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A Gram-negative, aerobic bacterium, designated R-40503T was isolated from 

mucus of the reef builder coral, Mussismilia hispida, located in the São 

Sebastião Channel, São Paulo, Brazil. Phylogenetic analyses revealed that 

strain R-40503T belongs to the genus Marinomonas. The 16S rRNA gene 

sequence similarity of R-40503T was above 97 % with the type strains of 

Marinomonas vaga, M. basaltis, M. communis and M. pontica, and below 97 % 

with all other the Marinomonas type strains. Strain R-40503T showed less than 

35 % DNA-DNA hybridization (DDH) similarity with the type strains of the 

phylogenetically closest Marinomonas species, demonstrating it should be 

classified into a novel species. Amplified Fragment Length Polymorphism 

(AFLP), chemotaxonomic and phenotypic analyses provided further evidence 

for the classification of the new species. Concurrently, a close genomic 

relationship between M. basaltis and M. communis was observed. The type 

strains of these two species showed 78 % DDH similarity and 63 % AFLP 

pattern similarity. Their phenotypic features were very similar, and their DNA 

G+C content was identical (46.3 mol%). Collectively, these data demonstrates 

unambiguously the synonymy of Marinomonas basaltis and Marinomonas 

communis. Several phenotypic features can be used to discriminate 

Marinomonas species. The novel strain R-40503T is clearly distinguishable 

species from its neighbours. For instance, it shows oxidase and urease activity, 

utilizes L-asparagine, has the fatty acid C12:1 3-OH (but lacks C10:0 and 

C12:0). The name Marinomonas brasilensis sp. nov. is proposed (type strain is 

R-40503T = LMG 25434T = CAIM 1459T). The DNA G+C content of the type 

strain R-40503T is 46.5 mol%.  
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Mussismilia hispida is one of the major reef-builders corals along the 

northeastern Brazilian coast, and it also has the widest geographic distribution 

among its genus (from Maranhão to Santa Catarina states, ca. 5000 km) (Leão 

& Kikuchi, 2005). The ability of Mussismilia to survive in different regions 

indicates its adaptation to wide environmental gradients, such as temperature, 

water turbidity and pollution. However, recent studies have revealed that M. 

hispida and M. braziliensis are threatened by extinction (Castro et al., 2010; 

Francini-Filho et al., 2008). Microorganisms appear to play a key role in coral 

health. Microorganisms and the coral compose the holobiont (Rosenberg et al., 

2007). The holobiont microbiota appears to protect its host by providing  

nourishment and antibiotics (Raina et al., 2009; Shnit-Orland & Kushmaro, 

2009). It is also recognized that the holobiont harbours a vast microbial 

diversity. In the last 10 years a growing number of studies have focused on the 

characterization of the coral microbiota diversity and ecology (Alves et al., 2009; 

Dinsdale et al. 2008; Rohwer et al. 2001).   

 

The genus Marinomonas was created in 1983 to accommodate Alteromonas 

communis and Alteromonas vaga (Baumann et al., 1972), which were distinct 

from the other species of Alteromonas (van Landschoot & De Ley, 1983). The 

genus Marinomonas comprises 15 species, mainly originating from sea-water of 

different geographical locations. M. communis and M. vaga (Baumann et al., 

1972; van Landschoot & De Ley, 1983), were isolated from the Pacific Ocean, 

M. pontica (Ivanova et al., 2005) from the Black Sea, M. dokdonensis (Yoon et 

al., 2005) from the East Sea of Korea, and M. mediterranea (Solano & 
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Sanchez-Amat, 1999) and M. aquimarina (Macián et al., 2005) from the 

Mediterranean Sea. M. polaris (Gupta et al., 2006) and M. ushuaiensis 

(Prabagaran et al., 2005) were isolated from the subantarctic region, while M. 

primoryensis (Romanenko et al., 2003) and M. arctica (Zhang et al., 2008) were 

isolated from sea-ice. M. ostreistagni (Lau et al., 2006) and some M. aquimarina 

strains (Macián et al., 2005) were isolated from oysters. M. basaltis (Chang et 

al., 2008) and M. arenicola (Romanenko et al., 2009) were isolated from marine 

sediment, while M. balearica and M. pollencensis (Espinosa et al., 2009) were 

isolated from seagrass Posidonia oceanica.  

