
Ionic Kratzer bond theory and vibrational levels for achiral covalent bond H2 
G. Van Hooydonk, Ghent University, Faculty of Sciences, Krijgslaan 281, B-9000 Belgium 

 

Abstract. A 2-term dihydrogen Hamiltonian leads analytically to a quadratic Sommerfeld-Kratzer-potential and 
field quantization. Parameters ω e, ke and re for calculating H2 vibrational levels derive solely from hydrogen mass 
mH. Kratzer’s ionic oscillator leads directly to the covalent H2 bond energy and gives errors of 0,02 % for all H2 
levels, 30 times better than Dunham’s oscillator, which gives 0,54 %. H2 is prototypical for molecular spectroscopy, 
just like H is for atomic spectroscopy.  

 
 
I. Introduction 
Physicists focused on the simple line spectrum of atom H (with fine and hyperfine structure), less on 

the complex band spectrum of molecule H2 [1]. Since Bohr’s fairly accurate simple theory made atom 

H prototypical for atomic spectroscopy, one could expect that an equally simple theory would 

make bond H2 prototypical for molecular spectroscopy [2]. Yet, only complex QM theory can 

account accurately for H2-quanta, its vibrational levels and potential energy curve (PEC) [3,4]. 

This theory is not simple: it needs many parameters and 278 terms for the wave function of H2 

[3], which explains why simpler Bohr-type bond theories are still of interest [5].  

QM cannot give a simple PEC-generating function or a low parameter universal function (UF), needed 

to unify observed shape-invariant, asymmetric PECs [2]. This failure justifies many attempts to 

find a UF, going on for decades [2,6]. The UF is probed with the smooth G(F)-plot of Varshni’s 

F (for rotational constant αe) and G (for vibrational constant ωexe) [6,7] in Dunham theory [8]. 

Since F and G quantify deviations from a harmonic oscillator (HO), the smooth G(F)-plot suggests 

that a UF, the Holy Grail of Molecular Spectroscopy [9], may exist [2,6]. Since a universal bond must be 

prototypical for molecular spectroscopy, the H2 spectrum may lead to universal behavior, if any, 

provided its vibrational levels can be understood with a simple potential like Kratzer’s [2,6].  

II. 

Ev+½,0, if the zero point energy 

Since anharmonicity and asymmetry in observed PECs flaw the HO, so important for modern 

physics [10], we discuss and review the HO respectively in Sections II and III. Section IV gives 

the ionic Kratzer bond theory for H2, whereby all parameters needed (r0, ωe and ke) derive solely 

from mass mH. Section V compares quantized Dunham and Kratzer oscillators as to precision 

for H2 levels and covalent bond energy De. Discussion and conclusion are in Sections VI and 

V

 

II. Quantum HO and anharmonicity in bond H2  
H2 rotator-vibrator levels Ev,J depend on vibrational and rotational quantum numbers v and J. 

Since Ev,0 form the backbone of the H2 PEC, we focus on Ev,0 (or 

is used). For a quantum HO [11], equally spaced vibrational levels 

 Ev+½ = ωe(v+½) cm-1       (1a) 
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with fundamental vibrational frequency ωe, disagree with observed anharmonicity for H2 (see 

 

e

 

ive errors of respectively 1839,93; 111,841; 7,15 and 0,24 cm-1, even 6th order does not give 

 the simplest, stable oscillator in 

   (2a) 

15]: it is 

infinity 

transfo 2 

(2c) 

ms [7]. 

Variabl

l 

 

dy in 1916 [16]. His 

pupil Kratzer used it for a general bond theory [17]; his colleague Kossel [18] for an ionic bond theory. 

th fit 
see Fig. 1 and further below). 

Section I). A series expansion in half integer v 

Ev+½ = ωe(v+½) - ωexe(v+½)2+ ωeye(v+½)3 - …cm-1   (1b) 

gives agreement with observation but this is equivalent with an expansion in integer v 

Ev = A+Bv+Cv2+Dv3 - … cm-1     (1c) 

Coefficients A, B, C… derive from those in (1b), e.g. A=½ωe(1-x +ye-…) cm-1…. Fig. 1 gives 

the Ev(v) plot for all 14 observed H2-levels in Table 1 [12]. Since 1st, 2nd, 4th and 6th order fits in v

g

spectroscopic accuracy. With errors of 1840 cm-1, HO (1a) fails for

nature, H2.  

 

III. Revisiting the HO: Dunham and Kratzer potentials 
Differential equation with sinusoidal solutions derive from Hooke force F=-ker, confronted with 

Newton’s 2nd law F=ma [11]. With V(r)=½ker2, the Hooke-Dunham-type HO potential  

 VHO=½ke(r-r0)2=½ker0
2(r/r0-1)2=a0dD

2  

is so firmly entrenched that alternatives are rarely employed, even when it is known to be wrong [2, 

only accurate for r close to r0, it is symmetric instead of asymmetric and it can never converge: it gives an 

when r → ∞. Its dimensionless Hooke-Dunham variable 

 dD = (r/r0-1)        (2b) 

rms (2a) in VHO=a0dD
2, where V(r0)=a0=½ker0

2. Reduced V’HO=VHO/a0=dD
2 has 

solutions ±dD for the r-dependence in non-convergent, symmetric PECs. Although it adds 

flexibility to (2a) [7], even Dunham’s series expansion in dD with coefficients an [8] 

