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ABSTRACT. We generalise Walley’s Marginal Extension Theorem to the case of any fi-
nite number of conditional lower previsions. Unlike the procedure of natural extension,
our marginal extension always provides the smallest (most conservative) coherent exten-
sions. We show that they can also be calculated as lower envelopes of marginal extensions
of conditional linear (precise) previsions. Finally, we use our version of the theorem to
study the so-called forward irrelevant product and forward irrelevant natural extension of
a number of marginal lower previsions.

1. INTRODUCTION

To sketch the context for this paper, let us consider a simple example. Suppose we have
two random variables1 X1 and X2 assuming values in the respective finite sets X1 and X2.2

We have a marginal probability mass function p1 for the first variable: for each x1 in X1,
p1(x1) is the probability that the first random variable X1 assumes the value x1, irrespective
of the value that the second random variable X2 assumes in X2.

For the second variable, we have a conditional probability mass function: for all x1 in
X1 and x2 in X2, p2(x2|x1) is the conditional probability that X2 assumes the value x2,
given that X1 assumes the value x1.

We can then ask for the joint probability mass function m of X1 and X2. It is a conse-
quence of Bayes’ rule that

m(x1,x2) := p1(x1)p2(x2|x1) (1)

is the probability that the random variable (X1,X2) assumes the value (x1,x2) in X1×X2.
It is instructive to rewrite this formula in terms of expectations, or, to use de Finetti’s
language, previsions ([6]). Consider a real-valued map h on X1×X2; we shall call such
maps gambles because they can be interpreted as uncertain, or random, rewards. Call

M(h) := ∑
(x1,x2)∈X1×X2

m(x1,x2)h(x1,x2)

the prevision of h. Then it follows from Eq. (1) that

M(h) = ∑
x1∈X1

p(x1)

(
∑

x2∈X2

p(x2|x1)h(x1,x2)

)
= P1(P2(h|X1)). (2)
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1By a random variable, we mean a variable whose value is unknown.
2We assume finiteness of the sets X1 and X2 here only to make this introductory discussion as simple as

possible. We shall consider more general situations further on.
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Here we have denoted by P2(h|X1) the real-valued map (gamble) on X1 that assumes the
value

P2(h|x1) := P2(h(x1, ·)|x1) = ∑
x2∈X2

h(x1,x2)p2(x2|x1)

in x1 ∈X1, where h(x1, ·) denotes the gamble on X2 given by h(x1, ·)(x2) = h(x1,x2). We
see, then, that P2(h|x1) is the conditional prevision of h given that X1 assumes the value
x1. Similarly, we have denoted by P1( f ) := ∑x1∈X1

f (x1)p1(x1) the (marginal) prevision
of a gamble f on X1. The concatenation formula (2) is equivalent to Bayes’ rule (1), and
it provides a neat expression M = P1(P2(·|X1)) for the joint prevision M in terms of the
marginal prevision P1 and the conditional prevision P2(·|X1). This concatenation rule is
also sometimes called the conglomerative property ([6, Sections 4.7 and 4.19]), or the law
of total probability. In the language of this paper, we shall call M the marginal extension
of the unconditional prevision P1 on X1 and the conditional prevision P2(·|X1) on X2 to
a joint linear prevision on X1×X2. Since it was derived using only Bayes’ rule and the
linear character of (conditional) previsions, it is a necessary consequence of coherence
in de Finetti’s account of (subjective) probability. In fact, marginal extension is the only
coherent way to obtain a joint prevision from P1 and P2(·|X1).

In his important work ([10]) on the behavioural theory of imprecise probabilities, Wal-
ley has generalised this result to the case where the uncertainty about the values of the
random variables is not modelled by previsions, but rather by lower and upper previsions.
On this approach, a subject’s lower prevision P( f ) for a gamble (or uncertain reward) f
is the supremum price he is disposed to pay for buying the gamble, or in other words, the
supremum s such that the subject accepts the gamble f − s. His upper prevision P( f ) is
the infimum price he is disposed to receive for selling the gamble, or in other words, the
infimum s such that he accepts the gamble s− f . When the lower and upper prevision
for a gamble happen to coincide, the common value is called the subject’s fair price, or
(precise) prevision, P( f ) for the gamble f . But in contrast with de Finetti’s approach, it
is not required that a subject should be disposed to always specify supremum buying and
infimum selling prices that are equal to each other. What the two approaches to modelling
uncertainty have in common, however, is that they impose certain rationality, or coherence,
requirements on a subject’s behavioural dispositions as summarised by his (lower or up-
per) previsions. Walley’s behavioural theory of imprecise probabilities subsumes existing
models of upper and lower expectations ([1, 7]), sets of probability measures ([8]), upper
and lower previsions, sets of desirable gambles, and preference orderings ([10]). We give
a reasonably detailed introduction to this theory in Section 2.

Walley’s Marginal Extension Theorem (MET, [10, Section 6.7]) essentially states, then,
that if we have a marginal lower prevision P1 for the first random variable X1, and a con-
ditional lower prevision P2(·|X1) for the second random variable X2, then their marginal
extension M, given by the concatenation M := P1(P2(·|X1)), is the point-wise smallest (i.e.,
the behaviourally most conservative or least committal) coherent joint lower prevision for
(X1,X2). Walley also shows that the marginal extension M is uniquely coherent (i.e., it is
the only coherent extension) whenever the conditional lower prevision P2(·|X1) is precise,
i.e., a conditional prevision P2(·|X1), no matter whether P1 is precise or not.

What we shall do in this paper, and in particular in Sections 3 (for conditioning on
partitions) and 5 (for conditioning on random variables), is generalise Walley’s result to
any finite number of partitions or random variables. This generalisation is not in any way
obvious or immediate, as a comparison of our proofs with Walley’s will show. This is
because the general coherence requirements become considerably simpler to work with
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in the case of a single conditioning random variable (or partition, Walley’s special case);
see Sections 6.5 and 7.1, and in particular the Reduction Theorem 7.1.5 in [10] for more
details.

In Section 4, we show how the marginal extension can be obtained as a lower enve-
lope of a set of marginal extensions of precise (conditional) previsions. This allows us to
provide our Marginal Extension Theorem with an additional Bayesian sensitivity analysis
interpretation.

In Walley’s theory of coherent lower previsions, there is a powerful notion of natural
extension, which seeks to infer the (conditional) lower prevision for a gamble by making
finite combinations of given (conditional) lower prevision assessments for other gambles;
see Section 2 and [10] for more details. In Section 6, we compare natural and marginal
extension, and we show by means of a counterexample that these extensions need not
generally coincide. This provides another interesting example of the well-established fact
(see [10, Section 8.1]) that natural extension may be incoherent when applied to conditional
lower previsions.

Finally, in Section 7 we show that marginal extension provides us with a natural and
interesting way of forming a ‘product’ of a number of given marginal lower previsions,
based on a special type of ‘independence’ assessment. To see how this comes about, let
us go back to the example in the beginning of this Introduction. Suppose we only have a
marginal (as opposed to a conditional) probability mass function p2 for the second random
variable X2. Then we can still use marginal extension to calculate the joint mass function,
provided we can make the following independence assessment3

p2(x2|x1) = p2(x2) (3)

for all x1 in X1 and x2 in X2. In that case we find for the joint probability mass function
that m(x1,x2) = p1(x1)p2(x2), or in terms of previsions,

M(h) = ∑
(x1,x2)∈X1×X2

p1(x1)p2(x2)h(x1,x2) = P1(P2(h)),

where we let P2(h) be the gamble on X1 that assumes the value

P2(h(x1, ·)) := ∑
x2∈X2

p2(x2)h(x1,x2) = ∑
x2∈X2

p2(x2|x1)h(x1,x2) = P2(h(x1, ·)|x1)

in x1 ∈X1. For any gamble g on X2, this tells us that the marginal prevision P2(g) of
g is equal to the conditional prevision P2(g|x1) for all x1 in X1, which is an equivalent
way of formulating the independence assessment (3). The linear prevision M = P1(P2(·)),
obtained using marginal extension and the independence assessment, is called the (inde-
pendent) product of the previsions P1 and P2. Observe that also4 M = P2(P1(·)) and that
for any gambles f on X1 and g on X2, we find that M( f g) = P1( f )P2(g), which is some-
times referred to as the Product Rule, and which provides an alternative (and more directly
symmetrical) way to define independence.

Generalising this to marginal lower previsions P1 for X1 and P2 for X2 seems straightfor-
ward, but there is a catch. Indeed, we can now use Walley’s Marginal Extension Theorem

3Nothing essential changes if we impose this requirement only for those x1 in X1 for which p(x1) > 0.
This restriction is often made to ensure that the symmetrical counterpart ‘p1(x1|x2) = p1(x1) when p2(x2) > 0’ is
implied by Condition (3), which turns independence into a symmetrical notion. This symmetry is not immediately
apparent in (3), and is actually broken when we generalise (3) to lower previsions. See further on.

4When X1 and X2 may be infinite, this symmetry is no longer guaranteed if we take de Finetti’s position of
only requiring the previsions P1 and P2 to be finitely additive on events (see [6, Section 3.11] for a discussion of
finite additivity).
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to find a point-wise smallest coherent joint lower prevision, provided we make the follow-
ing assessment:

P2(g|x1) = P2(g) (4)

for all gambles g on X2 and all x1 in X1. In that case M(h) = P1(P2(h)), where, in a
similar vein as before, P2(h) is the gamble on X1 that assumes the value P2(h(x1, ·)) in
x1 ∈X1. A subject who makes assessment (4) effectively models that knowing what value
X1 assumes in X1 does not affect his beliefs about the value that X2 assumes in X2. In
Walley’s terminology ([10, Chapter 9], see also [5]), X1 is then said to be epistemically
irrelevant to X2. We shall call the lower prevision M = P1(P2(·)) the forward irrelevant
product of the marginals P1 and P2.

Reversing the roles of X1 and X2 in this reasoning leads to the backward irrelevant
product M′ = P2(P1(·)), based on the assessment that X2 is epistemically irrelevant to X1.
Interestingly, and in contrast with what we have just seen for precise previsions, it does
not generally hold that M = M′, i.e., that P1(P2(·)) = P2(P1(·)); see [3] for more details
and a counterexample. This means that epistemic irrelevance is an asymmetrical notion.
To assert that X1 and X2 are epistemically independent, we have to require that X1 is epis-
temically irrelevant to X2 and that X2 is epistemically irrelevant to X1; see also [5] for
further discussion. The independent product ([10, Section 9.3] and [5]) of the marginals
P1 and P2 is then defined as the point-wise smallest coherent joint lower prevision with
these marginals that expresses such epistemic independence. Such an independent product
does not always exist,6 and may, if it exists, be quite difficult to compute (see [10, Sec-
tion 9.3.2]). In contrast, the forward/backward irrelevant products M and M′ always exist
(are always coherent), and are, as we have seen, very easy to compute.7

In Section 7 then, we use our more general version of the Marginal Extension Theorem
to generalise the notion of a forward irrelevant product to any finite number of marginals.
We also prove a number of interesting properties for this type of product, such as a gener-
alised (but weaker) version of the above-mentioned Product Rule.

Why do we believe our results to be relevant? Our generalised version of the Marginal
Extension Theorem allows us to make most-conservative (least-committal) and coherent
inferences in a straight-forward manner in a number of interesting situations where the
available information has an hierarchical structure, namely, when it is characterised by
conditioning on increasingly finer partitions, or by nested collections of conditioning vari-
ables. And even though, obviously, not all probabilistic or statistical reasoning falls within
the scope of marginal extension, it does so in a number of theoretically interesting as well
as practically useful situations. Let us end this Introduction with two examples. In [4],
one of us, in co-operation with M. Zaffalon, has used an earlier, less general version of the
MET with three variables to justify using a so-called conservative updating rule for deal-
ing with missing data in probabilistic expert systems based on Bayesian networks. And
in [2], we use, amongst other things, the MET in conjunction with a forward irrelevance
assessment, stating that ‘we do not learn about the future by observing the past’ to derive
quite powerful weak and strong laws of large numbers that subsume most of the related
results in the literature, and to weaken considerably the conditions under which such laws
can be shown to hold.

6It always exists when X1 or X2 is finite, but there may be problems in case both X1 and X2 are infinite;
again, see [10, Section 9.3].

7The independent product, if it exists, dominates both M and M′ on all gambles.
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2. COHERENT LOWER PREVISIONS

In order to make this paper reasonably self-contained, we discuss here the relevant main
ideas in the behavioural theory of coherent lower previsions, as formulated in much more
detail and depth by Walley in [10].

2.1. Basic notions and notation. We consider a subject who is uncertain about some-
thing, say, the outcome of an experiment. Let Ω be the set of all possible outcomes, then a
bounded real-valued function on Ω is called a gamble on Ω. The set of all gambles on Ω

is denoted by L (Ω). A gamble f is interpreted as an uncertain reward: if the outcome of
the experiment turns out to be ω ∈Ω, then the corresponding (positive or negative) reward
will be f (ω), expressed in units of some (predetermined) linear utility.

As we have already announced in the Introduction, a subject’s lower prevision P( f )
for a gamble f is defined as his supremum acceptable price for buying f , i.e., the highest
price µ such that the subject will accept to buy the uncertain reward f for all prices strictly
smaller than µ (buying f for a price x is the same thing as accepting the uncertain reward
f − x). Similarly, a subject’s upper prevision P( f ) for f is his infimum acceptable selling
price for f , so he accepts the uncertain reward µ − f for all prices µ > P( f ). Clearly,
P( f ) =−P(− f ) since selling f for a price x is the same thing as buying − f for the price
−x. This conjugacy relation allows us to restrict our attention to lower previsions.

