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ABSTRACT

Currently, mobile and wearable devices (such as smartphones
and tablets) and cloud computing are converging in the new,
rapidly growing field of mobile cloud computing. Emerging
distributed cloud architectures such as edge clouds can be
used to support and scale out resource-intensive, low-latency
mobile applications. However, at the moment, a lot of bur-
den is put on the application developer in order to develop
and deploy distributed cloud-enabled mobile applications.
Therefore, we present AIOLOS: an integrated middleware
platform that supports transparent distributed deployment
and scaling among mobile devices and cloud infrastructures.
To evaluate the middleware, we show experimental results
of ATOLOS using a complex 3D mapping use case.
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1. INTRODUCTION

Today, mobile devices are among the fastest growing mar-
ket segments, with billions of smartphones and tablets to be
sold in 2014'. As these devices are portable and always-
connected, they are becoming the preferred platform for a
myriad of applications. Current developments in hardware
miniaturization and near-to-eye display technologies open
the door to a new class of wearable devices such as smart
watches and glasses. However, despite increasing hardware
capabilities, these wearable devices will always be resource
poor compared to fixed hardware, due to the intrinsic limita-
tions concerning weight, size, battery and heat dissipation.

In order to mitigate the hardware limitations on mobile
devices, cloud computing is often seen as a silver bullet, al-
lowing users to use remote infrastructure in an on-demand
fashion [4]. Moreover, these cloud systems provide elas-
tic horizontal scaling, allowing to easily handle peak loads.
However, high and variable latency, as well as bandwidth
constraints limit the applicability of the cloud for mobile
computing, especially when it comes to media processing [15].
Therefore, mobile cloud computing is evolving more and
more towards an edge cloud architecture, with highly dis-
tributed infrastructure deployed closer to the access network
of the end user [10]. Extensive research has covered the prob-
lem of dynamically offloading computation from the mobile
device to the (edge) cloud in order to improve user experi-
ence or energy consumption. The focus, however, generally
lies on personalized, single-user applications. Such applica-
tions hardly benefit from the elasticity offered by the cloud
as a single user can only generate so much load. In our
work, we explicitly take into account multi-user applications,
which experience significant shifts in load and prove more of
a challenge to scale out cloud resources effectively.

From a developer perspective, deploying an application on
the mobile cloud means that one has to take into account a
distributed ecosystem on which the application or different
parts thereof should be deployed, as illustrated on Figure 1.

Mttp://www.gartner. com/newsroom/id/2692318
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Figure 1: The mobile cloud computing ecosystem targeted
by AIOLOS middleware consists of back-end cloud datacen-
ters and edge cloud compute nodes to support applications
for mobile and wearable devices.

This puts a huge burden on the application developer, as
he is responsible for supporting one or a number of different
mobile and cloud platforms. Coping with the multitude of
vendors and device generations has proven to be a major is-
sue in mobile cloud computing [14]. Moreover, the developer
has to make the application distribution aware (i.e. support-
ing a remote method call mechanism such as web services),
and configure scaling rules.

To address these issues, we present AIOLOS? [22], a mid-
dleware platform for mobile cloud computing. This platform
enables easy development of component-based applications,
for which components can be transparently deployed and
scaled on back-end cloud datacenters, on edge-cloud nodes
or locally on a mobile device. By managing applications on
a component level, ATOLOS is able to (i) offload compute-
intensive parts of the application from the mobile device to
the (edge-)cloud, (ii) monitor application components and
scale out in the cloud on a fine grained component level
and (iii) quickly reprovision cloud Virtual Machines (VMs)
by stopping, starting or migrating components. Moreover,
AIOLOS features scaling on both the infrastructure and ap-
plication level when deployed on an Infrastructure as a Ser-
vice (IaaS) cloud, effectively turning it into a Platform as a
Service (PaaS) cloud. This allows the developer to focus on
application functionality, rather than deployment, distribu-
tion and scaling, which is handled by the framework.

Whereas in [22] we focus on the algorithms in AIOLOS
used for offloading from a single device to a single server,
this paper focuses on the inner workings of AIOLOS itself
as well as its ability to scale out multi-user applications on a
multi-tier infrastructure. As a use case we present Mercator,
a complex 3D mapping application, and show how AIOLOS
can automatically scale out its constituting components to
handle a growing user count.