VHO=a0dD
2(1+a1dD+a2dD

2+…)      

identical with V(r)=c1(r-r0)+c2(r-r0)2+c3(r-r0)3+c4(r-r0)4+…, still faces convergence proble

Despite this, (2c) is used in most studies to classify observed molecular constants Yv,J with an. 

e (2b) calls for alternative dimensionless Sommerfeld-Kratzer variable [2] 

 dSK =(1-r0/r)=(1-1/dD)       (2d) 

which secures asymmetry as well as convergence without expansions [2,15]. Its oscillator potentia

VSK=½ker0
2(1-r0/r)2=a0(1-r0/r)2      (2e) 

in reduced form VSK/a0 gives 2 solutions for asymmetric, convergent PECs, i.e. ±dSK. For H

lines and their fine structure, Sommerfeld introduced oscillator (2e) alrea

Fues [19] solved the wave equation for (2e) [2,20] (the 4 were colleagues at Munich at the time). 
---------- 
1 Morse-type 2nd order Ev=-161,113+4397,264v-128,187v2 cm-1 [13] gives large errors of 112 cm-1 (see [14]). A 4
E =-8,076 +4309,427v-135,295vv 2+3,624v3 -0,202v4 still gives errors of 7 cm-1 (
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The dif

hich has mathematical and physical percussions for oscillator theory (see below). 

e ionic Kratzer bond theory 

arge-

conjuga

(see 

c 

 

r 

QM, these 

dic 

motion ity 

where r

 atom H. A 

]. 

(i) The 

0=-A/(2r0) are the same formal 

ual to 

 

(3f) 

2To not distract from H2, difference dD±1/dD between (2b) and (2d), referring to chaos, is discussed elsewhere [21]. 
Despite the indeterminacy for their ratio at r0, VHO and VSK are anti-symmetric in their variables. This indeterminacy 
cannot be used to veto a potential, as its basis is mathematical, not physical [21]. 

ference2 between VHO and VSK shows with numerical variable x  

x = r/r0= 1+dD= 1/(1-dSK)      (2f) 

w

 

IV. First principles Bohr-typ
IV.1 Hamiltonian for dihydrogen 

The standard 10 term Hamiltonian H for 4-particle system H2 in QM (with pairs of ch

ted leptons a,b and nucleons A,B) has 4 kinetic3 and 6 potential energy terms 

H=½mav2+½mbv2+½mAv2+½mBv2–e2/raA -e2/rbB –e2/rbA -e2/raB +e2/rab +e2/rAB (3a) 

Yet, it cannot give simple analytical solutions for PECs and certainly not for the UF [22,23] 

Section I). The simplest Hamiltonian H possible for diatomic H2 is, by definition, diatomi

 H=+½mHv2+½mHv2–A/r =+mHv2 –A/r    (3b) 

It has only 2 terms: diatomic kinetic energy +mHv2 and potential energy –A/r, with distance r between

2 atoms, and constant A to be identified. Two-particle Hamiltonian for 2 neutral atoms (3b) is simila

to Bohr’s two-particle Hamiltonian for 2 charged particles. Field –A/r seems suspicious for 2 neutral 

atoms but only at long range r>>r0. At close range, Coulomb interactions show but, in 

lead to the so-called Coulomb problem +e2/rab, the electron-interaction term in (3a) [24]. 

An analytical solution for (3b) requires r- and ω-dependences. Atomic kinetic energy for perio

 (vibrations on field axis r) relies on frequency ω and separation r to give radial veloc

v=ωr         (3c) 

 is a difference between two points on the field axis. Using (3c) in (3b) leads to 

H=+mHω2r2 –A/r       (3d) 

which allows a classical analytical analysis, formally similar to that of Bohr for

secondary axial axis, perpendicular to field axis r, is discussed elsewhere [21

1st derivative d/dr of (3d) gives forces 2mHω2r  and A/r2, securing 

2mHω2r3=2mHv2r=A and v2=A/(2mHr)    (3e) 

At r0, ω=ωe, 2mHωe
2r0

3=2mHv2r0=A and H0=-mHωe
2r0

2=-½A/r

classical virial results of Bohr for a rotating electron in atom H.  

(ii) The 1st derivative d/dω gives radial momentum 2mHωr2=2mHvr. Following Bohr, this is eq

an equi-dimensional constant of action like Planck’s h (radial) or ħ (angular), say fh, giving

 2mHωr2=2mHvr=fh and v=fh/(2mHr)     

with field scale factor f. Dividing (3e) by (3f) returns a velocity, equal to 
---------- 

3 Conventional v is used here to denote velocity, not to be confused with vibrational quantum v (see context). 
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 v=A/(fh)        (3g) 

similar to but numerically different from that in Bohr theory. Further similar results are 

 r=½f2h2/(mHA) and hω=A/(fr)     (3h) 
2/nħ=αc/n, where c is the velocity of light and α, 

the Som

 

ed [22]. Its repulsive term in 

ly 

possibl

s 

a first p

 (3m) 

 for 

ke H2].  

nd (2e) 

2 [2,23]. 

H2 [12,25], as shown recently [23]. While these 

ly 

---------- 
4 For rotations, angular momentum is readily quantized using Bohr’s recipe but, since vibrations are the backbone of 

For the rotating electron in Bohr H theory, v=e

merfeld fine structure constant, equal to 1/137,035999 [16]. 