For any subset A of Ω, also called an event, its lower probability P(A) is defined as the
lower prevision P(IA) of its indicator IA, where IA denotes the gamble on Ω that assumes
the value one on A and zero elsewhere. Similarly for its upper probability, P(A) = P(IA).
P(A) can be interpreted as the supremum rate for betting on the occurence of the event A.

2.2. Rationality criteria. Assume that the subject has given lower prevision assessments
P( f ) for all gambles f in some set of gambles K ⊆ L (Ω), which need not have any
predefined structure. Since these assessments represent commitments of the subject to act
in certain ways, they are subject to a number of rationality requirements. The strongest
such requirement that we shall consider here, is that P should be coherent ([10, Defini-
tion 2.5.1]). This is the case if for any n,m≥ 0 in N, and f0, . . . , fn in K :

sup
ω∈Ω

[
n

∑
k=1

[ fk(ω)−P( fk)]−m[ f0(ω)−P( f0)]

]
≥ 0. (5)

Assume that this condition fails for some n,m > 0, f0, . . . , fn ∈K . Then, there would be
some ε > 0 such that m [ f0− [P( f0)+ ε]] point-wise dominates the acceptable combination
of buying transactions ∑

n
k=1[ fk −P( fk) + ε], and is therefore acceptable as well.8 This

would mean that by combining acceptable transactions derived from his assessments, the
subject can be effectively forced to buy f0 at the price P( f0)+ ε , which is strictly higher
than the supremum acceptable buying price P( f0) that he has specified for it.

It also follows from Eq. (5), for the case where m = 0, that the subject’s assessments
avoid sure loss ([10, Definition 2.4.1]): for any n in the set of positive natural numbers N
and for any f1, . . . , fn in K we require that

sup
ω∈Ω

[
n

∑
k=1

[ fk(ω)−P( fk)]

]
≥ 0.

8The underlying assumption, or axiom of rationality, here is that a finite non-negative linear combination of
acceptable gambles is acceptable. This assumption is closely linked with the linearity of the chosen utility scale.
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Otherwise, there would be some ε > 0 such that for all ω in Ω:
n

∑
k=1

[ fk(ω)−P( fk)+ ε]≤−ε,

i.e., the net reward of buying the gambles fk for the acceptable prices P( fk)− ε is sure to
lead to a loss of at least ε , whatever the outcome of the experiment!

And finally, if the coherence condition fails for some n = 0,m > 0, f0 ∈K , we deduce
that we can raise P( f0) in some positive quantity ε , contradicting its interpretation as a
supremum acceptable buying price. All of these are inconsistencies that should be avoided.

We list a few interesting consequences of coherence here, as they will turn out useful in
later proofs. Any coherent lower prevision P is monotone: f ≤ g⇒ P( f ) ≤ P(g); super-
additive: P( f + g) ≥ P( f )+ P(g); positively homogeneous: P(λ f ) = λP( f ) for all real
λ ≥ 0; constant additive: P( f + µ) = P( f )+ µ , and also P(µ) = µ for all real numbers
µ; and it satisfies P( f )≥ inf f . (When a gamble appears as an argument of P in the above
expressions, it is of course assumed to be in the domain of P.)

When the domain K of the lower prevision P is a linear space, i.e., closed under the
point-wise addition of gambles, and the scalar (point-wise) multiplication of gambles with
real numbers, the form of the coherence requirement simplifies considerably. Indeed, then
P is coherent if and only if ([10, Section 2.3.3])
1. P( f )≥ inf f [accepting sure gains; positivity];
2. P(λ f ) = λP( f ) [positive homogeneity];
3. P( f +g)≥ P( f )+P(g) [super-additivity]
for all f and g in K and non-negative real λ .

2.3. Natural extension. A lower prevision P defined on an arbitrary set of gambles K
can, provided it avoids sure loss, always be corrected to a coherent lower prevision E on
the set of all gambles L (Ω), through a procedure called natural extension. The natural ex-
tension E of P is the smallest coherent lower prevision on L (Ω) that point-wise dominates
P on K . It is given for all gambles f on Ω by ([10, Sections 3.1.1 and 3.1.3])

E( f ) = sup
f1,..., fn∈K

µ1,...,µn≥0,n≥0

inf
ω∈Ω

[
f (ω)−

n

∑
k=1

µk[ fk(ω)−P( fk)]

]
. (6)

The natural extension summarises the behavioural implications of the assessments present
in P: E( f ) is the supremum buying price for f that can be derived from the lower prevision
P by arguments of coherence alone: we see from its definition above that it is the supremum
of all prices that the subject can be effectively forced to buy the gamble f for, by combining
finite numbers of buying transactions implicit in his lower prevision assessments P.

The concept of natural extension can also be used to characterise the coherence of a
lower prevision P on K : a lower prevision P that avoids sure loss is coherent if and only if
it coincides with its natural extension on its domain K , i.e., if E is indeed an extension of
P. Observe that if P is coherent, then E will not be in general the unique coherent extension
of P to L (Ω); but any other coherent extension of P will dominate E on all gambles, and
will therefore represent behavioural dispositions not present in P.

We shall see further on in Section 6 that this notion of natural extension can be gen-
eralised from the unconditional lower previsions considered here to the conditional lower
previsions to be introduced and studied later. In order to distinguish between the two types
of natural extension, we shall sometimes refer to the present notion as unconditional natu-
ral extension.
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2.4. In terms of linear previsions. When P( f ) = P( f ), the subject’s supremum buying
price for the gamble f coincides with his infimum selling price, and this common value
is then a prevision or fair price for the gamble f , in the sense of de Finetti ([6]). When
a lower prevision P is defined on a negation invariant set of gambles K , meaning that
−K = {− f : f ∈K } = K , we can define the conjugate upper prevision P on K by
P( f ) = −P(− f ), f ∈ K ; and we call P self-conjugate if P = P on K , i.e., when our
subject can determine fair prices for all the gambles in this domain.

We then define a linear prevision P on the set of all gambles L (Ω) ([10, Section 2.8]) as
a self-conjugate coherent lower prevision, or equivalently, as a real-valued linear functional
on L (Ω) that is positive (if f ≥ 0 then P( f ) ≥ 0) and has unit norm (P(IΩ) = 1). Its
restriction to events is a finitely additive probability. Let us denote by P(Ω) the set of all
linear previsions on L (Ω). A real-valued functional P defined on some domain K is
called a linear prevision if it can be extended to a linear prevision on all gambles.

The notions of avoiding sure loss, coherence, and natural extension can also be charac-
terised in terms of sets of linear previsions. Consider a lower prevision P defined on a set
of gambles K . Its set of dominating linear previsions is given by

M (P) := {P ∈ P(Ω) : (∀ f ∈K )(P( f )≥ P( f ))} .

Then P avoids sure loss if and only if M (P) 6= /0, i.e., if P it has some dominating linear
prevision. P is coherent if and only if P( f ) = min{P( f ) : P ∈M (P)} for all f in K ,
i.e., if P is the lower envelope of M (P). And the natural extension E of P is given by
E( f ) = min{P( f ) : P ∈M (P)} for all f in L (Ω). The natural extension of a coherent
lower prevision P can therefore be computed as the lower envelope of the linear previsions
that dominate P on its domain. We deduce from this fact that the procedure of natural
extension is transitive: if we consider the natural extension E1 of P to some domain K1 ⊇
K and then the natural extension of E1 to all gambles, this extension will agree with the
natural extension of P to all gambles.

These properties allow us to give coherent lower previsions a Bayesian sensitivity anal-
ysis interpretation, in contrast with the direct behavioural one considered so far: we might
assume the existence of some ideal but unknown linear prevision P modelling the be-
havioural dispositions of our subject, and model that we know P only imperfectly by stat-
ing that P belongs to some (compact and convex) set M of possible candidate linear previ-
sions. Then this set of (precise) linear previsions is mathematically equivalent to its lower
envelope P, which is a coherent lower prevision, and P ∈M is equivalent to P≥ P.

2.5. Conditioning. Let B be a partition of Ω, i.e., a set of mutually disjoint events whose
union is Ω. Then we can consider for every B ∈B and any gamble f on Ω a subject’s
conditional lower prevision P( f |B) of f given B, defined as the supremum price he would
currently be willing to pay for f if he came to know subsequently that the outcome of
the experiment took a value in B (and nothing else). Alternatively, it could be defined as
the subject’s supremum buying price for the so-called contingent gamble IB f , which is
called-off when B doesn’t occur.

If we assume that the conditional lower previsions P(·|B) are defined on the same do-
main H for all B ∈B,10 then we can summarise all these conditional lower previsions
through the mathematical device P(·|B) – a two-place function –, where for all f ∈H

P( f |B) := ∑
B∈B

IBP( f |B).

10This is no essential restriction; for more details see [10, Section 6.2.4].
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We shall also call the object P(·|B) a conditional lower prevision. Interestingly, and quite
importantly, P( f |B) can be regarded as a gamble on Ω that is B-measurable, that is,
constant on the elements of B: it assumes the value P( f |B) on any x ∈ B. We shall
frequently use the notations

G( f |B) := f −P( f |B) = ∑
B∈B

G( f |B) = ∑
B∈B

IB[ f −P( f |B)]. (7)

G( f |B) is called the marginal gamble on f contingent on B: it is the gamble that is called
off unless B occurs, and where the subject pays the price P( f |B) for f , when B does occur.

Conditional lower previsions P(·|B) are also subject to a number of rationality criteria,
which we now turn to.

Separate coherence. The first requirement we consider is that of separate coherence:

Definition 1. [10, Section 6.2.2] Let P(·|B) be a conditional lower prevision with domain
H . It is called separately coherent when the following two conditions hold:
(SC1) For each B in B, P(·|B) is a coherent lower prevision on H .
(SC2) IB ∈H and P(B|B) = 1 for each B ∈B.

It is an immediate but rather important consequence of separate coherence that

IB f = IBg⇒ P( f |B) = P(g|B) (8)

for all gambles f and g in the domain of P(·|B) and all B in B; see [10, Lemma 6.2.4].
It also follows from separate coherence that for any gamble f , there is a linear prevision
P(·|B) that dominates P(·|B) on its domain and satisfies P( f |B) = P( f |B) and P(B|B) = 1.

Now if f is a B-measurable gamble, i.e., constant on the elements B of the partition
B, we can write f = ∑B∈B f (B)IB, where f (B) denotes the constant value of f on B. So
we see that f IB = f (B)IB, and coherence of the lower prevision P(·|B) requires for the
constant gamble f (B) that P( f (B)|B) = f (B). It then follows from separate coherence that
if the B-measurable gamble f belongs to the domain of P(·|B), then P( f |B) = f (B) for
all B ∈B, or equivalently, P( f |B) = f .12 We may therefore always assume, without loss
of generality, that the domain of a separately coherent conditional lower prevision P(·|B)
contains all B-measurable gambles, because for such gambles f the value P( f |B) = f is
uniquely determined by separate coherence. We can go still further. Indeed, choose, for any
B in B, a gamble fB in the domain H , and consider the real-valued map f = ∑B∈B IB fB,
which we shall assume to be bounded (a gamble). Then f IB = fBIB, so separate coherence
requires that if f ∈H , then P( f |B) = P( fB|B) for all B in B. If f doesn’t belong to H ,
then this tells us that we can extend P(·|B) uniquely to f , by separate coherence. We may
therefore also always assume, without loss of generality, that the domain H of P(·|B) is
B-closed, meaning that if fB ∈H for all B ∈B, then if ∑B∈B fBIB is bounded, it belongs
to H as well.

If we have a separately coherent conditional lower prevision P(·|B), defined on some
domain H , then for each B ∈B, we can consider the (unconditional) natural extension
E(·|B) of the coherent lower prevision P(·|B) to all gambles, given by

E( f |B) = sup
fi∈H ,λi≥0

i=1,...,m,m≥0

inf
ω∈Ω

[
f (ω)−

m

∑
i=1

λi [ fi(ω)−P( fi|B)]

]

12It follows from these comments that if we have two separately coherent conditional lower previsions
P1(·|B1) and P2(·|B2), and a set B belonging to both partitions B1 and B2, then P1(B|B1) = P2(B|B2) is
equal to IB, the gamble which takes the value 1 on B and 0 on Bc.
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for all gambles f on Ω. Note that, as we did in Section 2.4, we can define the set of linear
previsions

M (P(·|B)) := {P(·|B) ∈ P(Ω) : (∀ f ∈H )(P( f |B)≥ P( f |B))} .

Then P(·|B) will be coherent if and only if it is the lower envelope of M (P(·|B)), and
the natural extension E(·|B) will be the lower envelope of M (P(·|B)). This leads to a
conditional lower prevision E(·|B) on L (Ω), called the (unconditional) natural extension
of P(·|B), which clearly is separately coherent as well.

Finally, when the domain H of the conditional lower prevision P(·|B) is a linear space
that contains all IB, B ∈B, then P(·|B) is separately coherent if and only if ([10, Theo-
rem 6.2.7])
1. P( f |B)≥ infω∈B f (ω);
2. P(λ f |B) = λP( f |B);
3. P( f +g|B)≥ P( f |B)+P(g|B);
for all f and g in H , λ ≥ 0, and B∈B. This should be compared with the characterisation
of coherence near the end of Section 2.2.

Joint coherence. If besides the conditional lower prevision P(·|B) we have other coherent
conditional or unconditional lower previsions, we should require, besides separate coher-
ence, that the assessments of all these (conditional) lower previsions should be consis-
tent with one another. This leads to the requirement of joint coherence.13 It is easier to
formulate it for the case where we have a finite number of conditional lower previsions,
P1(·|B1), . . . , PN(·|BN), since unconditional previsions correspond to the particular case
where B = {Ω}.

