Behaviors of the queueing systems

The PGF’s from the previous sections enable us to compute moments of
the customer delay by taking derivatives at z = 1. In this section, we study
and compare the means and variances for both systems. As the inclusion of
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batch arrivals is the main contribution in the delay analysis, we consider,
next to the Bernoulli (single) arrivals, several batch arrival processes and
investigate the influence of these arrival processes on the behaviors of both
systems.
The mean and variance of the customer delay are depicted versus the load
in respectively Fig. 2 and Fig. 3, for some distributions of the number of
customer arrivals in a slot: Bernoulli (a(0) = 1 − λ, a(1) = λ), Poisson
(a(n) = e−λλn/(n!)) and several distributions whereby the non-zero mass
is centered symmetrically around c: a(0) = (c− λ)/c, a(c− 1) = a(c + 1) =
λ(1−K)/(2c), a(c) = Kλ/c; K(0 ≤ K ≤ 1) is a measure for the dispersion
around c. We consider K = 0, K = 0.5 and K = 1. Note that when K = 1
either 0 or c customers arrive, while for K = 0, zero, c− 1 or c + 1 arrivals
can occur in a slot. Both figures consist of two panes whereby the left
corresponds to IBSP and the right to FBSP. The server capacity and the
mean service time are both equal to 10. Hence, an increasing load is caused
by an increasing λ. The figures exhibit that, regardless of the distribution
of the number of per-slot arrivals, the batch-service queueing systems with
IBSP behave to some extent similar as traditional systems: the mean and the
variance of the customer delay are increasing functions of the load and reach
a vertical asymptote for ρ → 1. In case of FBSP, the mean and variance go
to infinity when the load tends to zero (except for K = 1). This is the effect
of the second waiting time (W2), which goes to infinity for ρ → 0. When
the load increases, W2 decreases, leading to a shorter customer delay. When
the load increases further, the first waiting time W1 becomes long, which
implies that the customer delay increases again. These effects produce the
U-shapes of the curves. Note that the case where the (non-zero) arriving
batch size equals c is the sole exception, since in this case the service batch
size is perfectly adapted to the size of arriving batches. More generally,
the second waiting time vanishes for any arrival distribution whereby the
number of customer arrivals can only be multiples of c.
While we discussed the influence of the mean arrival rate λ in the previous
paragraph, we now discuss the influence of the entire distribution of the
number of customer arrivals in a slot. Fig. 2 and Fig. 3 show that the
systems behave nearly equally for Poisson arrivals as for Bernoulli arrivals,
whereas they behave rather different for the other distributions.
Let us now take a look at the relative difference between the delay in case
of IBSP and in case of FBSP. It is defined as

(

E
[

W̃
]

− E [W ]
)

/
([

E
[

W̃
]

+ E [W ]
]

/2
)

,

for the mean, and analogously for the variance. This implies that when
the relative difference is negative (positive), IBSP (FBSP) performs better.
Fig. 4 shows that IBSP is the best choice for a low load, regardless of the
arrival pattern. Indeed, the long second waiting times are avoided in this
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Fig. 2. Mean customer delay versus the load for several distributions of the number of
customer arrivals in an arbitrary slot; c = 10 and E [S] = 10

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

v
a

ri
a

n
c
e

 o
f 

th
e

 d
e

la
y

load

Bernoulli
Poisson

K=0
K=0.5

K=1

(a) IBSP

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

v
a

ri
a

n
c
e

 o
f 

th
e

 d
e

la
y

load

Bernoulli
Poisson

K=0
K=0.5

K=1

(b) FBSP

Fig. 3. Variance of the customer delay versus the load for several distributions of the
number of customer arrivals in an arbitrary slot; c = 10 and E [S] = 10

case. When the load becomes high, the FBSP becomes considerably better
in case of the Bernoulli and the Poisson distribution. This is what we expect
intuitively since, when customers arrive frequently, the second waiting time
is small compared to the gain of serving at full capacity. However, this does
not hold for every distribution: for K = 1, IBSP and FBSP behave equally;
for K = 0 and K = 0.5, the relative difference in the mean delay remains
negative and the relative difference in the variance becomes only marginally
positive. This is caused by the bursty nature of the latter distributions: no
customers arrive during long times followed by a large mass of arrivals dur-
ing one slot, so that the performance loss of not serving at full capacity is
small compared to the second waiting times. Hence, we advise to adopt the
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IBSP when the arrival process is bursty.
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Fig. 4. Relative difference versus the load