Constant B=¼f2ħ2/mH transforms (3d) in   

H=–A/r+(¼ f2ħ2/mH)/r2 = -A/r +B/r2     (3i) 

With constant radial momentum, its 1st derivative gives B=+½Ar0 and H=-A/r +½Ar0/r2 or 

ΔH=H-H0=+(½A/r0)(1-r0/r)2=VSK     (3j) 

i.e. the Sommerfeld-Kratzer potential (2d). Hence, VSK stands for dihydrogen Hamiltonian H
(3b): no other terms are required and a wave equation is not yet need

+(r0/r)2 corresponds with kinetic energy in (3b). However, a classical solution for (3j) is on

e, if both A and r0 were available classically too4 (see below). 

(iii) The 2nd derivative d2/dr2 of (3d) for force constant equations 2mHωe
2 and 2A/r0

3 give

ωe
2=A/(mHr0

3)        (3k) 

This implies that force constant ke for vibrations in dihydrogen bond H2 must be equal to 

 ke=A/r0
3        (3l) 

rinciples and analytical result, impossible with Hooke-Dunham oscillator theory.  

[Although solutions above all have first principle’s status, including (3k), reduced mass  

μ= mHmH/(mH+mH)=mH/(1+mH/mH)=½mH   

should be used indeed of mass mH. However, this is equivalent with using scale factor s=½

dimer H2=HAHB. More generally, dimensionless recoil correction 

 s=1/(1+mA/mB)       (3n) 

for a diatomic with atoms (A, B) and masses (mA, mB) gives s=½ for dimers li

For simple H (3b) to comply with HO theory and to identify A, force constant ke in (2a) a

must vary as 1/r3 for a 1/r law. If it were of Coulomb type [23], (3l) becomes 

 ke=A/r0
3=e2/r0

3        (3o) 

suggesting that Coulomb attraction -e2/r0, i.e. ionic bond energy Dion, appears within covalent H

Plugging in observed r0=0,74 Å [25] in (3o) returns ke=5,7.105 dyne/ cm as observed and also 

reproduces observed ωe≈ 4400 cm-1 for 

quantitative results [23] obviously validate (3o) a posteriori, the problem of assessing r0 classical

must still be solved (see Section IV.2).  

H2, e.g. its PEC, rotational states J are not considered here. Conform Bohr, H2 rotational frequency ω varies with 
ħ/μr02. 
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Solution (3o) brings in ionic bonding at r0 for covalent bond H2, since Kratzer’s (3j) transforms in 

 ΔH=H-H0=+(½e2/r0)(1-r0/r)2=VSK     (3p) 

This classical solution is soluble for any r but only provided r0 is known. Analytical results (3j

and (3m) derive from dihydrogen Hamiltonian (3b), similar to Bohr’s. Solution A=e

) 

 

, 

 perfectly symmetrical as 

ell as harmonic in variable 1/x instead of x. This is the first principles classical Bohr-like ionic 

 theory to remain 

d to 

(4a) 

This m using 

 

n?; (b) mass: should total mass 2mH 

s 

s 

r of mass. The 2 sub-centers are positions of 2 nucleons 

---------- 
. 

2 (3o) for

velocity (3g) gives v=(1/f)(e2/h), which is discussed further in Section VI. Since PEC (3p) is 

convergent and asymmetrical, (3b) must be a convenient basis for a simple, classical bond theory, 

although ionic Coulomb potentials refer to old-fashioned 19th century ionic bonding theories [2,18,22,23]. 

Analytically, (3j) proves that, whereas not converging, symmetric Dunham oscillators are typified with 

(2a) and variable x=r/r0 (2f), generic converging asymmetrical Coulomb Kratzer oscillators obey (2d), (3h)

(3p) and use inverse variable 1/x=r0/r. Coulomb oscillators like (3p) are

w

Kratzer bond theory, whereby the field must still be quantized (see below). 

 

IV.2 Vibrational frequency, equilibrium separation of a Coulomb vibrator and quantum hypothesis for H2 

Calculating PEC (3p) is only possible when r0 is known. For a Kratzer bond

classical, r0 must be found classically too, which seems impossible. In any case, r0 is neede

arrive at ωe for H2 from its force constant (3o) and its reduced mass, using 

 ωe=(1/2π)√(ke/μ)= (1/2π)√[e2/(μr0
3)]     

ajor problem with r0 for bond H2 can nevertheless be solved with classical physics 

the standard formula for spherical point-like particles with mass mx, i.e. 

mx=(4π/3)γxrx
3 g       (4b) 

with γx, the density (g/cm3) and 4π/3, the spherical form factor. Macroscopic model (4b) is 

reliable in classical physics but uncertainties emerge for microscopic systems: (a) form factor and

density: is classical spherical model (4b) adequate for dihydroge

or reduced mass ½mH be used?; and (c) size: do results apply for r0 in Coulomb’s equilibrium 

energy -e2/r0 or for 2r0 in the virial’s reduced energy -½e2/r0? 

Electron and proton mass in NIST-tables [26] give mH=1/(5,97538.1023) g. With γH=1, (4b) give

 rH=[(3/4π)(mH/γH)]1/3 cm =7,36516.10-9 cm = 0,736516 Å  (4c) 

as classical radius rH, whereas Bohr theory gives rB=0,529177 Å (without recoil). Since rHH=2rH, 

(4c) gives r0=rHH=1,473032 Å, typical for a virial rather than for a Coulomb energy (see above), 

knowing Huber and Herzberg give r0=rHH=0,740144 Å [25]. Despite appearances, γx=1 is a fair 

approximation for bound dihydrogen5 H2, viewed as a dumb-bell  with 2 spherical H atom

on field axis r at either side of the cente

5 For systems with constant mx/γx, rx are (nearly) equal, as observed for isotopomers H2, D2 and T2 [25, 27]
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at -½r0 and +½r0 from this center, i.e. a perfectly left-right anti-symmetric or achiral dumb-bell

configuration (referred to in the title). 