2. AIOLOS OVERVIEW

The main objective of the AIOLOS framework is to decou-
ple (distributed) application deployment from application
development. In order to be able to transparently distribute
parts of the application, we adopt a component-based ap-
plication model. We assume an application is built as a
number of loosely coupled software components, that com-
municate through well defined service interfaces, as depicted
on Figure 2. The biggest advantage of the component-based
approach is that the application developer can solely focus

2Source available at http://aiolos.intec.ugent.be

on application functionality by implementing the service in-
terfaces, without having to bother on how the components
will actually communicate on a distributed infrastructure.

An example deployment of this application is shown in
Figure 3. Each infrastructure node runs the AIOLOS mid-
dleware. This could be embedded in a mobile application
on a wearable device, or running inside a VM on top of
an laaS cloud. In order to transparently distribute appli-
cation components, AIOLOS creates proxies for all compo-
nent service interfaces, hiding the actual component imple-
mentations. The proxy can forward method calls to local
instances (represented with a continuous line), or execute a
remote method call (shown as a dashed line). When mul-
tiple (remote) component instances are available, different
proxy policies can be used to forward the call. For example
in case of component B, the proxy on the mobile device can
switch between local and remote execution, e.g. to mini-
mize the execution time or the energy spent. In the case
of component E, this mechanism can be used to scale out a
component to the cloud, and use a load balancing policy to
distribute load among the available instances.

Because each service call between two application compo-
nents passes through an AIOLOS proxy, we can also gather
monitoring information about all inter-component commu-
nication. For each method call the size of the arguments and
return value is recorded, as well as the execution time of the
call. This monitoring information can be used to build a
runtime model of the application, and to identify candidate
components to offload or to scale out.

As the application components are loosely coupled, they
can be deployed on any of the AIOLOS nodes in the net-
work. Application components can be started, stopped and
migrated at runtime, allowing to reconfigure the application
deployment at runtime, and enabling quick reprovisioning of
running VMs in the cloud.

3. DESIGN AND IMPLEMENTATION

As the component-based concept is central in our ap-
proach, we have built AIOLOS on top of OSGi [18]. The
OSGi core specification defines a service oriented module
management system for Java, allowing to dynamically load
and unload software modules — called bundles — at runtime.
OSGi uses the whiteboard pattern allowing components to
register and lookup service interface implementations. The
portability of Java enables the execution of the same code
on different platforms and architectures, supporting both
server machines and mobile devices running Android. The
AIOLOS middleware runs on top of OSGi, and is by itself
also designed as a number of components. The internal de-
sign of the AIOLOS framework is depicted in Figure 4, and
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Figure 2: Applications are composed of loosely coupled soft-
ware components that communicate through well defined
service interfaces.
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Figure 3: The AIOLOS platform can run both on mobile devices and (edge) cloud VMs. Every service interface is proxied by
AIOLOS, allowing to transparently switch between local and remote execution (i.e. B), or scale out in a cloud environment

(i.e. E).

is structured in three layers: the core, monitoring and de-
ployment layer.

The core layer provides the basic building blocks enabling
service distribution and proxying. The RemoteServiceAd-
min implements a remote procedure call protocol to forward
method calls to remote component instances. The protocol
is based on R-OSGi [13], and uses Kryo® for fast and effi-
cient object graph serialization. In order to remain compat-
ible with the OSGi specification, the RemoteServiceAdmin
implements the interfaces specified in the OSGi Enterprise
Release [19] regarding remote services. Different AIOLOS
nodes are interconnected via their TopologyManagers,
which will exchange the available services on the different
nodes, allowing to lookup and connect to remote service in-
stances. Every service interface is proxied by the Proxy-
Manager, hiding the actual service implementation. When
more than one service instance is available, a ProxyPolicy
is used to determine to which instance service calls should
be forwarded. Different policies are available, for example
a round robin policy for load balancing in the cloud, or a
decision algorithm based on the method argument size for
mobile offloading as proposed in [22].

Shttps://github.com/EsotericSoftware/kryo
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Figure 4: The AIOLOS middleware can be split up into
three layers: the core, monitoring and deployment layer.
The PlatformManager provides a unified interface to inter-
act with all ATOLOS components.