Definition 2. [10, Definition 7.1.4] Let P1(·|B1), . . . , PN(·|BN) be separately coherent
conditional lower previsions with respective linear domains H1, . . . , HN ⊆L (Ω).14 They
are called jointly coherent if for any f j ∈H j where j = 1, . . . ,N, and for any i in {1, . . . ,N},
f0 ∈Hi and B0 ∈Bi, there is some event B in {B0}∪

⋃N
j=1 S j( f j) such that

sup
ω∈B

[
N

∑
j=1

G( f j|B j)−G( f0|B0)

]
(ω)≥ 0, (9)

where the B j-support S j( f j) of the gamble f j is defined as the set of events

S j( f j) :=
{

B j ∈B j : IB j f j 6= 0
}

. (10)

Similarly to the condition (5) for the coherence of an unconditional lower prevision,
the condition (9) means that our subject’s supremum acceptable buying price for a gamble
f conditional on B0 cannot be raised by considering the implications of the behavioural
dispositions expressed through the other assessments.

It follows from the definition above that if P1(·|B1), . . . ,PN(·|BN) are jointly coherent,
then Pi(·|Bi) is separately coherent for each i = 1, . . . ,N. If in particular Bi = {Ω} for
some i (i.e., if we have an unconditional lower prevision), we deduce that Pi(·|Bi) is a
coherent lower prevision. Note moreover (and this is one of the things that renders our

13This requirement is called simply ‘coherence’ in [10]. We have preferred to use the terminology ‘joint
coherence’ in order to emphasise the distinction with ‘separate coherence’.

14We assume here that the domains are linear spaces only for the sake of simplicity. Nothing essential
changes if we drop this assumption; we only need to replace the gambles G( f j|B j) in the condition (9) by finite
non-negative linear combinations ∑

n j
k=1 λ k

j G( f k
j |B j). For more details, see [9].
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task in this paper difficult) that the notion of joint coherence is not transitive: given condi-
tional lower previsions P1(·|B1), P2(·|B2) and P3(·|B3), the joint coherence of P1(·|B1)
with P2(·|B2) and of P2(·|B2) with P3(·|B3) does not imply that P1(·|B1), P2(·|B2) and
P3(·|B3) are jointly coherent.

In the particular case where we only have an unconditional coherent lower prevision P
defined on H1 and a separately coherent conditional lower prevision P(·|B) defined on
H2,16 the joint coherence condition (9) simplifies to ([10, Section 6.3.2])

sup
ω∈Ω

[G( f )+G(g|B)−G(h)](ω)≥ 0

sup
ω∈Ω

[G( f )+G(g|B)−G(w|B)](ω)≥ 0

for any f ,h ∈H1, g,w ∈H2 and B ∈B, where similarly to Eq. (7), G( f ) := f −P( f ).
It is instructive to look at the special case that H1 includes H2, so P( f ) is defined for

all gambles f for which P( f |B) is defined. Then the coherence conditions above become

P(G( f |B))≥ 0 (CP)

P(G( f |B)) = 0, (GBR)

for all f in H1 and B in B. When both P and P(·|B) are linear previsions P and P(·|B),
these conditions turn into P( f ) = P(P( f |B)) and P( f |B)P(B) = P( f IB), respectively. The
second condition is of course Bayes’ Rule, which is why its counterpart (GBR) for lower
previsions is called the Generalised Bayes Rule. This shows that, in the case of linear
previsions, Bayes’ Rule is necessary for coherence, but not sufficient in general, because
the first condition, which is the Conglomerative Property (see the Introduction), also has
to hold. In this respect, Walley’s approach to coherence is even more demanding than
de Finetti’s [6] (or Williams’ [11]), because de Finetti specifically does not require the
Conglomerative Property to hold when the partition B is infinite.

It follows from the coherence of the lower prevision P that (CP) implies that

P(P( f |B))≥ P( f )≥ P(P( f |B)), (11)

which is, of course, a necessary condition for joint coherence. When, in particular, P(·|B)
is a conditional linear prevision P(·|B), these inequalities turn into the equality P( f ) =
P(P( f |B)).

2.6. The Marginal Extension Theorem. To complete this introduction to coherent lower
previsions, we turn to the precise formulation of Walley’s Marginal Extension Theorem,
already mentioned in the Introduction.

Consider a separately coherent conditional lower prevision P(·|B) defined on a set of
gambles H ⊆ L (Ω), as well as a coherent unconditional lower prevision P defined on
another set of gambles K ⊆L (Ω). Assume in addition, and this is crucial, that K con-
sists only of gambles that are B-measurable, i.e., constant on the elements of the partition
B.

Now consider the (unconditional) natural extension E of P to the set of all B-measurable
gambles, and for each B in B, denote by M(·|B) the (unconditional) natural extension of
the coherent lower prevision P(·|B) to the set of all gambles L (Ω). This leads to a new,
separately coherent, conditional lower prevision M(·|B).

Interestingly and surprisingly, when all elements of K are B-measurable, requiring
the separate coherence of P and P(·|B) is enough to guarantee that they are also jointly

16There are some additional technical and essentially unrestrictive requirements on the domains H1 and H2;
see [10, Section 6.3.1] for more details.
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coherent. The (unconditional) natural extensions E and M(·|B) also have a part in charac-
terising their jointly coherent extensions, as the following theorem states. For a remarkably
simple proof, we refer to [10, Section 6.7.2].

Theorem 1 (Marginal Extension Theorem). Suppose that (i) P is a coherent lower previ-
sion on a domain K where (ii) all gambles in K are B-measurable, and (iii) P(·|B) is
separately coherent conditional lower prevision on an arbitrary domain H . Then
1. P and P(·|B) are jointly coherent, and they have jointly coherent extensions to all of

L (Ω);
2. The point-wise smallest jointly coherent extensions of P and P(·|B) to L (Ω) are M

and M(·|B) where M is the lower prevision defined by

M( f ) = E(M( f |B)).

The marginal extension M is not necessarily equal to the (unconditional) natural exten-
sion E of P alone, as it also has to take into account the behavioural consequences of the
assessments that are present in P(·|B)! But since it follows from separate coherence that
for any B-measurable gamble f , M( f |B) = f , we see that M and E coincide at least on
all B-measurable gambles.

In general, M will not be the only extension of P that is jointly coherent with P(·|B);
but any other coherent extension will dominate M and will therefore represent behavioural
dispositions not present in P and P(·|B).

Finally, observe that for M and M(·|B), the equality is reached in the second of the in-
equalities (11), because, as we have seen above, M and E coincide on B-measurable gam-
bles such as M( f |B). These inequalities also tell us that the extension M( f ) is uniquely
jointly coherent whenever P( f |B) = P( f |B) is precise and belongs to K . In partic-
ular, when P(·|B) is precise and defined on all gambles, and when P is defined on all
B-measurable gambles, this tells us that P and P(·|B) have unique jointly coherent exten-
sions M = P(P(·|B)) and M(·|B) = P(·|B) to all gambles.

The idea behind the requirement of B-measurability for the gambles in K is to have
some sort of ‘concatenation’, or hierarchy, in the model. That is, we have some marginal
information about the occurrence of the elements of the partition B, in the form of a
coherent lower prevision P defined only on B-measurable gambles, and a lower prevision
P(·|B) conditional on B. The marginal extension theorem allows us to combine these two
lower previsions into a least-committal jointly coherent pair M, M(·|B).

It is perhaps easier to see this if we reformulate the Marginal Extension Theorem in
terms of random variables, i.e., the way it is discussed in the Introduction. Consider two
random variables X1 and X2 taking values in the respective sets X1 and X2. We may
consider an unconditional (marginal) lower prevision P1 on H1 ⊆L (X1), modelling our
information about X1 and a conditional lower prevision P2(·|X1) on H2 ⊆L (X2) mod-
elling beliefs about the value of X2 conditional on what value X1 assumes.

If we let Ω = X1×X2, then we can identify any gamble on X1 with a gamble on Ω

that only depends on the first coordinate x1 in ω = (x1,x2), i.e., which is X1-variable. If
we consider the partition B = {{x1}×X2 : x1 ∈X1} of Ω, then we see that we can iden-
tify P1 with a lower prevision P on gambles on Ω that are B-measurable, and its natural
extension E to all B-measurable gambles can be identified with the natural extension E1
of P1 to L (X1).

Similarly, we can associate the statement ‘X1 = x1’ with the element {x1} ×X2 of
the partition B. We can therefore identify the conditional lower prevision P2(·|X1) with
a conditional lower prevision P(·|B) defined on a set of gambles on Ω, and the natural
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extension M(·|B) can be identified with the natural extension E2(·|X1) of P2(·|X1). Indeed,
it can be shown (see Lemma 6 further on) that

M(h|{x1}×X2) = E2(h(x1, ·)|x1)

for all gambles h on Ω and all x1 in X , where E2(·|x1) is the natural extension to L (X2)
of the coherent lower prevision P2(·|x1). So the Marginal Extension Theorem tells us, as
we already essentially announced in the Introduction, that the point-wise smallest jointly
coherent extensions of P1 and P2(·|X1) to all gambles on X1 ×X2 are given by M =
E1(E2(·|X1)) and E2(·|X1). M models the ‘information’ about the value that the joint
random variable (X1,X2) assumes in X1×X2. M(h) = E1(E2(h|X1)) is the smallest (most
conservative) supremum acceptable buying price for a gamble h on X1×X2 that can be
derived from P1 and P2(·|X1) using (only) coherence.

In the rest of this paper, we shall generalise these results to a more general setting. But
before we start doing that, it will be convenient to derive a number of (new) additional
results about coherent conditioning.

2.7. Further properties of coherent conditional lower previsions. The first result deals
with the notion of separate coherence, and tells us that, unsurprisingly, it leads to conditions
very similar to the coherence condition (5) for unconditional previsions, but with a suitably
restricted supremum.

Proposition 1. Let B be a partition of Ω, and consider a conditional lower prevision
P(·|B) defined on a set of gambles H that is B-closed and contains all B-measurable
gambles. Then P(·|B) is separately coherent if and only if for all B in B, all n,m≥ 0 and
all f0, f1, . . . , fn in H ,

sup
ω∈B

[
n

∑
k=1

[ fk(ω)−P( fk|B)]−m[ f0(ω)−P( f0|B)]

]
≥ 0. (12)

Proof. First, assume that P(·|B) is separately coherent. Fix natural numbers m and n, an
element B of B, as well as gambles f0, f1, . . . , fn in H . Note that we may assume without
loss of generality that n > 0: when n = 0, the separate coherence of P(·|B) implies that
P( f0|B) ≥ infω∈B f0(ω), and Eq. (12) holds. Consider the gambles g0 := f0IB and gk :=
fkIB− µIBc for k = 1, . . . ,n, where µ is an arbitrary real number, and Bc the set-theoretic
complement of B. Since H is assumed to be B-closed, all these gambles belong to H .
Since moreover IBgk = IB fk, it follows from (8) that P( fk|B) = P(gk|B), for k = 0,1, . . . ,n.
It also follows from the coherence of the lower prevision P(·|B) that the maximum of{

sup
ω∈B

[
n

∑
k=1

[ fk(ω)−P( fk|B)]−m[ f0(ω)−P( f0|B)]

]
,−nµ +mP( f0|B)−

n

∑
k=1

P( fk|B)

}
,

being equal to

sup
ω∈Ω

[
n

∑
k=1

[gk(ω)−P(gk|B)]−m[g0(ω)−P(g0|B)]

]
,

is non-negative. Since this must hold for any µ , we find in particular that if we let

µ >
mP( f0|B)−∑

n
k=1 P( fk|B)

n
,

then the desired inequality indeed follows.
To prove the converse implication, consider any B in B. Then we must show that P(·|B)

is a coherent lower prevision on H , and that P(B|B) = 1 (recall that IB is B-measurable,
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and therefore belongs to H .) It follows from the condition (12) that for all n,m ≥ 0 and
all f0, f1, . . . , fn in H ,

sup
ω∈Ω

[
n

∑
k=1

[ fk(ω)−P( fk|B)]−m[ f0(ω)−P( f0|B)]

]

≥ sup
ω∈B

[
n

∑
k=1

[ fk(ω)−P( fk|B)]−m[ f0(ω)−P( f0|B)]

]
≥ 0,

so P(·|B) is indeed coherent. To prove that P(B|B) = 1, let n = 1, f0 = f1 = IB and m
arbitrary, and apply (12) to find that (1−m)≥ (1−m)P(B|B). Choosing m = 0 and m = 2
leads to the desired equality. �

The second result is a generalisation of the coherence condition (CP) and (one of) the
inequalities (11).

Proposition 2. Let B1 and B2 be two partitions of Ω, such that B2 is finer18 than B1, and
let P1(·|B1) and P2(·|B2) be two separately coherent conditional lower previsions defined
on L (Ω) that are also jointly coherent. Then for any gamble f on Ω, P1(G( f |B2)|B1)≥
0 and P1( f |B1)≥ P1(P2( f |B2)|B1).

Proof. Consider f in L (Ω) and B1 in B1. Let g = IB1 f and h = G( f |B2). Then the
joint coherence of P1(·|B1) and P2(·|B2) implies in particular that there is some B in
{B1}∪S2(g) such that

0≤ sup
ω∈B

[G(0|B1)+G(g|B2)(ω)−G(h|B1)(ω)]

= sup
ω∈B

[G(IB1 f |B2)(ω)− IB1(ω)[G( f |B2)(ω)−P1(G( f |B2)|B1)]] .