 

l levels. In fact, 

2 becomes 

    (4d) 

where 4

entary step ωe~4400 

s, say v 

) 

brings i nds in 

2 
23 

6]), r0 for H2 is even assessable from macroscopic experiments. In any case, mH immediately 

nd ke for vibrator H2, an unprecedented result. 

r a rotating 

electron ion 

ving 

   (5b) 

Only, if um, the 

---------- 
 

A first principles ionic Kratzer bond theory is now in reach to assess all H2 vibrationa

proceeding with (4a)-(4c), three important classical results immediately follow: 

(i) with (4a) and (4c), the fundamental vibrational frequency6 for H

 ωe=4410,1722 cm-1   

402,93 cm-1 [12] or 4401,213 cm-1 [25] are observed; 

(ii) with (4c), the virial energy for H2 is 

-V0=e2/(2rH)=a0=78844,9125 cm-1      (4e) 

(observed a0=½ker0
2≈79000 cm-1 [28]). By virtue of (4d)-(4e), an unexpected 3d result is that 

(iii) a natural quantum hypothesis for bond H2 emerges. The small ratio of elem

cm-1 (4d) and total gap a0~79000 cm-1(4e) suggests that a number of successive integer step

as in (1c), is needed to cover this gap. The numerical ratio of step and gap 

 q=ωe/a0= 4410,1722/78844,9125=0,05593477   (4f

n quantization following steps δv, function of integer v, used to numerate the H2 ba

the order they are observed [12]. The resulting field quantum hypothesis for bonds is 

r/r0-1=Δ/r0 =dHO=δv=qv      (4g) 

Dimensionless (4g) must be plugged into variables dHO and dSK for potentials VHO and VSK. 

It is evident from (4f) and (4g) that product a0δv returns a0qv=v.4410,1722 cm-1, conform (1a).  

With this ionic Kratzer bond theory, the only input needed to solve the complete Hamiltonian for covalent bond H

and its oscillator (3p) is absolute mass of hydrogen atom mH. Since mH≈1/N g (Avogadro N=6,023.10

[2

provides with 3 fundamental quantities ωe, r0 a

 

IV.3 Quantum hypothesis for vibrations in bond H2 

To apply (4g), field quantization is required. In Bohr theory, angular velocity ve fo

 with me (neglecting recoil) is obtained from a ratio of (i) radial equilibrium condit

meve
2/r=e2/r2 and (ii) quantum hypothesis for angular momentum mver=nħ, gi

ve= meve
2r/mever=e2/(nħ)= αc/n     (5a) 

similar to (3e)-(3h) above. With Bohr radius rB, quantized H-size r becomes 

  r=e2/meve
2=n2ħ2/(mee2)=n2rB   

 Bohr had quantized the field (or the product of charges) as -e2/n instead of angular moment

same energies En=-RH/n2 would have resulted, since 

6 The same formula for an electron (me=mH/1837,15267 and radius rB) gives ωe=219474,65=2*109737,31 cm-1, or
twice the Rydberg e2/rB [26]. This shows how the internal mechanics of H and H2 are intimately connected. 
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ve= meve
2r/mever=(e2/n)/ħ       

is identical with (5a). There is one important difference with Bohr H theory: quantum rule  

wherein zation 

is  

e it in the context of a Hooke-Dunham r/r0 theory. Since this differs from (1a) as well as from 

pectrum.  

etric linear and inverse field shifts in an achiral model 
ve, with 

inverse

d 

 

 the asymptote, 

giving 1 rgy).  

center 

rms of symmetries, relation (6b) typifies achiral, i.e. too symmetrical, bond theories (see title). 

 (6a). 

7 Difference Δ=r-r0 brings in repetitions like r=r0+Δ=r0+(r-r0)=r0+(r0+Δ)-r0= r0+r0+(r-r0)-r0= r0+r0+(r0+Δ)-r0-

e2/n          (5c) 

brings in a linear n-dependence for H-size 

 r=ħ/(meve)=nħ2/(mee2)=nrB        (5d) 

instead of quadratic n2 in (5b). Quantum rule (5c) therefore leads to a difference 

 r-rB=(n-1)rB=ℓrB       (5e) 

 Sommerfeld’s secondary quantum number ℓ=n-1 appears. Following (5e), quanti

for H2 proceeds according to a quantized difference7 Δ between 2 separations on the field ax

Δr=r-r0=(n-1)r0        (5f) 

linear, instead of quadratic, in an integer quantum number. Its reduced dimensionless equivalent 

Δr/r0=r/r0-1=(n-1)= ℓ       (5g) 

provides with a Bohr-like validation of the above field quantum hypothesis for vibrations in bonds (4g), 

b

Kratzer’s oscillator in r0/r, validating (5g) depends on its implications for the H2 band s

 

V. Quantization of symm
Multiplicative field scaling r0/r or r/r0 for Kratzer or Dunham models becomes additi

 and linear relations 

 VSK(r)/VSK(r0)=r0/r=r0/(r0±Δ)=1/(1±Δ/r0)=1/(1±δr)    