 

In the present study, one isolate (R-40503T), obtained from mucus of apparently 

healthy coral Mussismilia hispida, located in the rocky shore of Grande beach 

(coordinate 23°50´25´´S; 045°24´59´´W) in São Sebastião Channel, São Paulo, 

Brazil, in the summer of 2005, during a survey of the heterotrophic bacterial 

diversity associated with cnidarians in São Paulo (Brazil) (Chimetto et al., 2008, 

2009), was investigated using a polyphasic taxonomic approach. The strain was 

isolated using the nitrogen-free (NFb) selective medium supplemented with 3 % 

NaCl after 4 days of incubation at 28 °C.  

 

Five strains (R-236, R-237, R-249, R-256, and R-278) isolated at the time of 

collection as described in Chimetto et al. (2008) clustered together in this new 

taxa by 16S rRNA gene sequences, but only one strain (R-278 = R-40503T) 

maintained viability. The 16S rRNA gene sequence of R-40503T (1425 nt), 

accession number GU929940, was obtained as described previously (Chimetto 

et al., 2008, 2009). The raw sequence data were transferred to the ChromasPro 

ver. 1.34 software (Technelysium Pty. Ltd, Tewantin, Australia) where 
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consensus sequences were determined. The sequence was aligned with 

sequences from EMBL using the ClustalW software (Chenna et al., 2003). 

Pairwise similarities were calculated with the BioNumerics 4.61 software 

(Applied Maths, Sint-Martiens-Latem Belgium), using an open gap penalty of 

100 % and a unit gap penalty of 0 %. Similarity matrices and phylogenetic trees 

were constructed using the MEGA ver. 4.0 (Tamura et al., 2007) and the 

BioNumerics 4.61 software (Applied Maths, Belgium). Trees were drawn using 

the Neighbour-Joining (Saitou & Nei, 1987) and Maximum Parsimony methods 

(Eck & Dayhoff, 1966). The robustness of the topologies of the trees were 

checked by bootstrap replications (Felsenstein, 1985). The gene sequence data 

obtained in this study are also available through our website TAXVIBRIO 

(
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The novel strain R-40503T was closely related to M. vaga, with 97.9% 16S 

rRNA gene sequence similarity. R-40503T had 97.2% 16S rRNA gene 

sequence similarity towards M. basaltis, M. communis, M. aquimarina (Fig. 1 

and Supplementary Figure S2). DNA-DNA hybridizations were performed 

between the novel strain R-40503T and the type strains of the closest 

phylogenetic neighbours, i.e. M. vaga, M. basaltis, M. communis and M. 

aquimarina (Table 1), using the microplate method described by Ezaki et al. 

(1989) with minor modifications (Willems et al., 2001). Hybridizations were 

performed at 40.7 °C in the presence of 50 % formamide. Reciprocal reactions 

were performed for every DNA pair and their variation was within the limits of 

this method (Goris et al., 1998). The DDH relatedness between R-40503T and 

the tested type strains was below 70 % (Table 1). The DDH demonstrated that it 
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represents a novel species in the genus Marinomonas (Wayne et al., 1987; 

Stackebrandt & Ebers, 2006). The DDH relatedness between Marinomonas 

basaltis LMG 25279
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T and Marinomonas communis LMG 2864T was above 70 % 

(i.e. 78 %), which suggests that these species are synonymous. Chang et al. 

(2008) obtained 56.2 % DDH similarity between the same pair of type strains, 

but the additional data of the present study (see below) support the value of 78 

%. The authenticity of M. basaltis LMG 25279T (GU929941) and M. communis 

LMG 2864T used in this study were verified by means of their 16S rRNA 

sequences. The sequences of both type strains (1501 nt for LMG 25279T and 

1499 nt for LMG 2864T showed 100 % similarity with those deposited in the 

GenBank M. basaltis J63T (EU143359) and M. communis LMG 2864T 

(DQ011528) respectively, indicating the authenticity of the LMG strains (Figure 

1). The 16S rRNA gene sequence similarity between M. basaltis LMG 25279T 

and M. communis LMG 2864T was 98.7 %. Giving further support for the 

synonymy between, Marinomonas basaltis LMG 25279T and Marinomonas 

communis LMG 2864T had identical GC contents and related AFLP patterns. 