Now we take into account that any element of S2(g) is included in B1, since g is zero
outside B1. This means that the supremum over any B in {B1}∪S2(g) is dominated by the
supremum over B1, which leads to

0≤ sup
ω∈B1

[G(IB1 f |B2)(ω)− [G( f |B2)(ω)−P1(G( f |B2)|B1)]]

= P1(G( f |B2)|B1)+ sup
ω∈B1

[G(IB1 f |B2)(ω)−G( f |B2)(ω)]

= P1(G( f |B2)|B1)+ sup
ω∈B1

∑
B2∈B2

IB2(ω)[IB1(ω) f (ω)− f (ω)+P2( f |B2)−P2(IB1 f |B2)]

= P1(G( f |B2)|B1)

= P1( f −P2( f |B2)|B1),

where the third equality holds because either B2 ⊆ B1 or B1 ∩ B2 = /0, and if B2 ⊆ B1
then IB1 IB2 = IB2 and IB2(IB1 f ) = IB2 f , so the separate coherence of P2(·|B2) ensures that
P2(IB1 f |B2) = P2( f |B2); see (8). Since this holds for all B1 in B1, we see that, indeed,
P1(G( f |B2)|B1)≥ 0.

Now the coherence of the lower prevision P1(·|B1) implies that

P1( f −P( f |B2)|B1)≤ P1( f |B1)+P1(−P2( f |B2)|B1) = P1( f |B1)−P1(P2( f |B2)|B1),

whence P1( f |B1) ≥ P2(P( f |B2)|B1). Since this holds for all B1 in B1, we indeed get
P1( f |B1)≥ P1(P2( f |B2)|B1). �

18This means that the elements of B1 are unions of elements of B2.
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3. THE MARGINAL EXTENSION THEOREM

We now proceed to formulate and prove our generalised version of the Marginal Exten-
sion Theorem.

Let us consider N > 0 partitions B1, . . . , BN of Ω that are increasingly finer, i.e.,
Bi+1 is finer than Bi for i = 1, . . . ,N−1. For each partition Bi, we consider a separately
coherent conditional lower prevision Pi(·|Bi), defined on a set of gambles Hi ⊆L (Ω).
We make the crucial additional assumption that all gambles in Hi are Bi+1-measurable,
i.e., constant on the elements of Bi+1, for i = 1, . . . ,N−1. Then Pi(·|Bi) can be regarded
as ‘marginal information’ about the occurrence of the elements of Bi+1.

In turns out that the separate coherence of these conditional lower previsions is enough
to guarantee that they are also jointly coherent, and that they have jointly coherent ex-
tensions to all of L (Ω). We characterise the smallest such extensions in the following
theorem. Note that it extends Walley’s Marginal Extension Theorem even in the case that
N = 2, because we do not require that one of the lower previsions should be an uncondi-
tional one. Our proof (and in particular Lemma 3, which contains the crux of the argument)
is inspired by ideas first expressed by De Cooman and Zaffalon in [4].

Theorem 2 (Marginal Extension Theorem; general version for partitions). Let P1(·|B1),
. . . , PN(·|BN) be separately coherent lower previsions with respective domains H1, . . . ,
HN . Assume that, for any i = 2, . . . ,N, the partition Bi is finer than Bi−1, and that
moreover any gamble in Hi−1 is Bi-measurable. Then

1. P1(·|B1), . . . , PN(·|BN) are jointly coherent and they have separately and jointly co-
herent extensions to all of L (Ω);

2. the point-wise smallest separately and jointly coherent extensions are M1(·|B1), . . . ,
MN(·|BN), where

Mi(·|Bi) = E i(E i+1(. . .(EN(·|BN)) . . . |Bi+1)|Bi), (13)

where for each BN in BN , EN(·|BN) is the (unconditional) natural extension of PN(·|BN)
to L (Ω) and for each B j in B j, j = 1, . . . ,N−1, E j(·|B j) is the (unconditional) natural
extension of P j(·|B j) to the set of all B j+1-measurable gambles.

Before proving the theorem, we wish to point out that the so-called marginal extensions
Mi(·|Bi) can be obtained using the following ‘backward’ recursion formula

Mi(·|Bi) = E i(Mi+1(·|Bi+1)|Bi), i = 1, . . . ,N−1 (14)

with ‘initial condition’
MN(·|BN) = EN(·|BN). (15)

Proof. For any i = 1, . . . ,N, E i(·|Bi) is the (unconditional) natural extension of the sepa-
rately coherent lower prevision Pi(·|Bi), and is therefore also separately coherent. Then,
we prove in Lemma 1 that the conditional lower previsions Mi(·|Bi) are separately coher-
ent, and in Lemma 3 that they are jointly coherent. In Lemma 2 we show that Mi(·|Bi)
extends Pi(·|Bi) to L (Ω) for all i = 1, . . . ,N, which shows that the latter indeed have sep-
arately and jointly coherent extensions to L (Ω), and are therefore also jointly coherent.
Finally, in Lemma 4 we show that the Mi(·|Bi) are the smallest jointly coherent exten-
sions. �

Lemma 1. The conditional lower previsions Mi(·|Bi) are separately coherent, for i =
1, . . . ,N.
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Proof. We give a proof by induction. First of all, using Eq. (15), we see that MN(·|BN) =
EN(·|BN) is separately coherent. We complete the proof by showing that if Mi+1(·|Bi+1)
is separately coherent, then so is Mi(·|Bi), for i = 1, . . . ,N−1.

We shall verify that Mi(·|Bi) satisfies the separate coherence axioms we mentioned
in Section 2.5 for conditional lower previsions with linear domains. First of all, using
Eq. (14), we get for any f in L (Ω) and any Bi in Bi,

Mi( f |Bi) = E i(Mi+1( f |Bi+1)|Bi)

≥ inf
ω∈Bi

Mi+1( f |Bi+1)(ω) = inf
Bi+1⊆Bi

Mi+1( f |Bi+1)

≥ inf
Bi+1⊆Bi

inf
ω∈Bi+1

f (ω) = inf
ω∈Bi

f (ω),

where the first inequality follows from the separate coherence of E i(·|Bi), the second
inequality from the separate coherence of Mi+1(·|Bi+1) [induction hypothesis], and where
we have also used the fact that the partitions are increasingly finer.

Next, for any f in L (Ω) and λ ≥ 0, we have, using Eq. (14) and the separate coherence
of Mi+1(·|Bi+1) [induction hypothesis] and E i(·|Bi),

Mi(λ f |Bi) = E i(Mi+1(λ f |Bi+1)|Bi)

= E i(λMi+1( f |Bi+1)|Bi)

= λE i(Mi+1( f |Bi+1)|Bi) = λMi( f |Bi).

Finally, given any f and g in L (Ω), we have, again using Eq. (14) and the separate coher-
ence of Mi+1(·|Bi+1) [induction hypothesis] and E i(·|Bi),

Mi( f +g|Bi) = E i(Mi+1( f +g|Bi+1)|Bi)

≥ E i(Mi+1( f |Bi+1)+Mi+1(g|Bi+1)|Bi)

≥ E i(Mi+1( f |Bi+1)|Bi)+E i(Mi+1(g|Bi+1)|Bi)

= Mi( f |Bi)+Mi(g|Bi). �

Lemma 2. Mi(·|Bi) is an extension of Pi(·|Bi), for i = 1, . . . ,N.

Proof. For f ∈HN we have MN( f |BN) = EN( f |BN) = PN( f |BN), because PN(·|BN) is
separately coherent and therefore coincides with its natural extension on its domain. Next,
consider f ∈Hi for some 1≤ i < N. Then f is Bi+1-measurable, and, since Mi+1(·|Bi+1)
is separately coherent, it follows [see Section 2.5] that Mi+1( f |Bi+1) = f . Hence, we get,
using Eq. (14), that

Mi( f |Bi) = E i(Mi+1( f |Bi+1)|Bi) = E i( f |Bi) = Pi( f |Bi),

where the last equality follows because Pi(·|Bi) is separately coherent and therefore coin-
cides with its natural extension on its domain Hi. �

Lemma 3. The conditional lower previsions M1(·|B1), . . . , MN(·|BN) are jointly coher-
ent.

Proof. Fix arbitrary f0, f1, . . . , fN in L (Ω), i in {1, . . . ,N} and Bi ∈Bi. We must show
that there is some event B in {Bi}∪

⋃N
j=1 S j( f j) such that

sup
ω∈B

[
N

∑
j=1

G( f j|B j)−G( f0|Bi)

]
(ω)≥ 0. (16)
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Let us introduce the notations g := ∑
N
j=1 G( f j|B j)−G( f0|Bi), h`

j := M`( f j|B`) for ` =
j, . . . ,N and hN+1

j := f j for j = 0, . . . ,N. Since IBi [ f0−Mi( f0|Bi)] = IBi [ f0−Mi( f0|Bi)],
we then see that

g =
N

∑
j=1

[
f j−M j( f j|B j)

]
− IBi [ f0−Mi( f0|Bi)] =

N

∑
j=1

[
hN+1

j −h j
j

]
− IBi

[
hN+1

0 −hi
0
]

=
N

∑
j=1

N

∑
`= j

[
h`+1

j −h`
j

]
− IBi

N

∑
`=i

[
h`+1

0 −h`
0

]
=

N

∑
`=1

`

∑
j=1

[
h`+1

j −h`
j

]
− IBi

N

∑
`=i

[
h`+1

0 −h`
0

]
.

If we also define, for ` = 1, . . . ,N,

g` :=

{
∑

`
j=1[h

`+1
j −h`

j]− IBi [h
`+1
0 −h`

0] if `≥ i

∑
`
j=1[h

`+1
j −h`

j] otherwise,

then, clearly, g = ∑
N
`=1 g`. Also observe that for any ` = 1, . . . ,N − 1, the gamble g` is

B`+1-measurable. We first prove that for all ` = 1, . . . ,N and all C` ∈B`,

sup
ω∈C`

g`(ω)≥ 0. (17)

We shall distinguish between three possible cases. The first one is that i≤ ` < N. Then we
have for any C` ∈B`

sup
ω∈C`

g`(ω)

= sup
ω∈C`

[
`

∑
j=1

[h`+1
j −h`

j]− IBi [h
`+1
0 −h`

0]

]
(ω)

= sup
ω∈C`

[
`

∑
j=1

[M`+1( f j|B`+1)−M`( f j|B`)]− IBi [M`+1( f0|B`+1)−M`( f0|B`)]

]
(ω)

= sup
ω∈C`

`

∑
j=1

[M`+1( f j|B`+1)(ω)−M`( f j|C`)]

− IBi(ω)[M`+1( f0|B`+1)(ω)−M`( f0|C`)]

= sup
ω∈C`

`

∑
j=1

[M`+1( f j|B`+1)(ω)−E`(M`+1( f j|B`+1)|C`)]

− IBi(ω)[M`+1( f0|B`+1)(ω)−E`(M`+1( f0|B`+1)|C`)]≥ 0,

where the last inequality follows from the separate coherence of E`(·|B`), Proposition 1,
and the fact that either C` ⊆ Bi or C`∩Bi = /0.

The second case is that i≤ ` = N. Then for any CN in BN

sup
ω∈CN

gN(ω) = sup
ω∈CN

[
N

∑
j=1

[ f j(ω)−EN( f j|CN)]− IBi(ω)[ f0(ω)−EN( f0|CN)]

]
≥ 0,

again taking into account that EN(·|BN) is separately coherent, Proposition 1, and the fact
that either CN ⊆ Bi or CN ∩Bi = /0.
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The final case is that ` < i≤ N. Then we get for any C` in B` that

sup
ω∈C`

g`(ω) = sup
ω∈C`

`

∑
j=1

[M`+1( f j|B`+1)(ω)−M`( f j|C`)]

= sup
ω∈C`

`

∑
j=1

[M`+1( f j|B`+1)(ω)−E`(M`+1( f j|B`+1)|C`)]≥ 0,

where the last inequality follows yet again from the separate coherence of the lower previ-
sion E`(·|B`) and Proposition 1. This proves that the inequality (17) indeed holds.

Next, we prove that

sup
ω∈C`

N

∑
k=`

gk(ω)≥ 0, (18)

for ` = 1, . . . ,N and for all C` ∈B`. We give a proof by induction. Recall that g` is B`+1-
measurable for all ` = 1, . . . ,N−1, and denote by g`(C`+1) the constant value that g` attains
on the element C`+1 of the partition B`+1. It is obvious by applying the inequality (17) for
` = N that the desired inequality (18) holds for ` = N. Assume now that the equality (18)
holds for ` = n, where 2 ≤ n ≤ N [this is the induction hypothesis]. Then for any Cn−1 in
Bn−1,

sup
ω∈Cn−1

N

∑
k=n−1

gk(ω) = sup
Cn∈Bn,Cn⊆Cn−1

sup
ω∈Cn

N

∑
k=n−1

gk(ω)

= sup
Cn∈Bn,Cn⊆Cn−1

[gn−1(Cn)+ sup
ω∈Cn

N

∑
k=n

gk(ω)]

≥ sup
Cn∈Bn,Cn⊆Cn−1

gn−1(Cn) = sup
ω∈Cn−1

gn−1(ω)≥ 0,

where the first inequality follows from the induction hypothesis and the second by applying
the inequality (17) for ` = n−1. This proves that the desired inequality (18) also holds for
` = n−1, and consequently it holds for all ` = 1, . . . ,N.

We are now ready to prove joint coherence. Let j be the smallest integer such that
f j 6= 0. Then, h`

j = 0 for all k = 1, . . . , j−1, `≥ k, whence gk = 0 for all k < min{ j, i} and
g = ∑

n
k=min{ j,i} gk. If j ≤ i, we consider D j ∈ S j( f j). If we invoke the inequality (18) for

` = j and C` = D j, we find that

sup
ω∈D j

g(ω) = sup
ω∈D j

N

∑
k= j

gk(ω)≥ 0.

On the other hand, if j > i, we may again invoke the inequality (18) for ` = i and C` = Bi
to find that

sup
ω∈Bi

g(ω) = sup
ω∈Bi

N

∑
k=i

gk(ω)≥ 0.