The monitoring layer collects information on service level
and node level. The ServiceMonitor receives callbacks
from the ProxyManager each time a service method is called,
and records the argument size, return value size and execu-
tion time of each method. This allows to identify resource-
intensive components that should be offloaded or scaled out.
The NodeMonitor operates on the level of the operating
system, collecting metrics such as CPU usage, memory con-
sumption, etc. The current implementation is restricted
to Linux based systems by reading the /proc/ filesystem.
These metrics can be used to identify overloaded nodes from
which components should be migrated.

The deployment layer provides components to lookup and
deploy components, and to start or stop new VMs in a cloud
environment for scaling out. All deployment artefacts (i.e.
jar files) are kept in a repository. The Repository compo-
nent provides a searchable index of all artefacts and their
capabilities. Just like the RemoteServiceAdmin, our im-
plementation follows the Repository specification from the
OSGi Enterprise Release. The DeploymentManager pro-
vides an interface to start, stop or migrate components on
an ATIOLOS node. Components are fetched from available
Repositories, and using the OSGi capability model also com-
ponent dependencies can be resolved at runtime. When run-
ning on a cloud environment, the CloudManager can be
used to start or stop new VMs. These VMs are then au-
tomatically provisioned with AIOLOS running on top of an
OSGi runtime, and can be used to scale out application com-
ponents. In order to support multiple cloud providers, our
CloudManager implementation uses Apache jclouds?.

Finally, the PlatformManager offers a unified interface
to all layers. This interface can for example be used for cre-
ating an autonomic decision engine, implementing a feed-
back loop gathering monitoring information and executing
new deployment decisions based thereon. Application de-
velopers can also use this interface to collect and inspect
monitoring information of their application, or to provide
their own ProxyPolicies and implement application-specific
scaling behaviour.

“http://jclouds.apache.org
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Figure 5: Overview of the Mercator architecture. Videoframes are fetched from the video source, after which features are
detected and matched in order to add them to the Map. The Map then self-optimizes using bundle adjustment and clustering.

4. USE CASE: MERCATOR

To illustrate the features of AIOLOS, we implemented a
prototype of Mercator [17], a proposed application for online
and scalable 3D mapping. By processing live video feeds
of mobile devices such as smart glasses or phones using
a Structure from Motion (SfM) pipeline, a detailed three-
dimensional map of the users’ environment is created. SfM
is a computer vision technique that allows to reconstruct
a 3D model without any prior information about the sub-
ject to be reconstructed or the position of the camera cap-
turing it. The goal of Mercator is that a large group of
users may collaboratively expand this model of their envi-
ronment, eventually resulting in a crowd-sourced 3D map of
the world. Such a 3D map would enable a wide range of
applications, such as Augmented Reality (AR) and indoor
navigation. While other attempts have recently been made
to create a scalable 3D reconstruction pipeline [1], Mercator
distinguishes itself by providing online mapping performed
by multiple users.

Figure 5 shows an overview of the different components
making up Mercator. To build a 3D model, the Controller
first fetches frames from the Source, e.g. a mobile device’s
physical camera or a prerecorded video file. These are then
forwarded to the Tracker, which will estimate the posi-
tion and orientation of the camera. This pose estimation
is performed by detecting and matching 2D image features
with known 3D features points of the already reconstructed
model. Detecting image features is performed by the Detec-
tor service, while feature matching is done by the Matcher.
Note that multiple Source components require multiple Con-
troller and Tracker components. The Map service stores
(a part of) the reconstructed model in the form of a point
cloud of 3D features along with the frames in which they
were detected. A single Map service can be shared between
multiple users, allowing them to collaboratively expand the
3D model.

When a client’s Controller has sufficient confidence in the
Tracker’s pose estimation, it forwards frames to the Fuser.
The Fuser will estimate the 3D position of newly detected
features in the frame and add them to the Map, along with
the frame and its estimated pose themselves. The Fuser
will also refine the position of existing 3D features. If the
tracking quality is poor, which may be caused by e.g. rapid
camera movement, the Controller will ask the Relocalizer
to make a rough estimate of the camera position by looking
for similarities with previously processed frames. When new
frames and 3D feature points are added to the sparse point
cloud, their pose and position need to be optimized with

respect to the rest of the model. In order to do this, the
Map calls the BundleAdjustment service. Bundle adjust-
ment [20] (not to be confused with OSGi bundles) performs
a joint refinement of frame poses and feature point locations
by nonlinear minimization of the reprojection error.