VHO(r0)/VHO(r)=r/r0=(r0±Δ)/r0=(1±Δ/r0)=(1±δr)   (6a) 

where δr or δv is the numerical equivalent of a step, quantized by (4g)-(5g). If Dunham’s reduce

field in (6a) were squared to give numerical parabola (1±δr)2, first order effects would –unjustly-

be doubled. Just like for its accompanying Hooke law, this entails factor ½ for

 for the linear Hooke term (force) but ½ for the second order quadratic term (ene

Rewriting total difference Δ between positions of 2 atoms on the field axis as 

r-r0=+Δ=+½Δ-(-½Δ) cm      (6b) 

shows that this difference is distributed in an anti-symmetric way, i.e. left and right to the 

of mass, placed at the origin, but equal in absolute magnitude and based on the arithmetic average. In 

te

However, (6b) in Dunham’s model gives different results than Kratzer’s, as expected from

 

---------- 

r0…, which are avoided with (5f). For N repetitions r/r0=1+Δ+N(+1-1), N virtual pairs (+1,–1) are created for a HO 
[29]. 
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V.1 The v-dependence in achiral models: analytical form of quantized Dunham and Kratzer oscillators 

(i) Symmetric distribution (6b), applied to Dunham’s scaling procedure for r=r0±Δ, gives 

     (6c) 

rence is avoided by virtue of 

H

t 

’s similar 

or 

left-right symmetric distribution (6b). Inverse r0/r =r0/(1±Δ) by virtue of (6a) and (6c) does not 

ution 

8 

 

Using b e (6f) is 

(6g) 

---------- 

 

 
 

μ 
 

ρ 

b 

r/r0=1±Δ/r0=(1±δr)=(1±δv)  

on the basis of (5g). In this achiral case, the effect of a left-right diffe

(6b). Symmetric Hooke-Dunham potential (2a) away from r0 becomes 

½ker0
2(r/r0)2 =a0(r/r0)2=a0(1±δr)2  

With quantization rule (5g), reduced Dunham potential differences are 

 V’ O –V’0=ΔV’HO=-½(1-qv)2+½=+qv-½q2v2    (6d) 

Using a0 (4e) and q (4f), the numerical result of achiral Dunham H2 theory in cm-1 is 

 ΔVHO= ΔEv = 4410,17v-123,34v2 cm-1     (6e) 

close to 2nd order fit1 in Section II but with relatively large errors of 100 cm-1. The improvemen

over quantum HO (1a) is considerable but spectroscopic accuracy is far away. Morse

quadratic in (v+½) is only moderately successful [7,14]. A parameter for qv cannot improve the 

goodness of this 2nd order fit. Apart from being more accurate than (1a), the advantage of (6e) 

over (1a) is still its simple first principles basis, where only mH is used as input. 

(ii) To apply field quantization for a Kratzer potential, there is a problem8 with anti-symmetric 

account for the positions of 2 atoms HA and HB with respect to the center, i.e. achiral distrib

±½Δ. Field quantization with Kratzer’s r0/r uses refined radial variables, given respectively by 

rA=r0-½Δ and rA=r0+½Δ 

due to positional symmetry (achiral system). The Kratzer-Coulomb variable now becomes

  r0(1/rA-1/rB)=r0(rB-rA)/rArB=1/(1-½δr)-1/(1+½δr)=δr/(1-¼δr
2)  (6f)

ond quantum hypothesis (5g), the quantized v-dependence for Kratzer variabl

 1/(1-½qv)-1/(1+½qv)= qv/(1-¼q2v2)     

8 Despite appearances, an additional classical constraint for differences between 2 so-called equal bonding partners 
Ha and Hb in dihydrogen HaHb is available, if they are distinguished formally by mass ma and mb as well as by their
positions on the field axis ra and rb. As in a balance, reduced mass is based on classical  
 mara=mbrb(=C)
whereby C is a field dependent constant. Dimensionless numerical equivalent relation ma/mb=rb/ra suffices for
recoil corrections. The underlying classical universal relations between mx and rx are 
 mx=C/rx or rx/C=1/mx. 
If separation rHH required addition, reduced mass μ appears naturally, since 
  rHH=(ra+rb)=C(1/ma+1/mb)=C(ma+mb)/(mamb)=C/
Similarly, if total mass mHH required addition, reduced separation ρ=rarb/(ra+rb) appears naturally too, since
 mHH=ma+mb=C(1/ra+1/rb)=C(ra+rb)/(rarb)=C/
This explains the difficulties above with (4c), the classical result for rHH, since ρ=½rHH for H2.  
If the sum-based reduced separation is ρ+, a difference-based reduced separation ρ- obeys  
 1/ρ-= 1/ra-1/rb = (rb-ra)/rar
which appears in (6f). 
Field dependent C obeys classically Cf=e2/v2=(e2/c2)/αn, with unit charge e, velocity of light c and fine structure 
constant α. Values n=0, 1 and 2 typify different interactions: n=0 for strong (e2/r0), n=1 for weaker electromagnetic, 
Compton-de Broglie (αe2/r0) and n=2 for even weaker Coulomb interactions (α2e2/r0) in atom H 
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instead of linear qv in Dunham’s (6d). The reduced Kratzer oscillator difference is now 

ΔV’SK=-½[1-qv/(1-¼q2v2)]2+½=+qv/(1-¼q2v2)-½q2v2/(1-¼q2v2)2 (6h) 

to be compared with Dunham’s (6d). In cm-1, the numerical Kratzer result is 

 ΔVSK=(+4410,17v-123,34v2-3,49v3)/(1-0,00078v2)2 cm-1  (6i) 

as it entails naturally and from first principles only, higher order terms in v as suggested by (1b)-

c). Analytical Kratzer result (6i) is a further improvement for (1a). Unlike (6c), a parameter for 

s for (6e), also (6i) is an analytical first 

 

 

uency ωe, bond 

 

ameters 

 p ation is 

 factors: 1 for Dunham’s but 1/(1-¼p2q2v2) for 

er’ variable (7b) is maximum for p=pi=0,83795. 