In any of the two cases, there is some B in {Bi}∪
⋃N

j=1 S j( f j) such that (16) holds, and we
conclude that the conditional lower previsions M1(·|B1), . . . , MN(·|BN) are indeed jointly
coherent. �

Lemma 4. M1(·|B1), . . . , MN(·|BN) are the smallest jointly coherent extensions of the
lower previsions P1(·|B1), . . . , PN(·|BN).
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Proof. We give a proof by induction on N. We first show that the result holds for N = 2.
We deduce from Lemmas 1, 2 and 3 that the separately coherent conditional lower previ-
sions M1(·|B1) and M2(·|B2) are jointly coherent extensions of P1(·|B1) and P2(·|B2)
to L (Ω), respectively. Consider two other separately and jointly coherent extensions
M′1(·|B1) and M′2(·|B2), and any gamble f on Ω. Then taking into account that, by con-
struction, M2( f |B2) = E2( f |B2), it is clear that M′2( f |B2)≥M2( f |B2), because for each
B2 in B2, the coherent lower prevision M′2(·|B2) is an extension to L (Ω) of the coherent
lower prevision P2(·|B2) and it therefore dominates its (unconditional) natural extension
E2(·|B2) of P2(·|B2) to all gambles. At the same time,

M′1( f |B1)≥M′1(M
′
2( f |B2)|B1)≥ E1(M

′
2( f |B2)|B1)

≥ E1(E2( f |B2)|B1) = M1( f |B1),

where the first inequality follows from Proposition 2, and the second inequality holds
because M′2(·|B2) is B2-measurable and M′1(·|B1) is a coherent extension of P1(·|B1),
which therefore dominates the smallest coherent extension E1(·|B1) of P1(·|B1) to B2-
measurable gambles. Hence M1(·|B1) and M2(·|B2) are the smallest jointly coherent
extensions.

We now prove the result for N > 2. Let us introduce the notations

Mn
i (·|Bi) = E i(E i+1(. . .(En(·|Bn)) . . . |Bi+1)|Bi),

for i = 1, . . . ,n and n ≥ 1. Then the induction hypothesis, namely that the result holds
for N = n−1, amounts to stating that the separately coherent conditional lower previsions
Mn−1

1 (·|B1), . . . , Mn−1
n−1(·|Bn−1) are the smallest jointly coherent extensions of P1(·|B1),

. . . , Pn−1(·|Bn−1) to L (Ω). We want to prove that the result holds for N = n. It is
easy to see that Mn

i ( f |Bi) = Mn−1
i (En( f |Bn)|Bi) for i = 1, . . . ,n−1 and all f in L (Ω).

Now, given other jointly coherent extensions M′1(·|B1), . . . , M′n(·|Bn) of P1(·|B1), . . . ,
Pn(·|Bn) to L (Ω), we have by a similar course of reasoning as above that M′n( f |Bn) ≥
En( f |Bn) = Mn

n( f |Bn) for any f ∈L (Ω), and moreover for any i ∈ {1, . . . ,n−1},

M′i( f |Bi)≥M′i(M
′
n( f |Bn)|Bi)≥M′i(En( f |Bn)|Bi),

where the first inequality follows from Proposition 2. Now, M′1(·|B1), . . . , M′n−1(·|Bn−1)
are also jointly coherent extensions of P1(·|B1), . . . , Pn−1(·|Bn−1) and they therefore
dominate the smallest jointly coherent extensions, which by the induction hypothesis are
Mn−1

1 (·|B1), . . . , Mn−1
n−1(·|Bn−1). Hence,

M′i(En( f |Bn)|Bi)≥Mn−1
i (En( f |Bn)|Bi) = Mn

i ( f |Bi).

This proves that the result holds for N = n. We conclude that M1(·|B1), . . . , MN(·|BN)
are indeed the smallest jointly coherent extensions of P1(·|B1), . . . , PN(·|BN). �

As was the case with Theorem 1, our version of the Marginal Extension Theorem states
that, if we want to combine all these conditional lower previsions and extend them in
a coherent way to L (Ω), we must use a two-step procedure: first, we must extend the
marginal information Pi−1(·|Bi−1) about each partition Bi to the set of all Bi-measurable
gambles, using (unconditional) natural extension; and secondly, we must concatenate this
marginal information by means of Eq. (13).
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4. THE MARGINAL EXTENSION THEOREM IN TERMS OF SETS OF LINEAR
PREVISIONS

The marginal extensions can also be calculated as lower envelopes of jointly coherent
conditional linear previsions, obtained by applying the Marginal Extension Theorem to the
conditional linear previsions in the sets

M (Pk(·|Bk)) := {Pk(·|Bk) : (∀Bk ∈Bk)(Pk(·|Bk) ∈M (P(·|Bk)))} .

This is proven in the following theorem, which is a generalisation of Theorem 6.7.4 in [10].

Theorem 3 (Lower envelope theorem). Let P1(·|B1), . . . , PN(·|BN) be separately co-
herent lower previsions with respective domains H1, . . . , HN . Assume that, for any
i = 2, . . . ,N, the partition Bi is finer than Bi−1, and that moreover any gamble in Hi−1
is Bi-measurable. For any 1 ≤ k ≤ N and any Bk ∈Bk, let Pk(·|Bk) be any element of
M (Pk(·|Bk)). Define, for any gamble f on Ω, Pk( f |Bk) as the Bk-measurable gamble
that assumes the value Pk( f |Bk) on Bk. Let, for any gamble f on Ω,

Mk( f |Bk) = Pk(Pk+1(. . .(PN( f |BN)) . . . |Bk+1)|Bk)

for k = 1, . . . ,N. Then the marginal extensions Mk(·|Bk) constructed in this way are jointly
(and separately) coherent conditional (linear) previsions on L (Ω). Moreover, Mk(·|Bk) is
the lower envelope of all such conditional linear previsions Mk(·|Bk), and for any gamble
f on Ω there is such a conditional linear prevision that coincides on f with Mk(·|Bk).

Proof. It is easy to see that the Mk(·|Bk) are (separately coherent) conditional linear pre-
visions, and they are jointly coherent by the Marginal Extension Theorem (Theorem 2), so
we concentrate on the rest of the proof. We shall prove the result for M1(·|B1), since the
proof we give essentially contains the proofs for Mk(·|Bk) for any k = 2, . . . ,N. Consider
any such M1(·|B1). Then, for any gamble f on Ω and any BN in BN we have that

PN( f |BN)≥ EN( f |BN),

since by construction PN(·|BN) belongs to M (PN(·|BN)). Therefore,

MN( f |BN) = PN( f |BN)≥ EN( f |BN) = MN( f |BN).

Consequently, for any BN−1 in BN−1 we get in a similar way that

PN−1(PN( f |BN)|BN−1)≥ EN−1(EN( f |BN)|BN−1),

whence

MN−1( f |BN−1) = PN−1(PN( f |BN)|BN−1)

≥ EN−1(EN( f |BN)|BN−1) = MN−1( f |BN−1).

If we continue this process, we eventually get to

M1( f |B1) = P1(. . .(PN−1(PN( f |BN)|BN−1)) . . . |B1)

≥ E1(. . .(EN−1(EN( f |BN)|BN−1)) . . . |B1) = M1( f |B1),

also using Eq. (13). This proves that M1(·|B1) dominates M1(·|B1).
To complete the proof, fix a gamble f on Ω. Then we know that for any BN in BN ,

there is some QBN (·|BN) in M (PN(·|BN)) such that [see the discussion of (unconditional)
natural extension in Section 2.5]

QBN ( f |BN) = EN( f |BN).
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This can be done for all BN in BN and we can use this to define a conditional linear
prevision QN(·|BN) in M (PN(·|BN)) that satisfies, by construction,

QN( f |BN) = EN( f |BN). (19)

Now EN( f |BN) is a BN-measurable gamble, and we know that for any BN−1 in BN−1,
there is some QBN−1(·|BN1) in M (PN−1(·|BN−1)) such that

QBN−1(EN( f |BN)|BN−1) = EN−1(EN( f |BN)|BN−1).

This can be done for all BN−1 in BN−1 and we can use this to define a conditional linear
prevision QN−1(·|BN−1) in M (PN−1(·|BN−1)) that satisfies, by construction,

QN−1(EN( f |BN)|BN−1) = EN−1(EN( f |BN)|BN−1),

and using Eq. (19), this leads to

QN−1(QN( f |BN)|BN−1) = EN−1(EN( f |BN)|BN−1) = MN−1( f |BN−1).

If we follow this process, we eventually obtain a conditional linear prevision Q1(·|B1) in
M (P1(·|B1)) in the way described above, such that

Q1(. . .(QN−1(QN( f |BN)|BN−1)) . . . |B1) = E1(. . .(EN−1(EN( f |BN)|BN−1)) . . . |B1)

= M1( f |B1). �

This theorem allows us to give our Marginal Extension Theorem a sensitivity analysis
interpretation: we might assume the existence of precise (but unknown) conditional linear
previsions Qk(·|Bk), and we may model the ‘available information’ about Qk(·|Bk) using
the separately coherent conditional lower previsions Pk(·|Bk), or equivalently, by a set
of candidate conditional linear previsions M (Pk(·|Bk)). Then the combination of these
separate pieces of information should be done by selecting candidate conditional linear
previsions Pk(·|Bk) in these sets, and combining them using marginal extension (Bayes’
rule). This leads to sets of jointly coherent marginal extensions, whose lower envelopes
are precisely the marginal extensions of the conditional lower previsions Pk(·|Bk), as The-
orem 3 guarantees.

It is an immediate consequence of Theorem 3 that in the particular case where we have
linear marginals Pk(·|Bk) defined on the classes of all Bk+1-measurable gambles, k =
1, . . . ,N, the marginal extensions are their unique coherent extensions to L (Ω). This can
also be seen using Theorem 2: the marginal extensions are simultaneously the smallest
and the largest coherent extensions, and they are therefore unique. Note that in the general
case of coherent lower previsions the marginal extensions are only the smallest coherent
extensions, but there can be other coherent extensions of P1(·|B1), . . . ,Pk(·|Bk) to L (Ω).

Finally, let us remark that Theorem 3 still holds if we replace in the sets M (Pk(·|Bk))
by their sets of extreme points, because for any gamble f on X k the value Pk( f |Bk) is
attained on one of the extreme points of M (Pk(·|Bk)). As a consequence, we deduce
that the extreme points of M1(·|B1) are concatenations of extreme points of Pk(·|Bk) for
k = 1, . . . ,N, in the manner described in the theorem.

We also deduce from this theorem that the marginal extension theorem we have proven
can be seen as a finite number of iterations of the marginal extension theorem for two par-
titions. To see this more clearly, assume for instance that N = 3. If we consider M3

2(·|B2)
the marginal extension of the conditional lower previsions P2(·|B2) and P3(·|B3) and then
the marginal extension of P1(·|B1) and M3

2(·|B2), we obtain again the marginal extension
M3(·|B3) of P1(·|B1),P2(·|B2) and P3(·|B3). It suffices to see that the linear previsions
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that dominate M3(·|B3) are precisely the combinations of the linear previsions that dom-
inate P1(·|B1) and those that dominate M3

2(·|B2). In particular, when one of the lower
previsions is unconditional, the marginal extension can be seen as a finite replication of
Walley’s marginal extension theorem.

5. THE MARGINAL EXTENSION THEOREM IN TERMS OF RANDOM VARIABLES

The Marginal Extension Theorem we have just proven can perhaps be better understood
if we consider a sequence of random variables instead of a sequence of increasingly finer
partitions. Let X1, . . . , XN be N > 0 random variables taking values in the respective non-
empty sets X1, . . . , XN . We could interpret the index k of the random variable Xk as a
‘time’, in which case it seems natural to consider the case where we observe the values
of X1, . . . , Xk, and use these observations to infer something about the as yet unobserved
random variables Xk+1, . . . , XN . This is the general problem of predictive inference.

In order to be able to study this problem in more detail, let us introduce the following
definition.

Definition 3. For any k in {1, . . . ,N}, we define the product random variable

Xk :=
k

∏
i=1

Xi, (20)

that assumes values in some subset of the product space

X k :=
k

∏
i=1

Xi. (21)

Now let us consider the special case that our subject models his beliefs about the value
of the k-th random variable Xk conditional on the observation (x1, . . . ,xk−1) of the previous
k−1 variables X1, . . . , Xk−1 in the form of a coherent lower prevision on some subset Hk of
L (Xk), which we denote as Pk(·|x1, . . . ,xk−1). Suppose he does this for all (x1, . . . ,xk−1)
in X k−1 (and all k = 1, . . . ,N).23 Also suppose that the domain of Pk(·|x1, . . . ,xk−1) is
the same set Hk for all (x1, . . . ,xk−1) in X k−1. We shall assume, in addition, that each
domain Hk contains all constant gambles λ on Xk, and that Pk(λ |x1, . . . ,xk−1) = λ for
all λ ∈ R. We can always make such an assumption without loss of generality, because
coherence requires that no other value than λ can be assigned to Pk(λ |x1, . . . ,xk−1), and
assigning such a value does not affect the coherence in any way. This simple cosmetic trick
will make life much easier for us further on, however.

We then construct the ‘conditional lower prevision’ Pk(·|Xk−1) as a two-place func-
tion that summarises the available assessments as follows: for any gamble fk in Hk,
Pk( fk|Xk−1) is a gamble on X k−1 that assumes the value Pk( fk|x1, . . . ,xk−1) in any ele-
ment (x1, . . . ,xk−1) of X k−1. We should be careful, however, in using the term ‘conditional
lower prevision’ for Pk( fk|Xk−1), because so far, we have only defined conditional lower
previsions with respect to partitions. We can, however, easily reinterpret Pk( fk|Xk−1) as a
conditional lower prevision, as we next proceed to show. We first make suitable transfor-
mations on the domains. For this, we introduce the following definition:

Definition 4. Take I ⊆ {1, . . . ,N}. Then, a gamble f ∈X N is called XI-variable when
for every x,y ∈X N such that xi = yi for all i ∈ I, we have that f (x) = f (y).