So far, we have considered the following arrival distributions: Bernoulli,
Poisson and a class of distributions whereby the non-zero mass is centered
symmetrically around c. We now consider another arrival process to further
investigate the influence of the batch size, namely the batch Bernoulli arrival
process, i.e. a(0) = 1 − λ/N , a(N) = λ/N , and investigate the effect of the
batch size N on the mean customer delay. Therefore, we plot, in Fig. 5, the
mean customer delay for both policies (pane a) and the relative difference
in their mean values (part b) as a function of N . We assume that λ = 0.7,
E [S] = 10 and c = 10. First, we observe that the mean delay increases as
a function of N for both policies ‘on the larger’ N -scale. Indeed, if N in-
creases, the arrival process becomes more bursty and it is generally known
(Bruneel, 1985) that burstiness deteriorates the performance. However, the
curves exhibit some clefts when N = kc, k ∈ N. This is because the server
capacity is perfectly adapted to the arrival batch sizes in these cases. There
are also smaller clefts when N = kc + c/2 or when N is even: the server
capacity is reasonably adapted to the batch arrival sizes but not as good as
when N = kc. There thus exists a pattern which repeats itself when N = kc,
k = {2, 3, 4, . . .}.
Let us now take a closer look at the relative difference between both policies.
When N = 1, FBSP is better, which is in accordance with the results for the
Bernoulli arrivals for ρ = 0.7. When N increases, this difference becomes
smaller ‘on the large scale’ and from N = 6 on, IBSP is better. Indeed, we
previously concluded that bursty arrivals favour IBSP. Further, we observe
that the relative difference equals 0 when N = kc, since no second waiting
time exists here in case of FBSP and the server always processes at full
capacity for IBSP. The figure also shows that IBSP and FBSP differ less
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when c is better adapted to N . There is thus also a repetitive pattern with
period c. Finally, the curve of the relative difference smooths down as N
increases. Indeed, for N large, the fraction of customers in an arrival batch
that experience a second waiting time becomes very small, and the relative
difference of both policies converges to 0 for N → ∞.
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Fig. 5. Mean customer delay versus N ; ρ = 0.7, c = 10 and E [S] = 10

6 Conclusions

In this paper, we have studied two batch-service queueing models which dif-
fer in their service policy. In the immediate-batch service policy (IBSP), the
available server starts processing whenever the system is not empty, while
in the case of full-batch service policy (FBSP) the server waits until he can
serve at full capacity. We have computed, for both models separately, the
probability generating function (PGF) of the customer delay. These PGF’s
enable us to obtain several moments which, in turn, provide a tool to com-
pare both policies in practical situations.
Both models share the common feature that the service times are geometri-
cally distributed. Throughout the analysis, we have made use of the mem-
oryless character of this distribution, which simplifies the analysis. Further
research is necessary to deal with generally distributed service times.
Our main contribution is the combination of batch arrivals and delay anal-
ysis. To the best of the authors’ knowledge, all previous papers concerning
the customer delay consider single arrivals, which simplifies the analysis
considerably. Through some numerical examples, we clearly show that the
results can differ significantly from those in the Bernoulli case. We have
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finally compared both models comprehensivily and we conclude that the
distribution of the number of customer arrivals in an arbitrary slot plays
a significant role in how both policies compare to each other. Hence, the
inclusion of batch arrivals in the model is a necessity, which the analysis in
this paper provides.
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A Alternative calculation of the PGF’s of the system content

A.1 FBSP: U(z)

As a first step, we express the system content at slot boundary k+1 (Uk+1)
in terms of the system content at slot mark k (Uk):

Uk+1 =































Uk + Ak if Uk < c

Uk + Ak
if Uk ≥ c and the ongoing service period
continues at the end of slot k

Uk + Ak − c
if Uk ≥ c and the ongoing service period
ends at the end of slot k

.

Next, this relation is translated into PGF’s, leading to

Uk+1(z) = A(z)

[

c−1
∑

n=0

uk(n)zn + α

∞
∑

n=c

uk(n)zn + (1 − α)

∞
∑

n=c

uk(n)zn−c

]

.

Assuming steady state, the limit k → ∞ is taken, with limk→∞ Uk(z) =
limk→∞ Uk+1(z) = U(z) and limk→∞ uk(n) = u(n). This, together with
some standard z-transform techniques, produces:

U(z) =
(zc − 1)S(A(z))

∑c−1
n=0 u(n)zn

zc − S(A(z))
.

Finally, the c unknowns u(n) are determined. As the denominator zc −
S(A(z)) has c zeroes z0 = 1, z1, . . . , zc−1 in the closed complex unit disk
{z ∈ C : |z| ≤ 1} (this can be proved by means of Rouché’s theorem, see
e.g. Klimenok (2001)), and since PGF’s are normalized and bounded in this
area, the unknowns are the solution of the following set of c linear equations:

{

(zc
i − 1)S(A(zi))

∑c−1
n=0 u(n)zn

i = 0 , 1 ≤ i ≤ c − 1,

c
∑c−1

n=0 u(n) = c − E [S] λ.
(11)

Note that the zero z0 = 1 cannot be used to determine the unknowns as its
equation produces 0 = 0.
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A.2 IBSP: Ũ(z)

Ũ(z) can be obtained analogously, except that we have to study the slot-by-
slot evolution of the pair (Q̃k,Nk) of respectively the queue and the server
content, because not necessarily c customers leave the system at the end
of a service. This leads to a joint PGF V (z, x) of the queue and the server
content and we find Ũ(z) by letting x → z.
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