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1. Overview

This paper is based on the invited talk of the author at the Combinatorics
2010 conference which was held in Verbania (Italy) from June 27th till July
3rd 2010. It discusses hyperplanes and full projective embeddings of dual po-
lar spaces, as well as some of their mutual connections. Many of the discussed
results are very recent.

In Section 2 of this paper, we give the basic notions and properties regarding
(dual) polar spaces which are necessary to understand the actual results
which will be discussed in Sections 3 and 4. In Section 2, we also describe
four classes of polar spaces (symplectic, parabolic, elliptic, Hermitian) whose
corresponding dual polar spaces will play a role in this paper.

In Section 3, we discuss hyperplanes of dual polar spaces. Several classes
of hyperplanes of dual polar spaces have been described in the literature.
After giving a general introduction to the topic of hyperplanes of dual polar
spaces in Section 3.1, we will mainly restrict to one such class of hyperplanes,
namely the class of the so-called SDPS-hyperplanes. This class of hyperplanes
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is interesting in the sense that every thick dual polar space is a priori a
good candidate for admitting such hyperplanes. The other constructions of
hyperplanes of dual polar spaces described in the literature usually only work
for specific classes of dual polar spaces, like the symplectic dual polar spaces
or the Hermitian dual polar spaces.

In Section 4 we discuss full projective embeddings of dual polar spaces and
demonstrate the connection with hyperplanes. Among the various classes of
full projective embeddings of dual polar spaces, there are two interesting ones,
namely the absolutely universal embeddings and the minimal full polarized
embeddings. We mainly discuss these embeddings. For the four classes of
dual polar spaces described in Section 2, we discuss what their absolutely
universal and minimal full polarized embedding is.

2. Basic notions and properties regarding (dual) polar spaces

2.1. Polar spaces

A polar space of rank n ≥ 0 is a pair (P,S) consisting of a set P , whose
elements are called points, together with a collection S of subsets of P , called
singular subspaces, satisfying the following four axioms.

(P1) If L is a singular subspace, then the singular subspaces contained in L
are the subspaces of a projective space ΣL of dimension d ∈ {−1, 0, . . . ,
n− 1}. The number d is called the dimension of L.

(P2) The intersection of any two singular subspaces is again a singular sub-
space.

(P3) If L is an (n− 1)-dimensional singular subspace and if p ∈ P \ L, then
there exists a unique (n−1)-dimensional singular subspaceM containing
p and intersecting L in an (n − 2)-dimensional singular subspace. The
intersection M ∩ L consists of those points of L which are contained in
a one-dimensional singular subspace together with p.

(P4) There exist two disjoint singular subspaces of dimension n− 1.

Singular subspaces of dimension 1, n − 2 and n − 1 are respectively called
lines, next-to-maximal singular subspaces and maximal singular subspaces.
The polar space (P,S) is called thick if every line contains at least three
points and if every next-to-maximal singular subspace is contained in at least
three maximal singular subspaces.

If n = 0, then P = ∅ and S = {∅}. If n = 1, then P is a set of size at least two
and S = {∅}∪

⋃
p∈P {{p}}. If (P,S) is a polar space of rank 2, then the partial

linear space (P,L, I), where L is the set of all lines of (P,S) and I ⊆ P × L
is the incidence relation defined by inclusion, is a generalized quadrangle. A
generalized quadrangle a partial linear space which satisfies the following two
properties:
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(1) There exist two disjoint lines.
(2) For every line L and every point p not incident with L, there exists a

unique point q on L collinear with p.

The definition of polar space as given above is due to Jacques Tits [37, Chap-
ter 7]. A classification of polar spaces of rank at least three can also be found
in Tits [37]. In the remainder of this subsection, we give a description of those
polar spaces which will play a role in the present paper.

Let V be a vector space of dimension 2n ≥ 4 over a field F which is equipped
with a nondegenerate alternating bilinear form f . Let ζ denote the symplectic
polarity of the projective space PG(V ) associated with f , let P denote the
point-set of PG(V ) and let S be the set of all subspaces π of PG(V ) for which
π ⊆ πζ . Then (P,S) is a polar space of rank n. It is called a symplectic polar
space and is denoted by W (2n− 1,F).