23Actually, there is some abuse of notation here, as for k = 1, no observation has yet been made, and we
denote the corresponding (unconditional) coherent lower prevision by P1.
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Step 1: There is a one-to-one correspondence between the set of gambles on X N

which are XI-variable and the gambles on ∏i∈I Xi. In particular, a gamble fk on
Xk can be uniquely associated with a Xk-variable gamble f̂k on X N , given by
f̂k(x1, . . . ,xN) = fk(xk) for all (x1, . . . ,xN) ∈X N . Let us define Ĥk := { f̂k : fk ∈
Hk} ⊆L (X N) for all k = 1, . . . ,N.

Step 2: Next, we define suitable partitions for our purposes. For any k = 2, . . . ,N and
any (x1, . . . ,xk−1), let us define the set B(x1,...,xk−1) := {(x1, . . . ,xk−1)}××N

`=kX`.
Consider the partitions of X N given by B1 = {X N}, Bk :=

{
Bz : z ∈X k−1

}
,

for k = 2, . . . ,N, and BN+1 :=
{
{(x1, . . . ,xN)} : (x1, . . . ,xN) ∈X N

}
.

Step 3: We define a conditional lower prevision P̂k(·|Bk) on Ĥk by

P̂k( f̂k|B(x1,...,xk−1)) := Pk( fk|x1, . . . ,xk−1)

for all fk ∈Hk and (x1, . . . ,xk−1)∈X k−1. This lower prevision is only defined on
some Xk-variable gambles. But since we want P̂k(·|Bk) to be separately coherent,
we are going to use some of the consequences of this property (see Section 2) to
considerably enlarge its domain.

Step 4: Consider the set

H k :=
{

g ∈L (X k) : (∀(x1, . . . ,xk−1) ∈X k−1)(g(x1, . . . ,xk−1, ·) ∈Hk)
}

of gambles on X k. Observe that we have defined H k as a set of gambles on X k,
but it can equally well (and actually should) be considered a set of gambles on X N

that are X k-variable. We shall henceforth leave all such trivial identifications
implicit.

The set H k is easily seen to be Bk-closed. In fact, it is the smallest Bk-
closed set of gambles that contains all the f̂k for fk ∈Hk. It also contains all
Bk-measurable gambles, simply because we took care to assume from the outset
that Hk contains all constant gambles. Now consider any g in H k, then we have
that g = ∑z∈X k−1 g(z, ·)IBz , where g(z, ·) ∈Hk for all z ∈ X k−1, and therefore
separate coherence [see the discussion in Section 2] leaves us with no other choice
but to let

P̂k(g|Bz) = P̂k(g(z, ·)|Bz) = Pk(g(z, ·)|z), (22)

for all z in X k−1. In particular, we see that By ∈H k and that P̂k(By|Bz) = δz,y

(Kronecker delta) for all y,z ∈X k−1.

The construction above provides us with conditional lower previsions P̂k(·|Bk) with
domains H k, for k = 1, . . . ,N. The following lemma shows that these previsions are
separately coherent.

Lemma 5. The conditional lower previsions P̂k(·|Bk) on H k are separately coherent, for
k = 1, . . . ,N.

Proof. Since the domains H k are Bk-closed and contain all Bk-measurable gambles,
we may invoke Proposition 1. Consider therefore any z ∈X k−1, any m,n ≥ 0, and any
gambles g0, g1, . . . , gn in H k. For this fixed value z, consider the gambles f` = g`(z, ·),
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` = 0,1, . . . ,n, which belong to Hk, by construction. Then, using Eq. (22),

sup
x∈Bz

[
n

∑
`=1

[g`(x)− P̂k(g`|Bz)]−m[g0(x)− P̂k(g0|Bz)]

]

= sup
xk∈Xk

[
n

∑
`=1

[g`(z,xk)− P̂k(g`(z, ·)|Bz)]−m[g0(z,xk)− P̂k(g0(z, ·)|Bz)]

]

= sup
xk∈Xk

[
n

∑
`=1

[ f`(xk)−Pk( f`|z)]−m[ f0(xk)−Pk( f0|z)]

]
≥ 0,

where the inequality follows from the coherence of the lower prevision Pk(·|z) on Hk. �

Hence, we are able to identify conditional lower previsions with respect to variables as
conditional lower previsions with respect to partitions, and this identification allows us to
impose and interpret requirements of joint coherence on the former.

Next, observe that all gambles in the domain H k of the separately coherent conditional
lower prevision P̂k(·|Bk) are not only Bk- but also Bk+1-measurable, i.e., X k-variable,
for k = 1, . . . ,N−1. If we also remark that the partitions Bk are increasingly finer, we see
that we are in a position to apply our Marginal Extension Theorem. We shall see that this
theorem takes on a remarkably intuitive and simple form when written in terms of random
variables, rather than partitions. But before we can appreciate its full power and elegance,
we need to take one more (small) step, which is related to the identification of conditional
lower previsions with respect to variables with their counterparts with respect to partitions.

Indeed, in order to apply the theorem, we need to find, for each Bz ∈Bk, i.e., for each
z ∈X k−1, the (unconditional) natural extension Êk(·|Bz) of the coherent lower prevision
P̂k(·|Bz) from its domain H k to the set L (X k) (essentially) of all Bk+1-measurable gam-
bles, for k = 1, . . . ,N.25 This leads to the separately coherent conditional lower prevision
Êk(·|Bk) defined on the set L (X k) of all Bk+1-measurable gambles.

But let us consider, instead, for each z = (z1, . . . ,zk−1) in X k−1, the natural extension
Ek(·|z) of the coherent lower prevision Pk(·|z) from the subset Hk of L (Xk) to all gam-
bles on Xk. This leads to the conditional lower prevision Ek(·|Xk−1) defined on L (Xk).
The following lemma tells us that there is an interesting, and perhaps at this point unsur-
prising, relationship between Êk(·|Bk) and Ek(·|Xk−1), which extends in a natural way the
relation (22) between P̂k(·|Bk) and Pk(·|Xk−1).

Lemma 6. Let k ∈ {1, . . . ,N}. Then for all Bk+1-measurable gambles g on X N , or in
other words for all g in L (X k), and for all z in X k−1, it holds that

Êk(g|Bz) = Ek(g(z, ·)|z).

Proof. First of all, it is easy to see that because P̂k(·|Bk) is separately coherent on H k, its
(unconditional) natural extension Êk(·|Bk) to L (X k) is separately coherent as well. As
a result [see Eq. (8)], we find that

Êk( f |Bz) = Êk( f (z, ·)|Bz)

for any Bk+1-measurable, i.e., X k-variable, gamble f and any z in X k−1. Let, then, g be
any gamble on Xk and z any element of X k−1. Clearly, it now only remains to show that

Êk(g|Bz) = Ek(g|z).

25The set of BN+1-measurable gambles is simply L (X N), and the reason why we introduced BN+1 as well,
is precisely to be able to treat the case k = N in one sweep with the other cases.
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By definition of (unconditional) natural extension,

Êk(g|Bz) = sup
gi∈H k,λi≥0
i=1,...,m,m≥0

inf
x∈X k

[
g(xk)−

m

∑
i=1

λi
[
gi(x)− P̂k(gi|Bz)

]]

= sup
gi∈H k,λi≥0
i=1,...,m,m≥0

inf
(y,xk)∈X k−1×Xk

[
g(xk)−

m

∑
i=1

λi [gi(y,xk)−Pk(gi(z, ·)|z)]

]
.

If we now recall that Bz ∈H k, and that P̂k(Bz|Bz) = Pk(Xk|z) = 1, we see that the right-
hand side can be rewritten as

sup
gi∈H k,λi≥0
i=1,...,m,m≥0

µ≥0

inf
xk∈Xk

inf
y∈X k−1

[
g(xk)−µ[IBz(y,xk)−1]−

m

∑
i=1

λi [gi(y,xk)−Pk(gi(z, ·)|z)]

]
.

Now consider the last infimum in this expression. It is equal to

min
{

g(xk)−
m

∑
i=1

λi [gi(z,xk)−Pk(gi(z, ·)|z)] ,

µ +g(xk)− sup
y6=z

m

∑
i=1

λi [gi(y,xk)−Pk(gi(z, ·)|z)]
}

.

Now for any choice of the gi and λi we can always choose µ ≥ 0 such that

µ ≥ sup
y6=z

m

∑
i=1

λi [gi(y,xk)−Pk(gi(z, ·)|z)]−
m

∑
i=1

λi [gi(z,xk)−Pk(gi(z, ·)|z)]

= sup
y6=z

m

∑
i=1

λi [gi(y,xk)−gi(z,xk)]

for all xk in Xk, and therefore we find that

Êk(g|Bz) = sup
gi∈H k,λi≥0
i=1,...,m,m≥0

inf
xk∈Xk

[
g(xk)−

m

∑
i=1

λi [gi(z,xk)−Pk(gi(z, ·)|z)]

]

= sup
fi∈Hk,λi≥0

i=1,...,m,m≥0

inf
xk∈Xk

[
g(xk)−

m

∑
i=1

λi [ fi(xk)−Pk( fi|z)]

]
= Ek(g|z). �

We are now ready to prove the following:

Theorem 4 (Marginal Extension Theorem for variables). Let us consider the separately
coherent conditional lower previsions P1, P2(·|X1), . . . , PN(·|XN−1), with respective do-
mains Hk ⊆L (Xk), k = 1, . . . ,N. Then
1. P1, P2(·|X1), . . . , PN(·|XN−1) are jointly coherent and have separately and jointly co-

herent extensions to all of L (X N);
2. the point-wise smallest separately and jointly coherent extensions to L (X N) are M1,

M2(·|X1), . . . , MN(·|XN−1), where

M1 = E1(E2(. . .(EN(·|XN−1)) . . . |X1)),

and
Mi(·|X i−1) = E i(E i+1(. . .(EN(·|XN−1)) . . . |X i)|X i−1),
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for i = 2, . . . ,N. In this expression, for each z in X k−1, Ek(·|z) is the (uncondi-
tional) natural extension of the coherent lower prevision Pk(·|z) to L (Xk), which
can be extended uniquely by separate coherence to all X k-variable gambles f by
Ek( f |z) := Ek( f (z, ·)|z), for k = 1, . . . ,N.

Proof. The proof is simple now, with all the preparatory scaffolding in place. We know
that partitions Bk are increasingly finer, that the conditional lower previsions P̂k(·|Bk)
are separately coherent, and defined on domains H k that are Bk+1-measurable. So we
can apply the Marginal Extension Theorem to find that they are jointly coherent and have
coherent extensions to L (X N). This translates back to the first statement of the present
theorem. But we may in addition infer that the pointwise smallest jointly and separately
coherent extensions to L (X N) are actually given by M̂1(·|B1), . . . , M̂N(·|BN), where,
with the notations established above,

M̂k(·|Bk) = Êk(Êk+1(. . .(ÊN(·|BN)) . . . |Bk+1)|Bk).

Taking into account Lemma 6, this translates back to the second statement of the present
theorem. �

The idea behind this theorem is the following: since the natural extension E1 of P1
represents marginal information about the value that X1 assumes, we must concatenate it
with E2(·|X1) in order to have information about the value assumed by (X1,X2). Then
we concatenate this with the natural extension E3(·|X2) of P3(·|X2), and, if we follow
this process, we get to the lower prevision M on L (X N) which models the information
about the value that XN assumes. In particular, the conditional lower previsions M(·|Xk)
model the ‘information’ about the value that (Xk+1, . . . ,XN) assumes conditional on the
value taken by the first k variables in the process, X1, . . . , Xk.

6. MARGINAL VERSUS NATURAL EXTENSION

It behoves us to compare the procedure of marginal extension we have studied in the
previous sections to the notion of natural extension for conditional lower previsions devel-
oped by Walley in [10, Section 8.1].

Consider conditional lower previsions Pk(·|Bk) defined on linear spaces Hk ⊆L (Ω)
for 1 ≤ k ≤ N, that are separately and jointly coherent. Then Walley ([10, Section 8.1.1])
defines their natural extensions F1(·|B1), . . . , FN(·|BN) to L (Ω) in the following way:
for each f ∈L (Ω) and each B0 ∈Bk, Fk( f |B0) [this is the value of Fk( f |Bk) on B0] is
defined as the supremum value of α for which there are fi ∈Hi, i = 1, . . . ,N such that

sup
ω∈B

[
N

∑
i=1

G( fi|Bi)(ω)− IB0(ω)[ f (ω)−α]

]
< 0 for all B ∈

N⋃
i=1

Si( fi)∪{B0}, (23)

where the supports Si( fi) are defined by Eq.(10). See [9] for an extension of this notion to
the case of conditional lower previsions defined on domains that are not necessarily linear
spaces.

In the particular case where we only have an unconditional lower prevision P, and noth-
ing else, this notion of natural extension F agrees with the one (E) given by Eq. (6). But
we should be very careful in more general situations. Indeed, in the previous sections, we
have sometimes considered the (unconditional) natural extensions Ek(·|Bk) of the lower
previsions Pk(·|Bk) for all Bk in Bk, leading to the conditional lower prevision Ek(·|Bk).
This conditional lower prevision, obtained through (unconditional) natural extension, will
in general be different from, and will actually be dominated by, the (conditional) natural
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extension Fk(·|Bk). The reason is, of course, that in constructing Ek(·|Bk), we only con-
sider the assessments present in the Pk(·|Bk), but not the ones incorporated in the other
conditional lower previsions P`(·|B`) with ` 6= k.