DNA G+C contents were determined for R-40503T, M. basaltis LMG 25279T and 

M. communis LMG 2864T by HPLC as described previously (Mesbah et al., 

1989). The DNA G+C content of strain R-40503T was 46.5 mol% (Table 1) and 

46.3 mol% of the LMG strains.  

 

AFLP analysis was performed for strain R-40503T, M. basaltis LMG 25279T, M. 

communis LMG 2864T, M. vaga LMG 2845T and three M. aquimarina strains 

(Supplementary Figure S1), as reported by Beaz Hidalgo et al. (2008) and 

Thompson et al. (2001). Briefly, 1 μg of DNA was digested with TaqI (5’TCGA3’) 
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and HindIII (5’AAGCTT3’) (Amersham Pharmacia Biotech, Sweden), and 

subsequently ligated with double-stranded adaptors complementary to the ends 

of the restriction fragments, with T4 ligase (Amersham Pharmacia Biotech), to 

generate template DNA for PCR amplification. A selective PCR was then 

performed with the primers H01-6FAM (5’GACTGCGTACCAGCTTA3’, labeled 

at the 5’ end with the fluorescent dye 6-FAM) and T13 

(5’GTTTCTTATGAGTCCTGACCGAG3’), using the conditions described by 

Thompson et al. (2001), in a GeneAmp PCR System 9700 thermocycler 

(Applied Biosystems, USA). Separation of the selective PCR products was 

performed using a capillary ABI Prism 3130XL DNA sequencer (Applied 

Biosystems). The level of reproducibility was controlled by generating the AFLP 

pattern of Marinomonas brasilensis sp. nov. R-40305
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T three times, starting from 

different subcultures. Normalization of the resulting electrophoretic patterns was 

performed using the Gene Mapper 4.0 software (Applera Co., Norwalk, CT). For 

subsequent analysis fragments of 20 to 600 base pairs were transferred into the 

BioNumerics™ 4.61 software (Applied Maths, Belgium). For numerical analysis, 

the zone from 40- and 580-bp was used. Similarity values were calculated using 

the Dice coefficient (tolerance value of 0.15 %), and a dendrogram was 

constructed using the UPGMA algorithm. The similarity between the patterns of 

R-40503T ranged from 93.0 to 94.4 %. The similarity level chosen to delineate 

the AFLP clusters was 63 %, as previously proposed by Beaz Hidalgo et al. 

(2008). Strains with AFLP profiles showing more than 63 % similarity can be 

considered as members of the same species. The AFLP data supported the 

DDH data obtained in this study. R-40503T showed at most 46 % pairwise band 

pattern similarity with its closest phylogenetic neighbours, being below the cut-
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off similarity level of 63 %, while the type strains of M. basaltis and M. 

communis constituted a distinguishable cluster with 69 % mutual AFLP pattern 

similarity (Figure S1). AFLP has been reported as a widely applicable technique 

with high discriminatory power and reproducibility (Janssen et al., 1996; 

Savelkoul et al., 1999). It was proven to be useful for discrimination at the 

species and intraspecies levels for Aeromonas, Acinetobacter, Campylobacter, 

Xanthomonas (Savelkoul et al., 1999), Vibrionaceae (Thompson et al., 2001), 

Bradyrhizobium (Willems et al., 2001), Arcobacter (On et al., 2003) and Pantoea 

(Brady et al., 2007). The present study provides enough evidence to consider 

M. basaltis (Chang et al., 2008) a later synonym of M. communis (Baumann et 

al., 1972; van Landschoot & De Ley (1983). 

 

Phenotypic characteristics were determined inj order to demonstrate that the 

novel strain R-40503T belongs to a new species. Phenotypic analysis of the 

novel strains and the type strains of the closest phylogenetic Marinomonas 

species i.e. M. vaga, M. basaltis, M. communis and M. aquimarina. Analysis of 

fatty acid methyl esters was carried out as described by Huys et al. (1994). 