3795  Fig. 2 are 

---------- 

(1

qv in (6g) can affect the goodness of fits (see below). A

principles formula of closed form, based solely on mH as input for the complete H2 spectrum.

 
V.2 Results with achiral Dunham and Kratzer bond theories  

Since optimization is also used in QM, using a parameter for qv is allowed. Multiplicative9 or 

external parameters pe cannot improve the goodness of a fit, since size does not affect classical 

Euclidean symmetries (ratio’s, proportions). However, internal parameters pi affect (dynamic) 

symmetries. In parameterized HO [pe(x1-pix2)]2, the position of the extreme is not affected by pe

but it is by pi. Whereas external pe cannot affect the goodness of a fit for a vibrator, internal pi 

can. Typical external scaling parameters for bonds are Dunham’s a0, fundamental freq

energy De, all in cm-1, if energy E(r) is in cm-1. Non-dimensionalization with external multiplicative

scaling parameters only gives variables, commensurate with scaling parameters. Internal par

can determine the goodness of a fit as they refer to internal or dynamical symmetries. 

To normalize results, we compare variable qv or Dunham’s δHO (for which arameteriz

ineffective), with parameterized Kratzer’s δSK/p (p being an internal parameter pi) using 

(i) δHO=qv         (7a) 

(ii) δSK/p=(1/p)[1/(1-½pqv)-1/(1+½pqv)]= qv/(1-¼p2q2v2)  (7b) 

This secures leading term qv is identical for all 14 vibrational levels v in either method. The main 

difference between the 2 resides in normalizing

Kratzer’s potential, although critical points can emerge because of 1/(1-½pqv). Normalizing 

Kratzer’s potential as in (7b) brings in harmonic mean [(1-½pqv)(1+½pqv)]=(1-¼p2q2v2), a more 

natural feature to discuss a harmonic oscillator. 

The accuracy of the 2nd order fit with Kratz s 

The 2nd order fits for plots of levels versus δHO (7a) and δSK/0,8 (7b) in

respectively   

 Eδ(HO)=-40971,3574δHO
2+78614,1312δHO-161,1126 cm-1  (7c) 

with a goodness of fit R2=0,9998627 and   

9 QM parameterization is typically multiplicative or external. This was criticized in the EPR-paper [30] on the 
completeness of QM: additive scaling affects the symmetry-effects associated with variables, as shown here. 
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 Eδ(SK)=-40754,1814δSK
2+76766,2419δSK-3,56576 cm-1   (7d)  

with a much better goodness of fit R2=0,9999999. 

Although coefficients in (7c) and (7d) are comparable with values as theoretically expected, their 

 

ble well curve (a quartic) to separate the 

hiral constituents [31,32]. If H2 was chiral or asymmetric or less symmetric instead of achiral as with 

blem, discussed in [21].  

hough Coulomb’s –e2/r vanishes exactly by this complementary 

ariable,  that the system is not of Coulomb-type or not ionic. In fact, this is a trompe-l’oeil 

ed exactly by its absence. 

r the atzer potential (7d) for H2, its first derivative d/dδSK (or d/dδ after 

2, is therefore 

---------- 

difference clearly shows in Fig. 3, where errors of (7c) and (7d) in Table 2 are plotted versus v. 

Errors of 3 cm-1 or 0,021 %10 for (7d) almost vanish when compared with those for (7c), since

they are 30 times smaller than for Dunham’s (7c), which are 111 cm-1 or 0,54 %. They are 530 

times better than HO recipe (1a) with its errors of 1840 cm-1 (see Section II). 

Moreover, Kratzer’s simple 2nd order parabola is even more accurate than a 4th order fit in v for 

(1c), i.e. a Dunham quartic, since this gives errors of 7 cm-1, see Table 2. A 4th order Dunham 

oscillator has the 3 terms in dD
2, dD

3 and dD
4 in (2c), whereby the latter two relate to Varshni’s F 

and G (see Section I). We return to this problem in the Discussion (Section VI). 

A 4th order fit with Kratzer’s variable (7b) is, however, not significantly better (not shown). This 

is surprising, as chiral systems obey a Hund-type dou

c

(6b), left-right asymmetries must be found, a symmetry pro

Here, we discuss a last but very important problem: how to assess analytically the H2 covalent 

bond energy De on the basis of an ionic Kratzer potential. 