Also, the natural extensions given by Eq. (23) may not possess some of the properties of
the unconditional natural extension: their most important drawback is that they may not be
the point-wise smallest jointly coherent extensions. This may happen for instance because
there simply are no jointly coherent extensions to all of L (Ω) of the given jointly coherent
conditional lower previsions. But even if there were, the natural extensions generally only
provide a lower bound for the smallest jointly coherent extensions, and they are the point-
wise smallest jointly coherent extensions if and only if they are jointly coherent themselves
(see [10, Theorem 8.1.2 and Example 8.1.3]).

It is interesting, therefore, to study the properties of the (conditional) natural extensions
in the specific situation considered in this paper, where we have separately coherent lower
previsions Pk(·|Bk) conditional on a sequence of increasingly finer partitions Bk, such that
moreover Pk(·|Bk) is defined on a set of Bk+1-measurable gambles for k = 1, . . . ,N− 1.
We know from Theorem 2 that these conditional lower previsions are jointly coherent,
and have jointly coherent extensions to all of L (Ω). We have even characterised the
point-wise smallest such extensions Mk(·|Bk). From our discussion above, the natural
extensions Fk(·|Bk) provide only a lower bound for the smallest coherent extensions, and
therefore Fk(·|Bk) ≤ Mk(·|Bk) for all k = 1, . . . ,N. It remains to be seen whether these
two extensions agree in general. Only in that case will these natural extensions be jointly
coherent! The answer to this question is negative, as the following counterexample shows.
It deals with a single partition, and it is therefore already relevant even in the context of
Walley’s simpler version of the Marginal Extension Theorem (Theorem 1, discussed in
Section 2). We therefore use the notations established there.

Example 1. Let us consider the possibility space Ω = X1×X2, where X1 = X2 = [0,1],
and the partition B = {Bx1 : x1 ∈X1}, where Bx1 := {x1}×X2. Also consider the subsets
K = {λπ1 : λ ∈ R} and H = {gπ2 : g ∈L (X1)} of L (Ω), where the gamble λπ1 is
defined by λπ1(x1,x2) = λx1, and the gamble gπ2 by gπ2(x1,x2) = g(x1)x2. Then it is
easy to verify that K and H are linear subspaces of L (Ω). Let us define the linear (and
therefore coherent lower) prevision P on K by

P(λπ1) = λ ,

and the conditional linear prevision P(·|B) on H by

P(gπ2|Bx1) = g(x1)

for any x1 in X1. Since P(·|Bx1) is a linear (and therefore coherent lower) prevision on H

for all x1, P(·|B) is separately coherent.28 Moreover, any gamble in K is B-measurable.
Hence, we may apply Walley’s Marginal Extension Theorem (Theorem 1) and conclude
that the point-wise smallest jointly coherent extensions to L (Ω) are M and M(·|B), where
for each x1 in X1, M(·|Bx1) is the (unconditional) natural extension of P(·|Bx1) to L (Ω),
E is the unconditional natural extension of P to the set of B-measurable gambles, and M
is defined on L (Ω) by M = E(M(·|B)).

28Since the Bx1 do not belong to H , this statement may seem surprising. But it is easily verified that the
natural extension E(·|Bx1 ) of the coherent lower prevision P(·|Bx1 ) assumes the value one in Bx1 , so adding the
assessments P(Bx1 |Bx1 ) = 1 in no way affects the coherence and natural extensions of P(·|Bx1 ). In this sense,
P(·|B) is indeed separately coherent.
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We calculate the value of M in the gamble f on Ω, given by

f (x1,x2) =

{
0 if (x1,x2) = (1− 1

n ,1− 1
n ) for some n > 0

1 otherwise.

We first calculate M( f |Bx1) = M( f (x1, ·)|Bx1) = E( f (x1, ·)|Bx1) [the equalities follow from
the fact that M(·|B) is separately coherent, and Eq. (8)]. We get, using the formula for
(unconditional) natural extension in Section 2,

E( f (x1, ·)|Bx1) = sup
h∈H

inf
(y1,y2)∈Ω

[ f (x1,y2)− [h(y1,y2)−P(h|Bx1)]]

= sup
g∈L (X1)

inf
(y1,y2)∈Ω

[ f (x1,y2)− [g(y1)y2−g(x1)]] .

First, let x1 = 1− 1
m for some m > 0, and consider the gamble g on X1 given by g(y1) = m

for all y1 in X1. Then

inf
(y1,y2)∈Ω

[ f (x1,y2)− [g(y1)y2−g(x1)]]

= min
{

0− [m(1− 1
m

)−m], inf
y2 6=1−1/m

[1− [m(y2−1)]
}

= 1.

This tells us that E( f (x1, ·)|Bx1)≥ 1, and since f ≤ 1, it follows from the coherence of the
lower prevision E(·|Bx1) that E( f (x1, ·)|Bx1)≤ 1. So we may conclude that M( f |Bx1) = 1
when x1 = 1− 1

m for some m > 0. Now, for any x1 in X1 that differs from 1− 1
m for

all m > 0, the gamble f (x1, ·) on X2 is identically 1, and the coherence of the lower
prevision E(·|Bx1) then implies that E( f (x1, ·)|Bx1) = 1. This implies that the gamble
M( f |B) is identically 1, whence M( f ) = E(M( f |B)) = E(1) = 1, using the coherence of
the (unconditional) natural extension E of P.

Let us now study the natural extension F of the pair P, P(·|B) to a coherent lower
prevision on L (Ω), and in particular its value F( f ) in the gamble f . We use Eq. (23),
with N = 2 and B0 = Ω, B1 = {Ω}, B2 = B, G( f1|B1) = f1−P( f1) = λπ1−λ for all
f1 = λπ1 in H1 = K , and G( f2|B2) = gπ2−g for all f2 = gπ2 in H2 = H . Since B0 = Ω,
we see that the supremum over all B in

⋃2
i=1 Si( fi)∪{B0} in Eq. (23) will be negative if

and only if the supremum over Ω is negative, so we get

F( f ) = sup{α : (∃ fi ∈Hi, i = 1,2)(sup [G( f1|B1)+G( f2|B2)− ( f −α)] < 0)}
= sup

fi∈Hi

inf [ f − [G( f1|B1)+G( f2|B2)]]

= sup
λ∈R,g∈L (X1)

inf
(y1,y2)∈Ω

[ f (y1,y2)− [λ (y1−1)+g(y1)(y2−1)]]

≤ sup
λ∈R,g∈L (X1)

inf
n∈N

[
0−

[
−λ

n
−

g(1− 1
n )

n

]]

= sup
λ∈R,g∈L (X1)

inf
n∈N

λ +g(1− 1
n )

n
= 0,

where the last equality holds because all g are bounded. Hence, F( f )≤ 0, and since f ≥ 0
and F is a coherent lower prevision, we also have that F( f )≥ 0, whence F( f ) = 0 < 1 =
M( f ): the natural and the marginal extensions do not coincide on the gamble f . �

This example shows that, in the situations considered in this paper, the procedure of
natural extension may fail to lead to jointly coherent (conditional) lower previsions, and
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the marginal extensions must be considered instead. Interestingly, Walley proves in [10,
Theorem 8.1.8.] that, when one of the lower previsions P1(·|B1) = P1 is an unconditional
one, as is the case in our counterexample, and in the context we discussed for marginal
extension for variables, the natural extension F1 is the point-wise smallest extension of
P1 to L (Ω) that is coherent with the original coherent lower previsions P1, P2(·|B2),
. . . , PN(·|BN). However, as we deduce from the previous counterexample, this does not
imply that F1 is still jointly coherent with the extensions F2(·|B2), . . . , FN(·|BN)! Indeed,
it can be checked that in Example 1 the natural extensions F and F(·|B) are not jointly
coherent. Therefore, if we really want to exploit the behavioural dispositions present in
these (conditional) lower previsions to extend all of them to the set of all gambles, we must
consider their marginal extensions instead of their natural extensions.

It would be interesting to study under which conditions marginal extension and natural
extension agree on L (Ω); from our discussion above, we see that it would suffice to
check when the natural extensions defined through Eq. (23) are jointly coherent. It is
claimed in [10, Theorem 8.1.9] that this is the case as soon as all the partitions Bk, k =
1, . . . ,N are finite (and, in the case of variables, when these take values in finite sets).
Although Walley’s general theory of natural extension assumes the linearity of the domains
H1, . . . ,HN , nothing essential changes if we consider conditional lower previsions defined
on arbitrary sets of gambles; the only difference would be that we would replace each
G( fi|Bi) in Eq. (23) by a finite linear combination ∑

ni
k=1 λikG( f k

i |Bi), with λik ≥ 0 and
f k
i ∈Hi, for all k = 1, . . . ,ni where i = 1, . . . ,N ([9]). See also [3] for some additional

comments on the relationship between the marginal and natural extensions in the case of
variables.

In the case of a conditional lower prevision P(·|B) and an unconditional lower prevision
P with respective domains H and K , and where all the gambles in K are B-measurable
(as in our example), we deduce from the comments above that the marginal and natural
extensions coincide when H = L (Ω). If moreover P(·|B) is a linear prevision, then they
are the only extensions that preserve joint coherence.

7. THE FORWARD IRRELEVANT PRODUCT

Let us apply, as a final step in this development, the Marginal Extension Theorem for
variables to a particular case. Consider, as before, N > 0 random variables X1, . . . , XN
taking values in the respective non-empty sets X1, . . . , XN . For each variable Xk, a subject
has information about the value it assumes in Xk, which he models in terms of a (marginal)
coherent lower prevision Pk defined on a set of gambles Hk ⊆ L (Xk). As we argued
before, we can assume without loss of generality that all these domains include the constant
gambles.30 Let Xk and X k denote the product variables and spaces as in Eqs. (20) and (21).

Our subject now assesses that his beliefs about the value that the random variable Xk
assumes in Xk will not change after observing the values of the ‘previous’ variables X1,
. . . , Xk−1. This is an assessment of so-called forward epistemic irrelevance, and it can be
expressed by means of conditional lower previsions Pk(·|Xk−1), k = 2, . . . ,N, where

Pk( f |x1, . . . ,xk−1) = Pk( f ) (24)

30We shall also assume here that the domains Hk of the marginal lower previsions Pk are cones, i.e., closed
under multiplication with non-negative real numbers. This will considerably simplify the proof of Proposition 5
further on. We can make this assumption without loss of generality, because by coherence, if P( f ) is given, then
the uniquely coherent value for P(λ f ) is λP( f ) for all real λ ≥ 0. As a consequence, the domains H k considered
further on in this section are cones as well.



MARGINAL EXTENSION IN THE THEORY OF COHERENT LOWER PREVISIONS31 29

for any (x1, . . . ,xk−1) in X k−1 and all f ∈Hk.
In summary, we have the following assessments: a unconditional (marginal) lower pre-

vision P1 defined on H1, and conditional lower previsions Pk(·|Xk−1) defined on Hk,
which are derived from the marginals Pk and the forward epistemic irrelevance assess-
ment (24), for 2≤ k ≤ N.

So we see that we have landed squarely in the domain where our Marginal Extension
Theorem for variables (Theorem 4) can be applied to conclude that the point-wise smallest
jointly coherent extensions of P1, P2(·|X1), . . . , PN(·|XN−1) to L (X N) are given by M1,
M2(·|X1), . . . , MN(·|XN−1), where

M1 = E1(E2(. . .(EN(·|XN−1)) . . . |X1)),

and
Mi(·|X i−1) = E i(E i+1(. . .(EN(·|XN−1)) . . . |X i)|X i−1),

for i = 2, . . . ,N, using the notations established in Theorem 4. Let us take a close look at
these expressions, using what we have learned in Section 5. Let f be any gamble on X N .
We may then apply Lemma 6 to find that for any (x1, . . . ,xN−1) in X N−1,

MN( f |x1, . . . ,xN−1) = EN( f |x1, . . . ,xN−1) = EN( f (x1, . . . ,xN−1, ·))
where EN is the (unconditional) natural extension of the marginal PN to all gambles on
XN . It will be convenient to let EN( f ) denote the gamble on X N−1 that assumes the value
EN( f (x1, . . . ,xN−1, ·)) = EN( f |x1, . . . ,xN−1) in the element (x1, . . . ,xN−1) of X N−1. More
generally, if h is a gamble on X k, we shall denote by Ek(h) the gamble on X k−1 that as-
sumes the value Ek( f (x1, . . . ,xk−1, ·)) = Ek( f |x1, . . . ,xk−1) in the element (x1, . . . ,xk−1) of
X k−1, where Ek is the (unconditional) natural extension of the marginal Pk to all gambles
on Xk. If we now apply Lemma 6 again for k = N−1 to the gamble h = EN( f ) on X N−1,
we find that for any (x1, . . . ,xN−2) in X N−2,

MN−1( f |x1, . . . ,xN−2) = EN−1(h|x1, . . . ,xN−2) = EN−1(h)(x1, . . . ,xN−2)

= EN−1(h(x1, . . . ,xN−2, ·)) = EN−1(EN( f )(x1, . . . ,xN−2, ·))
= EN−1(EN( f (x1, . . . ,xN−2, ·, ·)),

where EN−1 is the (unconditional) natural extension of the marginal PN−1 to all gambles
on XN−1. Again, we denote by EN−1(EN( f )) the gamble on X N−2 that assumes the
value EN−1(EN( f (x1, . . . ,xN−2, ·, ·)) for any (x1, . . . ,xN−2) in X N−2. The pattern that is
emerging should by now be quite clear:

Mk( f |x1, . . . ,xk−1) = Ek(Ek+1(. . .(EN( f )) . . .))

and in particular we find for the unconditional (joint) lower prevision M1 on X N

M1( f ) = E1(E2(. . .(Ek+1(. . .(EN( f )) . . .) . . .))).

M1 is called the forward irrelevant product of the marginal lower previsions P1, . . . , PN .
It is obtained by first using EN to ‘integrate out’ the last variable, then using EN−1 to
‘integrate out’ the next but last variable, . . . , and finally using E1 to ‘integrate out’ the only
remaining, first, variable.