Suppose F is a nonsingular quadric or Hermitian variety of Witt index n ≥ 2
in a projective space Σ over a field F. Then the points and subspaces of Σ
contained in F define a polar space PF of rank n. We describe three classes
of polar spaces which can be obtained in this way.

(1) Suppose F is a nonsingular quadric of Witt index n ≥ 2 in the projective
space PG(2n,F). Then with respect to some reference system of PG(2n,F), F
has equation X2

0 +X1X2 + · · ·+X2n−1X2n = 0. The associated polar space
PF is called a parabolic polar space and is denoted by Q(2n,F). We have
Q(2n,F) ∼= W (2n − 1,F) if and only if F is a perfect field of characteristic
2, see e.g. De Bruyn & Pasini [26, Corollary 1.3] and Van Maldeghem [38,
Proposition 3.4.13].

(2) Suppose F and F′ are two fields such that F′ is a quadratic separable
(and hence also Galois) extension of F. Let F be a nonsingular quadric of
Witt index n of PG(2n+ 1,F) which becomes a nonsingular quadric of Witt
index n + 1 of PG(2n + 1,F′) when its equation is regarded over the field
F′. Then with respect to some reference system of PG(2n + 1,F), F has an
equation of the form X2

0 + X0X1 + δ · X2
1 + X2X3 + · · · + X2nX2n+1 = 0,

where δ ∈ F is such that the two (necessarily distinct) roots of the polynomial
X2 +X + δ ∈ F[X] belong to F′ \ F. The associated polar space PF is called
an elliptic polar space and is denoted by Q−(2n+ 1,F).

(3) Suppose F and F′ are two fields such that F′ is a quadratic separable
(and hence also Galois) extension of F. We denote by θ the unique nontrivial
automorphism of F′ fixing each element of F. Let F be a nonsingular θ-
Hermitian variety of Witt index n in PG(2n − 1,F′). Then with respect to
some reference system of PG(2n−1,F′), F is given by the equation (X0X

θ
1 −

X1X
θ
0 )+ · · ·+(X2n−2X

θ
2n−1−X2n−1X

θ
2n−2) = 0. The associated polar space

PF is called a Hermitian polar space and is denoted by H(2n− 1,F′/F).

In the finite case, we will use slightly different notations for the polar spaces.
We will just replace the field by its order. This is illustrated in the following
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table, where we have used the convention that Fq denotes the finite field with
q elements.

W (2n− 1,Fq) W (2n− 1, q)
Q(2n,Fq) Q(2n, q)

Q−(2n+ 1,Fq) Q−(2n+ 1, q)
H(2n− 1,Fq2/Fq) H(2n− 1, q2)

2.2. Dual polar spaces

Suppose Π is a polar space of rank n ≥ 0. With Π, there is associated a
partial linear space ∆ which is called a dual polar space of rank n.

• The points of ∆ are the maximal singular subspaces of Π.
• The lines of ∆ are the next-to-maximal singular subspaces of Π.
• Incidence is reverse containment.

A dual polar space is called thick if its associated polar space is thick.

A dual polar space of rank 0 is just a point (no lines). The dual polar spaces of
rank 1 are precisely the lines and those of rank 2 are precisely the generalized
quadrangles. The four classes of polar spaces described in Section 2.1 will give
rise to four classes of dual polar spaces. We will denote a dual polar space by
putting a “D” in front of the name of the corresponding polar space. E.g.,
DH(2n − 1,F′/F) denotes the Hermitian dual polar space associated with
the Hermitian polar space H(2n− 1,F′/F).

In the sequel, we always take the convention that distances are measured in
the collinearity graph of the geometry. This is the graph whose vertices are
the points of the geometry, two distinct points being adjacent whenever they
are collinear, i.e. whenever they are incident with the same line. If we adopt
this convention, then the following holds.

Proposition 2.1 (Cameron [5, Theorem 1]). Let ∆ be a dual polar space of
rank n ≥ 2. Then:

(1) The maximal distance between two points of ∆ (= the diameter of ∆)
is equal to n.