Cells for fatty acid analysis were grown on MA (Difco) for 24 h at 28 °C under 

aerobic conditions. Phenotypic characterization was performed using the API 

ZYM, API 20E and API 20NE kits (bioMérieux, France), and the Biolog GN2 

microwell plates (Biolog Inc., USA), according to the manufacturer’s instructions 

with minor modifications. Cell suspensions for inoculation of the API tests were 

prepared in a 3 % (w/v) NaCl solution, and those for the Biolog GN2 microwell 

plates showed turbidity (transmission) of 20 %. Cells for the suspensions were 

grown on Biolog medium for 24 h at 28 °C under aerobic conditions. The results 

of the tests were recorded after 24 to 48 h of incubation at 28 °C. Growth at 
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different temperatures (4–42 °C) was determined by incubation on TSA (Difco) 

for 72 h. Growth at different salt concentrations (0–14 % NaCl) was determined 

by incubation on TSA (Difco) at 28 °C for 72h. Catalase activity was determined 

by adding young cells to a drop of a 3 % H
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242 

2O2 solution and observation of 02 

production. Oxidase activity was tested using 1% N,N,N’,N’-tetramethyl p-

phenylenediamine (Kovacs, 1956).  

 

The novel strain R-40503T species was differentiated from its closest 

phylogenetic neighbours by several phenotypic features (Table 2). It grew in 

medium containing 13 % NaCl, used tween 80, sucrose and L-asparagine but 

not α-ketoglutaric acid, L-aspartic acid, L-serine, L-ornithine and bromo succinic 

acid. It had oxidase activity, and was not able to grow at 40 ˚C (Table 2). This 

novel strain could be differentiated from its neighbours on the basis of the 

presence of the fatty acids C12:1 3-OH and the absence of the fatty acids C10:0 

and C12:0.  The major cellular fatty acids of R-40503T were C18:1 ω7c (48.8 %), 

summed feature 3 (C15:0 iso 2-OH and/or C16:1 ω7c) (19 %), C16:0 (10.5 %) and 

C10:0 3-OH (8 %) (Supplementary Table S1). Phenotypic features of M. basaltis 

and M. communis were very similar, except for some features, namely M. 

communis utilized saccharose, D-fructose, succinamic acid, urocanic acid and 

putrescine and had urease activity, whereas M. basaltis did not. Some results of 

the phenotype of M. basaltis obtained in this study are in contrast with those 

reported by Chang et al. (2008). They reported no growth in less than 1 % or 

more than 7 % NaCl, no esterase (C4), esterase lipase (C8) and naphthol-AS-

BI-phosphohydrolase activities, but activities for trypsin and N-acetyl-β-

glucosaminidase, and assimilation of L-arabinose, L-aspartic acid and  glycerol. 
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However, in this study, growth was observed at 0.5 – 11 % NaCl, as well as 

activities for esterase (C 4), esterase lipase (C8) and naphthol-AS-BI-

phosphohydrolase. Trypsin and N-acetyl-β-glucosaminidase activities, and 

assimilation of L-arabinose, L-aspartic acid and glycerol were not observed. In 

our hands, no significant phenotypic or genotypic differences were found 

between M. communis and M. basaltis. 

 

Based on the phylogenetic, genomic and phenotypic data, the new species M. 

brasilensis sp. nov. is proposed to encompass the strain R-40503T (= LMG 

25434T = CAIM 1459T). 

 

Description of Marinomonas brasilensis sp. nov. 

Marinomonas brasilensis (bra.si.len’sis. N.L. fem. adj. brasilensis of or 
belonging to Brazil). 
 

Cells are Gram-negative, aerobic, halophilic, motile, straight rods approximately 

1 µm wide and 1.5–3 µm long. Catalase- and oxidase- positive. Colonies on MA 

are circular, undulate, convex, smooth, beige in colour and 1 mm in size after 1 

day of incubation at 28 °C. Prolific growth occurs between 20 and 35 °C and at 

NaCl concentrations (w/v) ranging from 1 to 11 %. No growth is observed in 0 % 

NaCl or in ≥ 14 % NaCl, and at ≤ 7 °C or at ≥ 40 °C. The strain has alkaline 

phosphatase, esterase (C4), esterase lipase (C8), leucine arylamidase, acid 

phosphatase, naphthol-AS-BI-phosphohydrolase, α-glucosidase, urease and  

tryptophane deaminase enzyme activities, but it does not have lipase (C14), 

valine arylamidase, cystine arylamidase, trypsin, α-chymotrypsin, α-

galactosidase, β-galactosidase, β-glucuronidase, β-glucosidase, N-acetyl-β-

glucosaminidase, α-mannosidase, α-fucosidase, arginine dihydrolase, lysine 
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decarboxylase, ornithine decarboxylase and gelatinase activities. It produces 

acetoin (Voges Proskauer reaction), but no H
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2S or indol. It does not ferment 

glucose, mannitol, inositol, sorbitol, rhamnose, saccharose, melibiose, 

amygdalin and arabinose. It is negative for nitrate reduction to nitrite or N2 gas. 