However, the execution times of modifying or querying the
model dramatically increase with the extent of the model.
This is especially the case for bundle adjustment, for which
the execution time scales cubically in the number of feature
points and frame poses. To cope with this, a Clustering
service will scale the Map service by splitting the model into
several overlapping partial models, each covering a local ge-
ographic area. Each partial model can then be updated and
optimized independently of the others, which in turn allows
the other services to scale out to match the increased de-
mand. To further reduce execution times, the Clustering
service will perform a filtering operation on the model fol-
lowing bundle adjustment. 3D features points that likely
belong to the same physical point in space are consolidated
and redundant frames are removed.

Mercator is a quite complex use case. Each mobile client
requires a unique instance of the Source, Controller & Tracker
components, as they maintain session state. Likewise, the
Map component can not be scaled out by simply replicating
the service but requires a specialized clustering algorithm.
The remainder of the components however (Fuser, Relocal-
izer, Dectector, Matcher, Clustering & BundleAdjustment),
are stateless and can automatically be scaled out by the
AIOLOS framework in order to cope with the demand. As
more users participate, more frames need to be processed by
the Fuser, which in turn expands the point cloud in the Map.
This triggers the clustering algorithm, starting more Map
instances which require filtering and bundle adjustment.

S. EXPERIMENTAL RESULTS

We show the feasibility of our approach by experiment-
ing with the Mercator application on top of AIOLOS. Ex-
periments are performed on top of an OpenStack Icehouse®
TaaS cloud consisting of four compute nodes equipped with
an Intel Xeon E5-2620 processor and 16GB RAM. A single
management VM controls the experiment by booting the
required VMs. Clients are simulated by a client VM pro-
visioned with a Source, Tracker and Controller component
instance that will process an identical pre-recorded video.
This setup is used instead of actual mobile devices in order
to facilitate experimenting, but results in the same load pat-

Shttp://www.openstack.org



45 % Fuser ® Clustering
4 = BundleAdjustment M Detector
35 | Matcher # Relocalizer
’ 7
2.5 S

Allocated resources (# nodes)

m\m\m\\\\\\\\\\&\\)\\\\\\\\\\\\\\\\\\\\\\\\\\\

0 20 40 60 80 100 1

Time (minutes)

1)

0

Figure 6: The allocated resources for each of the component
types in the Mercator use case for the duration of the ex-
periment. Resources are measured in the fractions of worker
VMs available.

tern if camera and video resolution match. Initially, a single
worker VM is booted that provides the remaining services
required by the clients as well as a Map service. The man-
agement VM also processes the monitor information gath-
ered by the NodeMonitors and ServiceMonitors and decides
which components to scale up or down in a decision loop.

A scaling policy based on CPU load thresholds is used that
scales on a component level. More advanced scaling policies
incorporating other resource limitations are also possible,
but are not the focus of this paper. The scale-up procedure
is triggered when the CPU load on a worker VM, averaged
over the monitor interval, exceeds 75%. Scaling up is per-
formed by starting an additional instance of the component
consuming the most CPU time on that specific worker. A
new worker VM is booted when all existing worker VMs
already provide an instance of that component. Similarly,
when load drops below 50%, components are scaled down by
stopping the component consuming the least CPU time. If
that component happens to be the only instance, however,
it is migrated to another available node. If all components
on a worker VM have been stopped, the VM itself is shut
down as well. Multiple components can be scaled up or
down in each iteration of the decision loop, depending on
how many nodes are over- and underloaded. It may occur
that the same component needs to scale up for one node
and down for another in a single iteration, in which case the
component on the overloaded node is stopped.

Starting from a single, empty Map, a new client is added
every 15 minutes until a total of 5 clients are simultane-
ously expanding the model. The first client arrives after
15 minutes and the final one after 75 minutes. The scaling
loop monitors over an interval of 3 minutes, which is just
long enough to let all method calls be balanced among the
available workers. Figure 6 shows the allocated resources
for each of the components and how the component-based
scaling policy reacts to the increasing load. For each of the
six components, the allocated resources are calculated as the
sum of 1/#component(n) over all worker VMs n where the
component is instantiated, where #component is the num-
ber of components present on n.