(2) For every point x and every line L, there exists a unique point on L
nearest to x.

Property (2) of Proposition 2.1 implies that the partial linear space ∆ be-
longs to the class of the near polygons which were introduced by Shult and
Yanushka in [36].

A convex subspace of a partial linear space S = (P,L, I) is a set X of points
of S satisfying the following two properties:

(a) if a line of S has at least two of its points in X, then all the points of
that line are contained in X;
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(b) every point on a shortest path between two points of X is also contained
in X.

If X is a convex subspace of S, then the elements of X and the lines of S
which have all their points in X define a subgeometry of S which we will
denote by X̃.

Suppose again that Π is a polar space of rank n ≥ 0 and that ∆ is its
associated dual polar space. We denote by d∆(·, ·) the distance function in
∆. Let k ∈ {0, 1, . . . , n}. If α is a singular subspace of dimension n − 1 − k
of Π, then the set of all maximal singular subspaces of Π containing α is a
convex subspace of diameter k of ∆. Conversely, every convex subspace of
diameter k of ∆ is obtained in this way. The convex subspaces of diameter
0 are the singletons and those of diameter 1 are the lines. There is only one
convex subspace of diameter n, namely the whole set of points. A convex
subspace of diameter 2 is called a quad, a convex subspace of diameter 3 is
called a hex and a convex subspace of diameter n− 1 is called a max. Convex
subspaces of dual polar spaces satisfy several nice properties. We collect some
of them in the following proposition.

Proposition 2.2. Let ∆ be a dual polar space of rank n ≥ 0. Then every two
points of ∆ at distance k ∈ {0, 1, . . . , n} from each other are contained in a
unique convex subspace of diameter k. Moreover, the following holds for any
convex subspace F of diameter k.

(1) F̃ is a dual polar space of rank k.
(2) For every point x of ∆, there exists a (necessarily unique) point πF (x) ∈

F such that d∆(x, y) = d∆(x, πF (x)) + d∆(πF (x), y) for every point y
of F .

(3) The maximal distance from a point of ∆ to F is equal to n− k.

The point πF (x) mentioned in Proposition 2.2(2) is called the projection of
x onto F .

Since dual polar spaces of rank 2 are nothing else than generalized quadran-
gles, Proposition 2.2 implies that every dual polar space of rank n ≥ 3 has
many subgeometries which are generalized quadrangles.

3. Hyperplanes of dual polar spaces

3.1. Generalities

A hyperplane of a partial linear space is a set of points, distinct from the
whole point set, which intersects each line in either a singleton or the whole
line.

An ovoid of a partial linear space is a set of points, distinct from the whole
point set, which intersects each line in a singleton. Ovoids are examples of
hyperplanes.
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Suppose ∆ is a dual polar space of rank n ≥ 0. By Proposition 2.1 and
Proposition 2.2(3), the set of points of ∆ at distance at most n − 1 from x
is a hyperplane of ∆. This hyperplane is called the singular hyperplane of ∆
with deepest point x.

There is also a construction which allows to obtain new hyperplanes of dual
polar spaces from other ones.

Theorem 3.1 (De Bruyn and Vandecasteele [27, Proposition 1]). Let ∆ be a
dual polar space of rank n, let F be a convex subspace of diameter k of ∆
and let G be a hyperplane of the dual polar space F̃ . Let H denote the set of
all points at distance at most n− k − 1 from F together with all points x at
distance n− k from F for which πF (x) ∈ G. Then H is a hyperplane of ∆.

The hyperplane of ∆ defined in Theorem 3.1 is called the extension of G. In
the special case that F coincides with the whole point set of ∆ (k = n), we
have H = G and the extension is called trivial. A hyperplane of ∆ which does
not arise as nontrivial extension of another hyperplane is called reduced.

It is possible that a hyperplane of ∆ arises as extension of two distinct hy-
perplanes of distinct convex subspaces of ∆. However, the following certainly
holds.