Let us denote by Mk the forward irrelevant product of the first k marginals P1, . . . , Pk.
It is easy to derive the following interesting recursion formula from the discussion above:
for all gambles f on X k:

Mk( f ) = Mk−1(Ek( f )). (25)
The lower previsions M1, Mk(·|Xk−1), k = 2, . . . ,N are the point-wise smallest jointly

coherent extensions of P1, Pk(·|Xk−1) to the set of all gambles on X N , or in other words,
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the point-wise smallest jointly coherent extensions of the marginals P1, . . . , PN together
with the forward epistemic irrelevance assessment (24).

If we are only interested in extending P1 and preserving joint coherence with P2(·|X1),
. . . , PN(·|XN−1), without extending the latter, then the natural extension F can be used.
This natural extension will be called in this context the forward irrelevant natural exten-
sion of the marginals P1, . . . , PN . It is dominated by M1 on L (X N), because in general the
natural extension is dominated by all jointly coherent extensions. F is the point-wise small-
est extension of P1 to L (X N) that is jointly coherent with P2(·|X1), . . . , PN(·|XN−1), but
it need not in general be jointly coherent with the corresponding extensions M2(·|X1) ,. . . ,
MN(·|XN−1). M1 is, however, and it can be very easily calculated.

To see that these two extensions M1 and F do not coincide in general, it suffices to
check that what we have done in Example 1 is nothing but calculate the marginal and
the natural extensions of the coherent marginal lower previsions P1 and P2 defined on
respective domains H1 := {λπ1 : λ ∈ R} ⊆L (X1) and H2 := {λπ2 : λ ∈ R} ⊆L (X2)
by P1(λπ1) := λ and P2(λπ2) := λ for any λ ∈ R, under the additional assumption of
epistemic irrelevance.

In the rest of this section, we take a closer look at a number of properties of both the
forward irrelevant product M1 and the forward irrelevant natural extension F . Before doing
this, we need some further preparation. First of all, we derive an explicit expression for the
forward irrelevant natural extension F .

It is clear, recalling the discussion and the notations leading to Theorem 4 in Section 5,
that F is the natural extension of the conditional lower previsions P̂k(·|Bk) defined by

P̂k(g|Bz) := Pk(g(z, ·))
for all z ∈X k−1, on domains H k given by

H k :=
{

g ∈L (X k) : (∀(x1, . . . ,xk−1) ∈X k−1)(g(x1, . . . ,xk−1, ·) ∈Hk)
}

.

Now consider any gamble f on X N . Taking into account that the domains H k are cones
but not linear spaces, F( f ) is equal to (see Section 6 and [9, Definition 6 and Theorem 12])
the supremum value of α for which there are g j

k ∈H k, j = 1, . . . ,ni, i = 1, . . . ,N such that

sup
x∈X N

[
N

∑
k=1

nk

∑
j=1

Ĝ(g j
k|Bk)(x)− [ f (x)−α]

]
< 0.

Now clearly
Ĝ(g j

k|Bk) = ∑
z∈X k−1

IBz [g
j
k−Pk(g

j
k(z, ·))],

so we get

F( f ) = sup
g j

k∈H
k,

j=1,...,nk,nk≥0
k=1,...,N

inf
x∈X N

[
f (x)−

N

∑
k=1

nk

∑
j=1

[g j
k(x1, . . . ,xk)−Pk(g

j
k(x1, . . . ,xk−1, ·))]

]
. (26)

Finally, let Fk denote the forward irrelevant natural extension of the first k marginals P1,
. . . , Pk.

Proposition 3 (External linearity). Let fk be any gamble on Xk for 1≤ k ≤ N. Then

FN

(
N

∑
k=1

fk

)
= MN

(
N

∑
k=1

fk

)
=

N

∑
k=1

Ek( fk).
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Proof. We give a proof by induction on N, where N ≥ 1. It is obvious that the result holds
for N = 1, since M1( f1) = F1( f1) = E1( f1). Assume therefore that the result holds for
N = n−1, then we prove that it also holds for N = n, where n≥ 2. Denote by s` the gamble
∑

`
k=1 fk on X `, then for any (x1, . . . ,xn−1) in X n−1 we have that sn(x1, . . . ,xn−1, ·) =

sn−1(x1, . . . ,xn−1)+ fn, so it follows from the coherence of the lower prevision En−1 that

En(sn(x1, . . . ,xn−1, ·)) = En(sn−1(x1, . . . ,xn−1)+ fn) = sn−1(x1, . . . ,xn−1)+En( fn),

and from Eq. (25) and the coherence of the lower prevision Mn that

Mn(sn) = Mn−1(En(sn)) = Mn−1(sn−1 +En( fn))

= Mn−1(sn−1)+En( fn) =
n−1

∑
k=1

Ek( fk)+En( fn),

where last equality follows from the induction hypothesis. We deduce that Fn(∑n
k=1 fk)≤

Mn(∑n
k=1 fk) = ∑

n
k=1 Ek( fk). Let us prove the converse inequality.

First of all, consider a gamble gk on Hk, for k ∈ {1, . . . ,n}. Then, we deduce from
Eq. (26) that Fn(gk) ≥ Pk(gk): it suffices to take g j

k = gk,n j = 1 and ni = 0 for all i 6= j.
As a consequence, we deduce that Fn(gk) ≥ Ek(gk) for all gambles fk on Xk, and for
all k = 1, . . . ,n: Ek is the smallest coherent extension of Pk to L (Xk), and is therefore
dominated by all coherent lower previsions on L (Xk) that dominate Pk on its domain. The
super-additivity of Fn implies then that Fn(∑n

k=1 fk)≥ ∑
n
k=1 Fn( fk)≥ ∑

n
k=1 Ek( fk). �

We can generalise this result and prove the additivity of MN and FN on sums of gam-
bles that depend on different variables. This means that if we consider two gambles f
and g whose values depend on the outcome of different (disjoint) parts of the sequence
(X1, . . . ,XN), then our supremum betting rate on the gamble f + g should be the sum of
our supremum betting rate on f and our supremum betting rate on g. However, and in con-
tradistinction with the previous result, we shall not have in general the equality between
MN and FN on these sums.

The forward irrelevant natural extension and the forward irrelevant product are indeed
products: FN and MN are extensions of the marginals Pk.

Proposition 4. Let fk be any gamble on Xk. Then FN( fk) = MN( fk) = Ek( fk). If in
particular fk belongs to Hk, then FN( fk) = MN( fk) = Pk( fk), for all 1≤ k ≤ N.

Proof. Immediately from Proposition 3 and the coherence of the marginal lower previsions
Pk, which tells us that Ek( fk) = Pk( fk) for fk in Hk and k = 1, . . . ,N. �

The forward irrelevant natural extension and product also satisfy a (restricted) product
rule.

Proposition 5 (Product Rule). Let fk be a non-negative gamble on Xk for 1≤ k≤N. Then

FN( f1 . . . fN) = MN( f1 . . . fN) = E1( f1) . . .EN( fN)

FN( f1 . . . fN) = MN( f1 . . . fN) = E1( f1) . . .EN( fN).

In particular, let Ak be any subset of Xk for 1≤ k ≤ N. Then

FN(A1×·· ·×AN) = MN(A1×·· ·×AN) = E1(A1) . . .EN(AN)

FN(A1×·· ·×AN) = MN(A1×·· ·×AN) = E1(A1) . . .EN(AN).
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Proof. We shall prove the result for the lower previsions. The proof for the conjugate upper
previsions is similar. We first prove the equality for the forward irrelevant product and then
for the forward irrelevant natural extension. We apply induction on N. It is obvious that the
result holds for N = 1. Assume therefore that the result holds for N = `−1 (where `≥ 2),
then we prove that the result holds for N = ` as well. Let fk be a non-negative gamble on
Xk for 1≤ k ≤ `. Then for any (x1, . . . ,x`−1) ∈X `−1,

E`( f1 . . . f`)(x1, . . . ,x`−1) = E`( f1(x1) . . . f`−1(x`−1) f`)

= f1(x1) . . . f`−1(x`−1)E`( f`),

since all gambles fk are non-negative, and E` is a coherent lower prevision. Then, using
Eq. (25),

M`( f1 . . . f`) = M`−1(E`( f1 . . . f`))

= M`−1( f1 . . . f`−1E`( f`))

= M`−1( f1 . . . f`−1)E`( f`)

= E1( f1) . . .E`−1( f`−1)E`( f`),

taking into account the coherence of the lower prevision M`−1 and the fact that the coher-
ence of the lower prevision E` implies that E`( f`) ≥ inf f` ≥ 0. The last equality follows
from the induction hypothesis. Since we already know that F`( f1 . . . f`)≤M`( f1 . . . f`) =
E1( f1) . . .E`( f`), we now set out to prove the converse inequality. If E`( f`) = 0, the co-
herence of the lower prevision F` implies that

F`( f1 . . . f`)≥ 0 = E1( f1) . . .E`( f`) = M`( f1 . . . f`).

Assume therefore that E`( f`) > 0, and consider 0 < ε < E`( f`). Then it follows from
the definition of the (unconditional) natural extension E` [see Eq. (6) and use the fact that
the domains Hk are assumed to be cones] that there are n` ≥ 0 and gambles g j

` in H` for
j = 1, . . . ,n` such that

inf
x`∈X`

[
f`(x`)−

n`

∑
j=1

[
g j

`(x`)−P`(g
j
`)
]]
≥ E`( f`)− ε. (27)

Define the gambles h j
` on X ` by h j

` := f1 . . . f`−1g j
` . All these gambles33 belong to H `.

Now, using Eq. (26) for N = ` and f = f1 . . . f`, we get that F`( f1 . . . f`) is greater than or
equal to

sup
g j

i ∈H
i, j=1,...,ni,

i=1,...,n−1

inf
x∈X `

[
f1(x1) . . . f`(x`)−

`−1

∑
i=1

ni

∑
j=1

Ĝ(g j
i |Bi)

−
n`

∑
j=1

[
h j

`(x1, . . . ,x`)−P`(h
j
`(x1, . . . ,x`−1, ·))

]]
,

33This holds because we assumed that the domains Hk of the marginal lower previsions Pk are cones. See
footnote 17.
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and after some manipulations, using the coherence of P` and the fact that all the fk are
non-negative, this can be rewritten as

sup
g j

i ∈H
i, j=1,...,ni,

i=1,...,n−1

inf
x∈X `−1

[
−

`−1

∑
i=1

ni

∑
j=1

Ĝ(g j
i |Bi)

+ f1(x1) . . . f`−1(x`−1) inf
x`∈X`

[
f`(x`)−

n`

∑
j=1

[
g j

`(x`)−P`(g
j
`)
]]]

.

Now if we use the inequality (27), we see that this is greater than or equal to

sup
g j

i ∈H
i, j=1,...,ni,

i=1,...,n−1

inf
x∈X `−1

[
−

`−1

∑
i=1

ni

∑
j=1

Ĝ(g j
i |Bi)+ f1(x1) . . . f`−1(x`−1)[E`( f`)− ε]

]
,

Summing all this up, and using Eq. (26) for N = `−1 and f = f1 . . . f`−1[E`( f`)− ε], we
get that

F`( f1 . . . f`)≥ F`−1( f1 . . . f`−1[E`( f`)− ε])

= [E`( f`)− ε]F`−1( f1 . . . f`−1)

= [E`( f`)− ε]E1( f1) . . .E`−1( f`−1),

where the first equality follows from the coherence of the lower prevision F`−1 and the
fact that E`( f`)− ε > 0, and the second equality from the induction hypothesis. Since this
happens for ε arbitrarily close to 0, we deduce that indeed

F`( f1 . . . f`)≥ E1( f1) . . .E`( f`).

The second part of the proposition follows immediately from the first. �

These and other properties of the forward irrelevant product allows us to establish laws
of large numbers for coherent lower previsions, see [2] for more information.

8. CONCLUSIONS

The problem of coherently extending a number of assessments is one of the most im-
portant in the theory of subjective probability. When these assessments are represented
by means of an unconditional lower prevision, the way to do so is by means of Walley’s
notion of natural extension. This extension has a clear behavioural interpretation and can
also be given a Bayesian sensitivity one, as a lower envelope of linear extensions.

The task becomes more involved when the assessments are of a more complicated na-
ture, and are represented by means of conditional lower previsions. In that case, Walley’s
notion of natural extension does not generally yield the smallest coherent extensions, but
only a lower bound for them. This can’t be helped in some cases, because there may not
be any coherent extensions at all; but in other cases there are coherent extensions, but the
procedure of natural extension may fail to produce any of them. This leads us to search for
the smallest coherent extensions, which will reflect the minimal behavioural consequences
of the given assessments.

Walley has proved that when we have an unconditional and a conditional lower previ-
sion with some properties, the smallest coherent extensions are obtained through the pro-
cedure of marginal extension. In this paper, we have extended his result to the case where
we have a finite number of lower previsions conditional on increasingly finer partitions.
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The marginal extensions then provide the smallest coherent extensions, and moreover have
a sensitivity analysis representation as lower envelopes of linear previsions. As such, they
prove to be superior of the ones obtained through natural extension.

In essence, what our results tell us is that if we have hierarchical assessments (which is
the idea behind the increasingly finer partitions, and more clearly behind the representation
for variables), the way to extend these assessments to all gambles is to use unconditional
natural extension at each hierarchical level, and then use concatenation. Moreover, this
concatenation is equivalent to Bayes’s rule in the case of linear conditional and uncondi-
tional prevision.

As topics for further research, we suggest the study of the smallest coherent extensions
under other conditions, and the investigation of the equality between natural and marginal
extensions. We’d also like to mention our suspicion that it may be possible to find a simpler,
or perhaps more directly intuitive, proof for our Marginal Extension Theorem.
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