 

V.3 Covalent H2 bond energy from an ionic Kratzer potential  

Oscillator D(1-x)  and oscillator difference D(1-(1-x) )=D(2x-x ) in x transform respectively in 

D((1-x’)-1) =Dx’  and D[(1-x’) -2(1-x’)] with complementary  x’=1-x. In the latter case, the plot 

2 2 2

2 2 2 11

versus x’ gives well-depth D as an intercept at x’=0, since, analytically, the linear term has vanished 

using a complementary variable11. Alt

v one cannot conclude

[2]: first order Coulomb term –e2/r, essential to get at a stable Coulomb system, is prob

Fo  better performing Kr

dropping the suffix) gives extreme   

 δmax=0,9418204 

The maximum well depth, i.e. the covalent bond energy De of H

  De= 36146,442 cm-1 

10 Including atom energies (1 Hartree) and covalent De (sum 246500 cm-1), % errors are artificially reduced to 0,0015. 
In practice and for the 14 bands between ~90000 and ~55000 cm-1 [12], errors reduce to only 0,011 % (not shown).  
11 However important, we do not expand on complementarity, where unit +1 consists of 2 complementary parts, e.g. 
+1=+x+(1-x). This equation is absolutely valid in whatever way x is defined. Unfortunately, any value of x will do 
and the equation remains useless, if not trivial, until extra constraints can be imposed, like those used below.  
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Complementary unit +1=+x+1-x is now +δmax=+δ +δmax- δ. Scaling with δmax=0,9418204 gives 

 δ, applicable for H2 

el 

 (8a) 

his simple, straightforward and fairly accurate result is only possible with an ionic Coulomb law 

 quantized Sommerfeld-Kratzer potential (7c). For all 

 

han 

V.4 Fo

 

is equation is formally similar to Bohr’s   

 En=RH(1-1/n2) cm-1       (8e) 

n series), with Rydberg RH, based on quantization in n [34]. 

valent dimers only, Varshni argued that a low parameter 

---------- 

a complementary unit description in Kratzer variable

 +1= peδ +1 -peδ=1,061773521δ +1 -1,061773521δ 

External parameter pe=1/ δmax makes first order Coulomb term vanish exactly. Fig. 4 shows lev

energies plotted versus variables x=peδ and x’=(1-x)=(1-peδ). The 2nd order fits are respectively 

 Ex = -36150,0077x2 + 72300,0154x - 3,5658 cm-1  

wherein 72300,0154≡2.36150,0077 as required and 

 Ex’= -36150,0077x’2 + 0,0000x’ + 36146,4419 cm-1    (8b) 

both giving the same small errors for Kratzer’s parabola as in Table 2. Ionic Kratzer potential (8b) 

returns coefficient 36150,01 cm-1 and intercept De=36146,44 cm-1, within 0,078 % of observed 

H2 bond energy De=36118,3 cm-1 (without zero point energy [28]).  

T

at work in covalent H2 using harmonic and

levels Ev and De, these are the best results possible with a classical ionic Kratzer-Coulomb bond

theory for achiral H2 of the same first principle’s status as Bohr H theory. They are better t

with HO recipe (1a) and than with the first wave mechanical procedure12 [33]. 

 

rmal connection with Bohr H theory 

When compared with (1a), an advantage of (8b) is that average 36148=½(36150+36146) gives

 Ex’≈ 36148(1-x’2)=De(1-x’2) cm-1      (8d) 

as simplified ionic Kratzer band equation, with asymptote covalent De, for a complete molecular band 

spectrum (H2) based on quantization in v. Th

for a complete line spectrum (H Lyma

These equations show why simple ionic Kratzer bond theory can make covalent molecule H2 

prototypical for molecular spectroscopy, just like simple Bohr theory made atom H prototypical 

for atom spectroscopy (see Introduction). 

 

VI. Discussion and prospects 
(i) Kratzer Coulomb energy –e2/r0 is important for universal behavior and the UF [2,23]. Scaling 

by ionic bond energy Dion, rather than covalent De [7,23] unifies the spectroscopic constants of ionic 

and covalent bonds between all monovalent atoms in the Table [2,23,35]. This representative qualifies for 

studying universal behavior [2,23]. For co

12 Heitler and London obtained less accurate r0=0,80 Å, ωe=4800 cm-1 and D=3,14 eV or 25300 cm-1 [33]. 
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UF is unlikely [7]. Comparing [35] with [6,7] shows that probing universal behavior depends on 

the bond set, which must be representative as well as physically meaningful [23]. Difficulties may 

d 

 and to variable r/r0. 

 

served H2 

roved 

am-

, 

 as for H2, since, even in simple 

d 

dependent of mH and r0. 

 

erfeld’s fine structure constant 1/α=137,0359997 

[26] (se se to 

 

---------- 
13 The number of citations to Kratzer’s potential is only a fraction of those to Morse and Dunham potentials. 
14 Applications of Kratzer’s potential to other fields, e.g. nuclear physics, are not discussed here. 

point to defects of Dunham theory, as reflected in the constants scaled without using De [36].  

Given their importance, UF-claims must be analyzed carefully. Self-contradictory claims must be 

falsified, e.g. by reductio ad absurdum [23]. 

(ii) The fact that ionic bond energy Dion can be a better scaling aid [2,23,35] than covalent De has now 

been rationalized with an analytical relation between Dion and De (see Sections V.4-5).  

(iii) Universal behavior is usually connected with the smooth G(F)-plot of functions F for αe an

G for ωexe, whereby F and G relate to Dunham coefficients a1 and a2 in (2c)

With a Kratzer parabola in r0/r, higher order terms are superfluous; higher order terms in v are 

only generated by the connection between v and r0/r as in (6i). With (4d)-(4e), quadratic Kratzer

term ½(e2/r0)(ωe/a0)2= 0,5*4410,172/78844,91=123,34 cm-1 is in agreement with ob

levels. This Kratzer 2nd order term is close to H2 anharmonicity ωexe of 123,07 cm-1 [6,12,25] in 

Dunham theory, where it is related to the 4th order term with coefficient a2. 