Theorem 3.2 (De Bruyn [22, Theorem 1.1]). Let ∆ be a dual polar space of
rank n ≥ 0, let H be a hyperplane of ∆, let Fi, i ∈ {1, 2}, be a convex
subspace of ∆ and let Gi, i ∈ {1, 2}, be a reduced hyperplane of F̃i. If H is
the extension of the hyperplane G1 of F̃1 and the extension of the hyperplane
G2 of F̃2, then F1 = F2 and G1 = G2.

3.2. SDPS-hyperplanes

Let ∆ be a thick dual polar space of even rank 2n. A set X of points of ∆ is
called an SDPS-set if it satisfies the following five axioms.

(1) No two points of X are collinear in ∆.
(2) If Q is a quad of ∆ containing at least two points of X, then X ∩Q is

an ovoid of the generalized quadrangle Q̃.
(3) The point-line geometry ∆̃ whose points are the elements of X and

whose lines are the quads of ∆ containing at least two points of X
(natural incidence) is a dual polar space of rank n.

(4) For all x, y ∈ X, we have d∆(x, y) = 2 · d∆̃(x, y).
(5) If L is a line containing a point of X, then L is contained in a (necessarily

unique) quad which contains at least two points of X.

A dual polar space ∆ of rank 0 has a unique SDPS-set, namely the singleton
{x} where x is the unique point of ∆. An SDPS-set of a thick dual polar
space ∆ of rank 2 is just an ovoid of the generalized quadrangle ∆.

The acronym “SDPS” is an abbreviation of Sub-Dual-Polar-Space and refers
to the fact that the partial linear space ∆̃ can be regarded as a sub dual polar
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space of ∆. SDPS-sets were introduced by De Bruyn and Vandecasteele [27]
(see also De Bruyn [12, Section 5.6.7]) because of their connection with val-
uations and hyperplanes of dual polar spaces. They also occur in an implicit
way (and only restricted to dual polar spaces of rank 4) in a paper of Pralle
and Shpectorov [33] where certain nice hyperplanes of dual polar spaces of
rank 4 have been studied.

We will not explain the connection between SDPS-sets and hyperplanes. We
refer the reader to [27] or [12, Section 5.6.7] for that. The connection between
SDPS-sets and hyperplanes of dual polar spaces is explained in the following
theorem.

Theorem 3.3 (De Bruyn and Vandecasteele [27], De Bruyn [12]). Let X be
an SDPS-set of a thick dual polar space ∆ of rank 2n. Then the maximal
distance from a point of ∆ to X is equal to n. Moreover, the set of points at
distance at most n− 1 from X is a hyperplane of ∆.

The following is an immediate corollary of Theorems 3.1 and 3.3.

Corollary 3.4. Let F be a convex subspace of diameter 2k of a thick dual polar
space ∆ of rank n and let X be an SDPS-set of F̃ . Then the set of points of
∆ at distance at most n− k − 1 from X is a hyperplane of ∆.

Any hyperplane of a thick dual polar space which can be obtained as described
in Corollary 3.4 is called an SDPS-hyperplane. SDPS-hyperplanes can be
characterized in the following way.

Theorem 3.5 (De Bruyn [13]). Let ∆ be a thick dual polar space of rank n ≥ 3
and let H be a hyperplane of ∆. Then H is an SDPS-hyperplane if and only
if one of the following three possibilities occurs for each hex F of ∆:

• F ⊆ H;
• F ∩H is a singular hyperplane of F̃ ;
• F ∩H consists of those points of F at distance at most 1 from an ovoid

of a quad Q ⊆ F .

A special case of Theorem 3.5 was also proved in Pralle and Shpectorov [33,
Theorem 1].

We are now going to discuss some nontrivial examples of SDPS-sets and
we are going to restrict to the finite case. Constructions of SDPS-sets of
thick dual polar spaces can be found in De Bruyn [18, 23], De Bruyn &
Vandecasteele [27, Section 4] and Pralle & Shpectorov [33, Section 1.3].