It is capable to assimilate citrate, tween 40, tween 80, D-fructose, α-D-glucose, 

D-mannose, sucrose, monomethyl succinate, DL-lactic acid, D-saccharic acid, 

succinic acid, alaninamide, L-asparagine, L-glutamic acid, L-proline, inosine, 

uridine, and it is positive for hydrolysis of esculin. It has weak reaction for 

assimilation of α-cyclodextrin, L-arabinose, cellobiose, turanose, α-hydroxy 

butyric acid, α-keto butyric acid, urocanic acid and glycerol. It is negative for 

assimilation of dextrin, glycogen, N-acetyl-D-galactosamine, N-acetyl-D-

glucosamine, adonitol, D-arabitol, i-erythritol, L-fucose, D-galactose, 

gentiobiose, m-inositol, α-lactose, α-D-lactose lactulose, maltose, D-mannitol, 

D-melibiose, β-methyl D-glucoside, psicose, D-raffinose, L-rhamnose, D-

sorbitol, D-trehalose, xylitol, methyl pyruvate, acetic acid, cis-aconitic acid, citric 

acid, formic acid, D-galactonic acid lactone, D-galacturonic acid, D-gluconic 

acid, D-glucosaminic acid, D-glucuronic acid, β-hydroxy butyric acid, γ-hydroxy 

butyric acid, p-hydroxy phenylacetic acid, itaconic acid, α-keto glutaric acid, α-

keto valeric acid, malonic acid, propionic acid, quinic acid, sebacic acid, 

bromosuccinic acid, succinamic acid, glucuronamide, D-alanine, L-alanine,  L-

alanylglycine, L-aspartic acid, glycyl-L-aspartic acid, glycyl-L-glutamic acid, L-

histidine, hydroxy L-proline, L-leucine, L-ornithine, L-phenylalanine, L-

pyroglutamic acid, D-serine, L-serine, L-threonine, DL-carnitine, γ-aminobutyric 

acid, thymidine, phenyl ethylamine, putrescine, 2-amino ethanol, 2,3-butanediol, 

DL-α-glycerol phosphate, glucose-1-phosphate, glucose-6-phosphate, 
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potassium gluconate, capric acid, adipic acid, malate, and trisodium citrate. The 

main cellular fatty acids are C

295 
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312 
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314 
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18:1 ω7c, summed feature 3 (C15:0 iso 2-OH and/or 

C16:1 ω7c), C16:0 and C10:0 3-OH corresponding to 86 % of the total FAME profile. 

The following fatty acids are present in small amounts: unknown fatty acid ECL 

11.799 (5 %) C12:1 3-OH (3.6 %), C18:0 (2.2 %) and C14:0 (1.8 %) 

(Supplementary Table S1). The phenotypic profile of M. brasilensis sp. nov. is 

at present based on one strain. The DNA G+C content of the type strain is 46.5 

mol%. The type strain R-40503T (= LMG 25434T = CAIM 1459T) was isolated 

from mucus of the endemic coral Mussismilia hispida located in the São 

Sebastião channel, São Paulo, Brazil.  
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Figure 1. Neighbour-joining phylogenetic tree showing the phylogenetic position 
of M. brasilensis sp. nov. based on 16S rRNA gene sequences. The 
evolutionary distances were computed by BioNumerics 4.61 software (Applied 
Maths, Belgium). Bootstrap values (> 50 %) based on 1000 repetitions are 
shown. Vibrio cholerae was used as outgroup. Bar, 1 % estimated sequence 
divergence. 
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Tables 
 
Table 1. DNA-DNA hybridization data, 16S rRNA gene sequence similarities and 
DNA G+C contents of M. brasilensis sp. nov. and phylogenetically related 
Marinomonas species 
 
Strain G+C 

content 
(mol%) 

16S rRNA 
Similarity 

(%) 

DNA-DNA relatedness 
values (%): 

  1 1 2 3 4 5 
1. M. brasilensis sp. nov. R-40503T  
(= LMG 25434T) 46.5 100 100 42 23 22 17 