(iv) Whereas Morse and Dunham oscillators are used more widely13 than Kratzer’s [2], we p

why the interest in Kratzer’s function [7,8,13,37]14 is justified. Performances of Morse-Dunh

Kratzer and Coulomb oscillators should be compared in more detail than hitherto. 

(v) A recent double photoionization study [38] confirms the importance of non-Heitler-London

e.g. ionic states, for the H2 ground state, which is exactly the result of ionic Kratzer bond theory 

[39]. Results [38] are theoretically modeled according to achiral recipe (6b), also used here.  

(vi) For isotopomers HD, D2… results must be as accurate

approximation mD=2mH, similar r0 values are obtained for D2. This suffices to extend the same 

ionic analysis above to these covalent isotopomers5 [25,27], without having to give details here. 

(vii) For the connection with the fundamental constants, Section IV.1 revealed that, with (3g) an

(3o), radial velocity in H2 is v=(1/f)e2/h cm/s or e2/h cm/s for f=1, in

Scaling by c and taking c, e and h from [26] gives number 

v/c=e2/(hc)=0,00116141=1/861,02258 =α/(2π)   (9a) 

which is exactly 2π times the inverse of Somm

e above) but also the Schwinger term for atom H in the context of QED (itself clo

the anomaly for the electron’s magnetic, not to be discussed here).  

With (3c), the fundamental frequency (inverse time) for periodical radial motion in H2 is

ω=v/r0=αc/(2πr0) s-1       (9b) 

In cm-1, this analytical first principles result is 
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ω'=ω/c=α/(2πr0)= 157689,8 cm-1     (9c) 

but this is exactly the ionic bond energy Dion=e2/r0=157689,8 cm –1 for H2, conform the r0 value,

derived from m

 

s only one 

arameter for optimization, i.e. pi=0,83795 for (7b), whereas [3] needs not less than 5. Kratzer 

able results without a wave equation, whereas [3] needs hundreds of terms in 

in 

ab initio ionic Kratzer bond 

eory, based on Bohr’s old quantum H theory, is validated with fairly accurate vibrational levels 

2, modeled as an achiral system. The theory gives an analytic connection between 

H2 vibrational levels. This unprecedented result justifies a search for a more accurate, 

ss symmetrical or chiral, ionic Kratzer bond theory, which we present in [21]. 

ence.  

ambridge, Harvard University Press, 2003 
 1617 (1998) 

(1995) and references therein 

O. Scully and D.R. Herschbach, PNAS, 102, 11985 (2005); physics/0508161 
355, 373 (2006) 

 (1957) 

rors for H lines 

H (see Section IV.2), and so important for scaling, see points (i)-(iii). 

(viii) Despite the good performances of an ionic Kratzer-Coulomb oscillator for covalent H2, % 

errors of 0,0015 or 0,021 (pending the method11) are not of spectroscopic accuracy15 and less 

precise that those of elaborate QM calculations [3]. However, Kratzer theory need

p

theory gives accept

the wave function of the simplest bond of all, H2. This illustrates some of the many conceptual 

and computational advantages of Kratzer-oscillator bond theory16. In [21], a parameter-free chiral 

Kratzer bond theory is presented, as accurate as [3] and within the errors of [12]. 

 

VII. Conclusion 
Despite the difficulties in the Introduction, a fairly accurate simple bond theory exists, which is 

line with a UF, the Holy Grail of Molecular Spectroscopy [2,9]. This classical 

th

or covalent bond Hf

ionic and covalent bond energies. A main advantage is that only hydrogen mass mH is needed as input 

to assess all 

le
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Table 1. Observed vibrational levels for H2 [12] (in cm-1) 

v quanta levels 

0 4401,21 0,00 

1 4161,14 4161,14 

2 3925,79 8086,93 

3 3695,43 11782,36 

4 3467,95 15250,31 

5 3241,61 18491,92 

6 3013,86 21505,78 

7 2782,13 24287,91 

8 2543,25 26831,16 

9 2292,93 29124,09 

10 2026,38 31150,47 

11 1736,66 32887,13 

12 1415,07 34302,20 

13 1049,16 35351,36 

14 622,02 35973,38 

 
Table 2 Error s (in cm-1) 
 

s for H2 levels with Dunham (2nd and 4th order) and Kratzer (2nd order) function

v levels Dunham Kratzer 

2nd order 4th order 2nd order

0 0,00 161,11 8,08 3,57

1 4161,14 53,18 -8,34 -3,91

2 8086,93 -33,74 -8,43 -3,94

3 11782,36 -94,63 -1,67 -0,77

4 15250,31 -126,64 5,20 2,45

5 18491,92 -128,61 8,56 4,15

6 21505,78 -101,96 7,09 3,59

7 24287,91 -50,66 1,75 1,13

8 26831,16 18,13 -4,81 -2,02

9 29124,09 92,98 -9,39 -4,48

10 31150,47 157,65 -8,71 -4,51

11 32887,13 188,98 -1,59 -1,37

12 34302,20 155,08 9,30 4,04

13 35351,36 11,66 13,69 6,80

14 35973,38 -302,54 -10,72 -4,73

 % error 0,536 0,044 0,021
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Linear fit (full line); 2nd, 4th and 6th order fit  coalesce to a single broad curve (dashes).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Plot of 14 vibrationa levels E(v,0) versus v [12]. l 
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Fig. 3 Errors with 2P

nd
P order fits for Dunham (x) and Kratzer (o) oscillators. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Energy levels with Kratzer parabola (8a) versus x (+, dashes) and  
(8b) versus complementary 1-x (o, full line), giving DReR as intercept (see text) 
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