(I) Consider the finite field Fq2 with q2 elements and let Fq denote the subfield
of order q of Fq. Let δ denote an arbitrary element of Fq2 \ Fq. Then Fq2 =
{x1 + x2δ |x1, x2 ∈ Fq}. Define τ : Fq2 → Fq;x1 + x2δ 7→ x1. Consider the
following bijection φ between the vector spaces F4n

q and F2n
q2 :

φ(x1, x2, . . . , x4n) = (x1 + δx2, . . . , x4n−1 + δx4n).
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Let 〈·, ·〉 be a nondegenerate alternating bilinear form of the vector space F2n
q2 .

Then τ(〈φ(·), φ(·)〉) is a nondegenerate alternating bilinear form of F4n
q . Let

DW (4n − 1, q) denote the symplectic dual polar space associated with this
alternating form of F4n

q . If α is a totally isotropic n-dimensional subspace
of F2n

q2 , then φ−1(α) is a 2n-dimensional totally isotropic subspace of F4n
q .

The set of all 2n-dimensional totally isotropic subspaces of F4n
q which can be

obtained in this way is an SDPS-set of DW (4n− 1, q).

(II) Consider the finite field Fq2 with q2 elements and let Fq denote the
subfield of order q of Fq2 . Let δ denote an arbitrary element of Fq2 \ Fq.
Consider the following bijection φ between the vector spaces F4n+2

q and F2n+1
q2 :

φ(x1, x2, . . . , x4n+2) = (x1 + δx2, . . . , x4n+1 + δx4n+2).

Let 〈·, ·〉 be a nondegenerate Hermitian form of the vector space F2n+1
q2 . For

every x̄ ∈ F2n+1
q2 , we define h(x̄) := 〈x̄, x̄〉 and for every x̄ ∈ F4n+2

q , we define
q(x̄) := 〈φ(x̄), φ(x̄)〉. The equation h(x̄) = 0, respectively q(x̄) = 0, defines
a nonsingular Hermitian variety H(2n, q2) in PG(2n, q2), respectively a non-
singular elliptic quadric Q−(4n+ 1, q) in PG(4n+ 1, q). With every maximal
subspace of H(2n, q2), there corresponds (via the map φ−1) a maximal sub-
space of Q−(4n+ 1, q). The set of maximal subspaces of Q−(4n+ 1, q) which
arise in this way is an SDPS-set of DQ−(4n+ 1, q).

The following theorem was proved in De Bruyn [12, Theorem 5.31], but its
proof relies very much on Theorem 2 of Pralle & Shpectorov [33] (whose proof
itself invoked some nontrivial result of Pasini & Shpectorov [32]).

Theorem 3.6 ([12, Theorem 5.31], [33, Theorem 2]). Let ∆ be a finite thick
dual polar space of even rank 2n ≥ 4. If ∆ admits an SDPS-set, then ∆ is
isomorphic to either DW (4n−1, q) or DQ−(4n+1, q) for some prime power
q.

Regarding the uniqueness of the SDPS-sets, the following can be said.

Theorem 3.7 (De Bruyn [16]). The dual polar space DW (4n − 1, q), n ≥ 2,
has, up to isomorphism, a unique SDPS-set.

Notice that the conclusion in Theorem 3.7 is not valid if n = 1. For certain
values of q, the generalized quadrangleDW (3, q) ∼= Q(4, q) has nonisomorphic
ovoids.

We believe that there is also, up to isomorphism, a unique SDPS-set in the
elliptic dual polar space DQ−(4n + 1, q). We already made some progress
toward a uniqueness proof.
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4. Full projective embeddings of dual polar spaces

4.1. Generalities

A full projective embedding of a partial linear space S is an injective mapping
e from the point-set P of S to the point-set of a projective space Σ satisfying
the following two properties:

• the image of e generates Σ;
• e maps every line of S to a full line of Σ.

Two full projective embeddings e1 : S → Σ1 and e2 : S → Σ2 of the same
partial linear space S are called isomorphic (e1

∼= e2) if there exists an iso-
morphism φ between the projective spaces Σ1 and Σ2 such that e2 = φ ◦ e1.

A connection between hyperplanes and full projective embeddings of partial
linear spaces is given in the following theorem whose proof is straightforward.

Theorem 4.1. Let e : S → Σ be a full projective embedding of a partial linear
space S into a projective space Σ. If α is a hyperplane of Σ, then the set of
all points of S which are mapped by e into α is a hyperplane of S.