We observe that as load increases, so does the number of
worker VMs, to a total of four after two hours. Moreover,
the allocated resources vary between components. Initially,
all components get 1/6 of the first worker VM. However, as

more clients are fusing frames in the model, the Fuser gets
allocated more resources (i.e. a new worker is booted on
which a Fuser component is instantiated) to handle the in-
creased load. Downscaling of the Fuser occurs because one
of the users loses track of its position and takes some time
to have regain sufficient confidence to expand the model.
After an hour of expanding the model, the filtering per-
formed by the Clustering component starts to take more
time and requires an additional VM. After about 80 min-
utes, the model gets clustered into several submodels, each
requiring bundle adjustment to be performed. The platform
reacts by downscaling the Clustering component in favor of
upscaling the BundleAdjustment component. Approaching
the two hour mark, a fourth worker VM gets booted to up-
scale the Matcher, which is now called more often due to the
increased size of the model. During the course of the exper-
iment, starting a new VM took on average (standard devia-
tion) about 70 s (12 s), while starting an individual compo-
nent on an already booted VM only took about 1.8 s (1.1 s).
This clearly illustrates the benefits of a component-based
approach in the fast reprovisioning of applications.

6. RELATED WORK

An important aspect of mobile cloud computing is parti-
tioning mobile applications and offloading parts thereof to
remote infrastructure, also denoted as cyber foraging [11].
Different approaches exist, offloading parts of the applica-
tion either using a method (Scavenger [7], MAUI [6]) com-
ponent (OSGi in [8], Sprout in Odessa [12], weblets in [23])
or VM (CloneCloud [5], COMET [9]) level granularity. Us-
ing software components as unit of deployment rather than
methods results in less fine-grained optimization options,
but reduces the overhead of monitoring and distributing. A
more detailed survey on cyber foraging can be found in [16].
Although these systems focus on application partitioning
and offloading, none of them actually tackle application scal-
ing at the cloud side. Therefore, AIOLOS takes into account
scaling mechanisms in order not only to offload parts of the
application, but also scale them in the cloud to process all
client-side requests.

Besides distant cloud infrastructure, applications can also
be offloaded to resources nearby. Satyanarayanan et al. [15]
propose the use of cloudlets, consisting of trusted infras-
tructure deployed in the local area network, mitigating high
network latency. Bonomi et al. introduce the concept of
fog computing [3], extending traditional cloud computing
with a largely distributed number of nodes deployed at the
edge of the network. This shows that the future Internet
will consist not only of a massive number of client devices
backed by a few large datacenters, but also a lot of interme-
diate infrastructure will be deployed at the edge. Therefore,
our platform is designed to be able to cope with a various
number of deployment points.

In order to scale in the cloud, new VMs have to be pro-
visioned at runtime. Current provisioning systems such as
Chef or Puppet provide tools to manage the infrastructure,
relying on custom scripting and management tools [2]. Al-
though higher level management tools exist [21], these tools
allow to configure a VM at boot time, but do not allow to
reconfigure the machine at runtime. To mitigate this short-
coming, our framework operates at a component level, which
allows to quickly reconfigure the VM by (un)installing com-
ponents at runtime. PaaS providers such as Google App



Engine® do hide the provisioning complexity from the end
user, but then again this offers less control over the platform,
and requires a fixed client-server separation of the applica-
tion.

7. CONCLUSION AND FUTURE WORK

In this paper, we described the inner workings of AIOLOS,
a middleware for supporting component-based applications
in mobile cloud environments. AIOLOS allows to transpar-
ently distribute applications on a variety of mobile devices
and fixed infrastructure. By being able to start or migrate
components at runtime, computation can be easily offloaded
to (edge) cloud servers and applications scaled out to match
demand. Moreover, when deployed on an laaS-platform,
ATOLOS can scale both on an application level as well as an
infrastructure level by booting and provisioning additional
VMs. Finally, AIOLOS provides an API that allows devel-
opers to gather monitoring information and define their own
offloading and scaling policies. The possibilities of AIOLOS
were illustrated using the Mercator use case, an application
for scalable, online 3D mapping. Our experiment showed
that a simple scaling policy is able to use the benefits of
both infrastructure level scaling as well as fast reprovision-
ing of components to handle the demands of Mercator.

In future work, we look to expand support for other op-
erating systems and laaS-providers as well as develop more
advanced (distributed) scaling algorithms that improve re-
source usage and stability.
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