2. M. vaga LMG 2845T 47.5 97.9 27 100 16 15 21 

3. M. basaltis LMG 25279T 46.3 97.2 18 19 100 84 13 

4. M. communis LMG 2864T 46.3 97.2 16 21 73 100 12 

5. M. aquimarina LMG 25236T 49 96.7 5 3 12 11 100

522  

Table 2. Phenotypic differences between Marinomonas brasilensis sp. nov. and 
its phylogenetic closest neighbours. 
 Species: 1, M. brasilensis R-40503T (= LMG 25434T); 2, M. vaga LMG 2845T; 3,  M. basaltis
LMG 25279T; 4, M. communis LMG 2864T; 5, M. aquimarina LMG 25236T. Data for the 
reference species were obtained in this study, except when indicated. Abbreviations: +, positive; 
-, negative; w, weak reaction, NA, not available. All data were obtained in this study (except 
some data of M. aquimarina LMG 25236T) using the same laboratory conditions.  

Characteristic 1 2 3 4 5 
 Growth with NaCl (%w/v):      

12 + + - - + 

13 w + - - w 

 Growth at (°C)      

40 - w + + + 

 Activity of:      

Oxidase + - + + + 

Urease + + - + + 

 Utilization of:      

   Tween 80 + w - - -a

Sucrose + + - - -a

α-D-glucose + w + + NA 
Alaninamide + + - - NA 
L-asparagine + - + + NA 
L-arabinose w - - - -a

Cellobiose w - w w  -a

Glycerol w - - - -a

 18



 19

Turanose w + - - NA 
α-hydroxy butyric acid w + + + NA 
α-ketobutyric acid w - + + NA 
Methyl pyruvate - - w + +a

α-ketoglutaric acid - + - - +a

L-aspartic acid - + - - +a

L-serine - + + + +a

L-ornithine - + - - +a

Putrescine - w - + -a

Bromo succinic acid - + - - NA 
Glycyl-L-aspartic acid - w - - NA 

 a Data from Marcian et al. (2005). 
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524 Supplementary data 
Supplementary Table S1. Cellular fatty acid contents of 
Marinomonas brasilensis sp. nov. and phylogenetically related 
Marinomonas species. 
 
Taxa: 1, M. brasilensis R-40503T (= LMG 25434T); 2, M. vaga LMG 2845T; 3, M. 
basaltis LMG 25279T; 4, M. communis LMG 2864T; 5, M. aquimarina LMG 25236T. 
Summed feature 3 comprises C15:0 iso 2-OH and/or C16:1ω7c. Data are expressed as 
percentages of total fatty acids. Fatty acids representing <1 % are not shown. All data
were obtained in this study on the same laboratory conditions. 

Fatty acid 1 2 3 4 5 

C10:0 - 2.9 4.3 2.6 3.4 
C10:0 3-OH 8 14.2 13.9 14.3 7.6 
C12:0  - 2.5 5.4 5.4 3.5 
C12:1 3-OH  3.6 - - - - 
C14:0  1.8 2.1 2.5 2 1.6 
C16:0  10.5 10.5 8.5 7.5 11.4 
C18:0  2.2 1.7 - 1.3 1.4 
C18:1ω6c  - - 8.6 - - 
C18:1ω7c  48.8 45.8 27.6 42.3 47 
Summed feature 3  19 18.7 26.4 23.9 22.5 
Unknown 11.799 5 1.7 - - - 
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Supplementary Figure S1. AFLP DNA fingerprints of M. brasilensis sp. nov. R-40503T and strains of phylogenetically related 
Marinomonas species. The dendrogram was constructed with the UPGMA method after calculation of the band pattern similarity 
(%) using the DICE coefficient. The cut-off similarity level used to delineate AFLP clusters is 63 %. Strains with AFLP profiles 
showing more than 63 % similarity can be considered as members of the same species.  
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Supplementary Figure S2. Maximum Parsimony phylogenetic tree showing 
the phylogenetic position of M. brasilensis sp. nov. based on 16S rRNA gene 
sequences. The evolutionary distances were computed by BioNumerics 4.61 
software (Applied Maths, Belgium). Bootstrap values (> 50 %) based on 100 
repetitions are shown. Vibrio cholerae was used as outgroup. Bar, 2 % 
estimated sequence divergence. 
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