Any hyperplane which can be obtained in the way as described in Theorem
4.1 is said to arise from (the embedding) e. An important question is the
following.

Suppose H is a hyperplane (belonging to some family of hyper-
planes) of S and suppose S admits at least one full projective em-
bedding. Does H then arise from some full projective embedding
of S?

The above problem has been considered in the literature for several classes of
hyperplanes of partial linear spaces. E.g., Ronan [35, Corollary 2] proved that
if S is fully embeddable and every line of S is incident with precisely three
points, then every hyperplane of S arises from some full projective embedding
of S. The following theorem gives an answer to the above question for a large
class of SDPS-hyperplanes. This theorem is a consequence of Theorem 3.5
of the present paper, Corollary 1.5 of Cardinali, De Bruyn & Pasini [7] and
Theorem 2 of Pralle & Shpectorov [33].

Theorem 4.2. Let ∆ be a finite symplectic or elliptic dual polar space, let F
be a convex subspace of diameter 2k ≥ 4 of ∆ and let X be an SDPS-set
of F̃ . Then the SDPS-hyperplane of ∆ associated with X arises from some
projective embedding of ∆.

The conclusion of Theorem 4.2 is not valid in the case k = 1 and X is a
nonclassical ovoid of the generalized quadrangle F̃ , i.e. an ovoid of F̃ which
does not arise from a full projective embedding of F̃ .
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Let e : S → Σ be a full projective embedding of a partial linear space S and
suppose α is a subspace of Σ satisfying the following two properties.

(Q1) e(p) 6∈ α for every point p of S;
(Q2) < α, e(p1) > 6=< α, e(p2) > for any two distinct points p1 and p2 of S.

We denote by Σ/α the quotient projective space whose points are the sub-
spaces of Σ which have α as a hyperplane. Since α satisfies properties (Q1)
and (Q2), it is easily verified that the map which associates with each point
x of S the point < α, e(x) > of Σ/α defines a full projective embedding of S
into Σ/α. This full projective embedding is called a quotient of α.

If e1 and e2 are two full projective embeddings of the same partial linear
space S, then we say that e1 ≥ e2 if e2 is isomorphic to a quotient of e1.

4.2. The absolutely universal embedding and the minimal full polarized em-
bedding of a fully embeddable thick dual polar space

By combining some results from Kasikova & Shult [28, Section 4.6], Ronan
[35, Proposition 3] and Tits [37, 8.6], we have:

Theorem 4.3 ([28, 35, 37]). Let ∆ be a fully embeddable thick dual polar space
of rank n ≥ 2. Then there exists up to isomorphism a unique full projective
embedding ẽ such that ẽ ≥ e for every full projective embedding e of ∆.

The full projective embedding ẽ alluded to in Theorem 4.3 is called the abso-
lutely universal embedding of ∆. Theorem 4.3 implies that all full projective
embeddings of a fully embeddable thick dual polar space of rank at least 2 are
defined over the same division ring. The following is a corollary of Theorem
4.3.

Corollary 4.4. Let ∆ be a fully embeddable thick dual polar space of rank
n ≥ 2. Then the hyperplanes of ∆ which arise from some full projective
embedding are precisely the hyperplanes of ∆ which arise from the absolutely
universal embedding of ∆.

A full embedding of a thick dual polar space is called polarized if every singular
hyperplane arises from it. Full polarized embeddings do exist. Their existence
is guaranteed by the following result due to Cardinali, De Bruyn and Pasini
[7].

Theorem 4.5 ([7, Corollary 1.8]). Let ∆ be a fully embeddable thick dual po-
lar space of rank n ≥ 2. Then the absolutely universal embedding of ∆ is
polarized.

In another paper, Cardinali, De Bruyn and Pasini [6] proved that among all
full polarized embeddings there also exists a “minimal one”.
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Theorem 4.6 ([6, Theorem 1.4]). Let ∆ be a fully embeddable thick dual polar
space of rank n ≥ 2. Then there exists up to isomorphism a unique full
polarized embedding ē such that e ≥ ē for every full polarized embedding e of
∆.

The full embedding ē of ∆ alluded to in Theorem 4.6 is called the minimal
full polarized embedding of ∆.

We now give two theorems which give information about the structure of
the absolutely universal and the minimal full polarized embedding of a given
fully embeddable thick dual polar space.

Suppose ∆ is a fully embeddable thick dual polar space of rank n ≥ 2 and
that F is a convex subspace of diameter k ≥ 2 of ∆. Then F̃ is a thick dual
polar space of rank k. Consider the following problem.

Let e : ∆→ Σ be a full projective embedding of ∆ into a projective
space Σ and let eF : F̃ → ΣF be the full projective embedding of
F̃ induced by e, where ΣF is a some suitable subspace of Σ. What
kind of embedding is eF ?

The following two theorems give an answer to the above problem in the
case e is the absolutely universal embedding or the minimal full polarized
embedding of ∆.

Theorem 4.7 (Cardinali, De Bruyn and Pasini [6, Theorem 1.6]). If e is the
minimal full polarized embedding of ∆, then eF is isomorphic to the minimal
full polarized embedding of F̃ .

Theorem 4.8 (De Bruyn [22, Theorem 1.4]). If e is the absolutely universal
embedding of ∆, then eF is isomorphic to the absolutely universal embedding
of F̃ .

The proof of Theorem 4.8 given in [22] relies on results about simple con-
nectedness of hyperplane complements obtained in Cardinali, De Bruyn &
Pasini [7] and McInroy & Shpectorov [31]. Also the extension construction
for hyperplanes (see Theorem 3.1) has played a role in the proof.

4.3. The absolutely universal and the minimal full polarized embedding of
some fully embeddable thick dual polar spaces

We consider now the following problems for a given fully embeddable thick
dual polar space ∆ of rank n ≥ 2.

• What is the absolutely universal embedding of ∆?
• What is the minimal full polarized embedding of ∆?

Although there are theoretical results guaranteeing the existence of these
embeddings (see Theorems 4.3 and 4.6), it is in practice not so easy to see
what these embeddings are. In this subsection, we consider the four classes
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of dual polar spaces described in Section 2 and discuss what their absolutely
universal embedding and minimal full polarized embedding is. For two of
these classes, we will need to invoke the following result due to De Bruyn
and Pasini [25].

Theorem 4.9 ([25, Corollary 1.5]). If e is a full polarized embedding of a thick
dual polar space ∆ of rank n ≥ 2 into a projective space PG(V ), then the
dimension of the vector space V is at least 2n. As a consequence, if dim(V ) =
2n, then e is isomorphic to the minimal full polarized embedding of ∆.

(I) Consider the symplectic dual polar space DW (2n−1,F) where F is a field
and n ≥ 2. This dual polar space is known to admit a natural full projective
embedding in PG(N − 1,F), where N =

(
2n
n

)
−
(

2n
n−2

)
, see e.g. Brouwer [2,

Theorem 1.1], Cooperstein [10, Proposition 5.1] and De Bruyn [14, 17]. This
embedding is called the Grassmann embedding of DW (2n−1,F). The number
N is called the vector dimension of the Grassmann embedding.

The following theorem follows from Cooperstein [10, Theorem B] (finite case)
and De Bruyn & Pasini [24, Corollary 1.2] (general case).

Theorem 4.10 ([10, 24]). If |F| ≥ 3, then the Grassmann embedding of the
dual polar space DW (2n− 1,F) is absolutely universal.

If n ≥ 3 and |F| = 2, then the Grassmann embedding of DW (2n − 1,F) is
not absolutely universal. In that case the vector dimension of the absolutely
universal embedding was independently determined by Blokhuis & Brouwer
[1] and Li [29].

Theorem 4.11 ([1, 29]). The vector dimension of the absolutely universal em-
bedding of DW (2n− 1, 2), n ≥ 2, is equal to (2n+1)(2n−1+1)

3 .

The following theorem gives necessary and sufficient conditions for the Grass-
mann embedding of DW (2n− 1,F), n ≥ 2, to be isomorphic to the minimal
full polarized embedding.

Theorem 4.12 (De Bruyn [19, Corollary 2.1]). The Grassmann embedding
of DW (2n − 1,F) is isomorphic to the minimal full polarized embedding of
DW (2n − 1,F) if and only if either char(F) = 0 or (char(F) = p 6= 0 and
n < 2(p− 1)).

The proof in [19] only invokes linear algebra. For another approach which
makes use of advanced Lie algebra and representation theory for the sym-
metric groups, see also Premet and Suprunenko [34].

(II) Consider the Hermitian dual polar space DH(2n− 1,F′/F) where n ≥ 2
and F′ is a separable quadratic extension of F. This dual polar space is known
to admit a natural full projective embedding in PG(N−1,F), whereN =

(
2n
n

)
,
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see Cooperstein [9, Proposition 5.1], De Bruyn [15, Theorem 1.2] and De
Bruyn [21, Theorem 1.6]. This embedding is called the Grassmann embedding
of DH(2n− 1,F′/F).

The minimal full polarized embedding of DH(2n − 1,F′/F) can easily be
extracted from the discussion in Cardinali, De Bruyn and Pasini [6, Section
4.2].

Theorem 4.13 ([6]). The Grassmann embedding of DH(2n− 1,F′/F) is iso-
morphic to the minimal full polarized embedding of DH(2n− 1,F′/F).

The following theorem follows from Cooperstein [9, Theorem B] (finite case)
and De Bruyn & Pasini [24, Corollary 1.4] (general case).

Theorem 4.14 ([9, 24]). If |F| ≥ 3, then the Grassmann embedding of DH(2n−
1,F′/F) is absolutely universal.

If n ≥ 3 and |F| = 2, then the Grassmann embedding of DH(2n− 1,F′/F) is
not absolutely universal. In that case, the vector dimension of the absolutely
universal embedding was determined by Li [30].

Theorem 4.15 ([30]). The vector dimension of the absolutely universal em-
bedding of DH(2n− 1, 4), n ≥ 2, is equal to 4n+2

3 .

(III) Consider the parabolic dual polar space DQ(2n,F) where n ≥ 2 and F
is a field. This dual polar space is known to admit a natural full polarized
embedding in PG(N − 1,F) where N = 2n, see Cameron [4, Theorem 5.1],
Chevalley [8] and Buekenhout & Cameron [3, Section 7]. This embedding is
called the spin-embedding of DQ(2n,F). By Theorem 4.9, we immediately
have

Theorem 4.16. The spin embedding of DQ(2n,F) is isomorphic to the mini-
mal full polarized embedding of DQ(2n,F).

In the case the characteristic of F is distinct from 2, the absolutely universal
embedding of DQ(2n,F) was already determined by Wells [39] in 1983.

Theorem 4.17 ([39, Corollary 6]). If char(F) 6= 2, then the spin embedding of
DQ(2n,F) is absolutely universal.

If char(F) = 2 and F is perfect, then DQ(2n,F) ∼= DW (2n − 1,F) and we
have already considered that case before. It is still an open problem what the
absolutely universal embedding of DQ(2n,F) is in the case that char(F) = 2
and F is not perfect.

(IV) Finally, consider the elliptic dual polar space DQ−(2n + 1,F), n ≥ 2,
defined by a separable quadratic extension F′ of the field F. This dual polar
space is known to admit a natural full polarized embedding in PG(N − 1,F)



14 Bart De Bruyn

where N = 2n, see Cooperstein & Shult [11, Theorem 2.4] and De Bruyn
[20, Theorems 1.1 and 1.2]. This embedding is called the spin-embedding of
DQ−(2n+ 1,F). By Theorem 4.9, we have

Theorem 4.18. The spin-embedding of DQ−(2n + 1,F) is isomorphic to the
minimal full polarized embedding of DQ−(2n+ 1,F).

The following theorem was proved by Cooperstein and Shult [11, Theorem
2.5] (finite case) and De Bruyn [20, Corollary 1.4] (general case).

Theorem 4.19 ([11, 20]). The spin-embedding of DQ−(2n+1,F) is absolutely
universal.
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